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Massively parallel reporter assays (MPRAs) test the capacity of putative gene regulatory elements to drive transcription on a

genome-wide scale. Most gene regulatory activity occurs within accessible chromatin, and recently described methods have

combined assays that capture these regions—such as assay for transposase-accessible chromatin using sequencing (ATAC-

seq)—with self-transcribing active regulatory region sequencing (STARR-seq) to selectively assay the regulatory potential

of accessible DNA (ATAC-STARR-seq). Here, we report an integrated approach that quantifies activating and silencing reg-

ulatory activity, chromatin accessibility, and transcription factor (TF) occupancy with one assay using ATAC-STARR-seq.

Our strategy, including important updates to the ATAC-STARR-seq assay and workflow, enabled high-resolution testing of

∼50 million unique DNA fragments tiling ∼101,000 accessible chromatin regions in human lymphoblastoid cells. We dis-

covered that 30% of all accessible regions contain an activator, a silencer, or both. Although few MPRA studies have ex-

plored silencing activity, we demonstrate that silencers occur at similar frequencies to activators, and they represent a

distinct functional group enriched for unique TF motifs and repressive histone modifications. We further show that Tn5

cut-site frequencies are retained in the ATAC-STARR plasmid library compared to standard ATAC-seq, enabling TF occu-

pancy to be ascertained from ATAC-STARR data. With this approach, we found that activators and silencers cluster by

distinct TF footprint combinations, and these groups of activity represent different gene regulatory networks of immune

cell function. Altogether, these data highlight the multilayered capabilities of ATAC-STARR-seq to comprehensively inves-

tigate the regulatory landscape of the human genome all from a single DNA fragment source.

[Supplemental material is available for this article.]

Transcription is regulated by transcription factors (TFs) and the
DNA sequences they bind, called cis-regulatory elements.
Enhancers, which are a class of cis-regulatory elements, are distally
located from the genes they target and serve as key drivers of cell
type–specific gene expression (Heinz et al. 2015). Because enhanc-
ers require TF binding, they are largely dependent on chromatin
accessibility to elicit transcriptional activity. Therefore, chromatin
accessibility is a vital regulator of enhancer function, and this is ev-
idenced by the observation that ∼94% of all ENCODE TF ChIP-seq
peaks fall within accessible chromatin (Klemm et al. 2019). In any
given cell type, only a small fraction (∼2%) of the genome is acces-
sible to TF binding (Thurman et al. 2012; Klemm et al. 2019). In
this way, most enhancers are inaccessible and are less likely to
drive transcription endogenously.

Enhancers are difficult to identify and validate because they
lack uniform features and are less constrained by gene proximity
than promoters (Gasperini et al. 2020). Massively parallel reporter
assays (MPRAs) were developed to test the regulatory potential of
thousands to millions of DNA sequences in parallel, providing
high-throughput identification of putative enhancers. Overall,
MPRAs test the regulatory potential of genomic regions by cloning
them en masse into a reporter plasmid and leveraging high-
throughput sequencing to quantify regulatory activity (Santiago-
Algarra et al. 2017). Among the variety of different vector back-

bones and assay designs applied to MPRAs, self-transcribing active
regulatory region sequencing (STARR-seq) is uniquely designed to
assay an entire genome for regulatory activity (Melnikov et al.
2012; Patwardhan et al. 2012; Arnold et al. 2013; Inoue et
al. 2017; Maricque et al. 2017; Muerdter et al. 2018; Kircher et al.
2019). STARR-seq quantifies regulatory activity genome-wide by
cloning randomly fragmented genomic DNA into the 3′ UTR of
the reporter plasmid. Thus, active enhancers drive transcription
of themselves, and activity is quantified by the abundance of their
own sequence in the transcript pool, removing the need for bar-
codes that some MPRAs employ. One major limitation of STARR-
seq is that it is technically challenging to accommodate the mas-
sive size of the human genome; it requires large-scale cloning pro-
cedures and produces shallow sequencing coverage of human
regulatory elements (Johnson et al. 2018). In addition, STARR-
seq assays both accessible and inaccessible chromatin. Thus,
many assayed regions are derived from heterochromatin and are
less likely to be transcriptionally active in the cell type in question.

To narrow the scope of the assay, recent methods have com-
bined STARR-seq with techniques that capture accessible chroma-
tin to specifically test the regulatory potential of accessible DNA
(Wang et al. 2018; Chaudhri et al. 2020; Glaser et al. 2021). As a re-
sult, these methods only sample a fraction of the human genome
(∼2%) while assaying nearly all regulatory elements capable of
driving transcription endogenously, because they are derived
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from open chromatin. This approach remains comprehensive
while enabling deeper sequencing coverage of biologically rele-
vant genomic regions. Furthermore, integrated approaches have
recently been described that combinemeasurements of chromatin
accessibility with analysis of transcription and other epigenomic
features from a single population of cells (Kelly et al. 2012; Clark
et al. 2018; Barnett et al. 2020; Chen et al. 2022). Similarly,
ATAC-STARR-seq has the potential to reveal multiple levels of
gene regulatory information simultaneously, but this potential
has not been explored. In addition, a complete understanding of
gene regulatory activity is lacking with most MPRA approaches
because silencing activity is largely overlooked, with a few recent
exceptions (Doni Jayavelu et al. 2020; Pang and Snyder 2020;
Kim et al. 2021); this is potentially due to technical caveats of
distinguishing silencers from either that of missing data or inter-
ference from head-on transcriptional conflicts or post-transcrip-
tional silencing mechanisms.

Here, we demonstrate a new workflow that substantially ex-
pands the capabilities of ATAC-STARR-seq to extract and measure
gene regulatory information. Using this approach, we aimed to
identify both activators and silencers, as well as to simultaneously
profile chromatin accessibility, and perform TF footprinting. From
a single ATAC-STARR-seq data set, a multilayered, integrated view
of the human genome can be captured—a feature that has not
been explored previously. We provide a protocol and code reposi-
tory so that this new ATAC-STARR-seq workflow may be easily
used and adopted by the field.

Results

ATAC-STARR-seq experimental design

The ATAC-STARR-seq approach is divided into the three main
parts: (1) ATAC-STARR-seq plasmid library generation; (2) reporter
assay; and (3) data analysis (Fig. 1A). To generate ATAC-STARR-seq
plasmid libraries, nuclei are isolated from a cell type of interest and
exposed to Tn5, the cut-and-paste transposase used in the ATAC-
seq method (Buenrostro et al. 2013). Tn5 simultaneously cleaves
DNA fragments within accessible chromatin and attaches custom-
izable sequence adapters to their 5′ ends. ATAC-STARR-seq adapt-
ers are designed to serve as homology arms for direct Gibson
cloning into the STARR-seq reporter plasmid, which enables clon-
ing of accessible DNA fragments en masse. The resulting ATAC-
STARR-seq plasmid library consists of millions of unique plasmids
each harboring their own unique open chromatin-derived DNA
fragment.

In our updated ATAC-STARR-seq workflow, we employ the
STARR-seq Ori backbone, where the origin of replication (Ori)
functions as the minimal promoter (Supplemental Table S1;
Muerdter et al. 2018). Each plasmid in the ATAC-STARR-seq plas-
mid library contains a truncated GFP (trGFP) coding sequence, a
polyadenylation signal sequence, the Ori, and the unique accessi-
ble DNA fragment being assayed (Fig. 1B). Critically, the accessible
region is cloned into the 3′ UTR, so if the accessible region is active,
it interacts with the Ori to drive self-transcription. Thus, an acces-
sible region’s level of activity is reflected by its own level of expres-
sion. Transcripts from ATAC-STARR-seq plasmids, termed
“reporter RNAs,” are expressed at basal levels from the activity of
the Ori itself. This allows detection of silencing activity—the inhi-
bition of the basal expression—in this assay.

Following its creation, the ATAC-STARR-seq plasmid library is
transfected via electroporation into a given cell line. From the

same flask of cells, both reporter RNAs and plasmid DNA are har-
vested 24 h later, then prepared as Illumina sequencing libraries
and sequenced. Activity is calculated as the log2 ratio between nor-
malized read counts from the reporter RNA and plasmid DNA data
sets. The re-isolation of plasmid DNA recovers only the ATAC-
STARR-seq plasmids that were successfully transfected, thus pro-
viding a more accurate representation of the “input” sample
than sequencingwithout transfection. Supplemental Table S1 pro-
vides a comparison of experimental and analytical features as well
as reported data metrics for the current ATAC-STARR design and
previously reported approaches (Wang et al. 2018; Chaudhri
et al. 2020).

ATAC-STARR-seq maintains library complexity and nucleosome

profiles of Tn5-selected DNA fragments

Following the experimental design outlined above, we tagmented
GM12878 cells and generated an ATAC-STARR-seq plasmid library
that yielded about 50 million unique accessible DNA fragments
(Supplemental Text; Supplemental Fig. S1A). For a total of three
replicates, we then transfected the library into GM12878 cells
and harvested both reporter RNAs and plasmid DNA from the
same flask of cells 24 h later. We chose 24 h post-transfection to
avoid significant effects from the plasmid-induced interferon
gene response and to ensure that the data reflects steady-state reg-
ulatory properties of GM12878 accessible regions (Supplemental
Text; Supplemental Fig. S1B; Muerdter et al. 2018). Using the cap-
tured reporter RNAs and plasmid DNA, we prepared Illumina se-
quencing libraries for each replicate and submitted for sequencing.

The size distribution of the accessible DNA fragments re-
mained consistent throughout the ATAC-STARR-seq procedure
and displayed the characteristic nucleosome banding and DNA
pitch typified by ATAC-seq fragment libraries (Supplemental Fig.
S2A,B). Analysis of library complexity between replicates revealed
an average maximum complexity of 90 million unique fragments
for input DNA and 10 million unique fragments for reporter RNAs
(Supplemental Fig. S2C). The difference between RNA and DNA
complexities is likely due to higher duplication rates in the RNA
samples (Supplemental Table S2) driven by both the expression
of multiple transcripts per plasmid and more PCR cycles required
for the RNA samples. In addition, for both RNA and DNA samples,
replicates displayed high Pearson (r2: 0.96–0.99) and Spearman’s
(ρ: 0.77–0.93) correlation coefficients indicating strong agreement
among the three replicates assayed (Supplemental Fig. S3).
Altogether, the ATAC-STARR-seq sequence libraries demonstrated
the necessary quality and complexity for downstream analysis.

ATAC-STARR-seq faithfully captures chromatin accessibility

with high signal-to-noise

The use of Tn5 on native chromatin to selectively clone chromatin
accessible DNA fragments provides the opportunity to quantify
not only reporter activity but also chromatin accessibility simulta-
neously from the same plasmid library. This is because the same
DNA fragments sequenced in a typical ATAC-seq workflow are
contained in the ATAC-STARR-seq plasmids. Given the insert frag-
ments from re-isolated plasmids are sequenced, we asked if the re-
sulting peak profiles recapitulate native ATAC-seq to measure
chromatin accessibility. This is important because, in contrast to
a typical ATAC-seq procedure, ATAC-STARR-seq involves several
additional steps, including cloning, transfection, and re-isolation,
which could distort the content of the library such that it no longer
represents its native profile in the genome. Specifically, mapped
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sequence reads derived from inserts of re-isolated plasmids are
counted at a given locus and this estimate infers the accessibility
of the region at the time of tagmentation. This also reflects the
number of plasmids that represent a given regionwithin the re-iso-
lated ATAC-STARR-seq plasmid library. To test this, we processed
the re-isolated plasmid DNA as an Omni-ATAC-seq data set and
benchmarked against the GM12878 Omni-ATAC-seq data set
from Corces et al. (2017). Raw sequences obtained for both data
sets were processed through identical workflows (see Methods).
After collapsing read duplicates, we called peaks for each data set
using a variety of false-discovery rates (FDRs) (Supplemental
Table S3). To closelymatch the number of peaks previously report-
ed by Corces et al. (2017) (108,433), we chose two separate FDR
thresholds—0.0001 for ATAC-STARR-seq and 0.001 for the
Corces data—yielding 101,904 and 89,829 accessible chromatin
peaks, respectively (Corces et al. 2017). The ATAC-STARR-seq

and Corces et al. peak sets represent 2.22% and 2.11% of the ge-
nome, respectively, which agrees with previous reports (Fig. 2A;
Thurman et al. 2012; Klemm et al. 2019). Overall, 71% of ATAC-
STARR-seq peaks are reproduced in the Corces et al. (2017) data
set, whereas 81% of Corces et al. peaks overlap the ATAC-STARR-
seq data set (Jaccard index =0.589) (Fig. 2B), indicating strong
agreement between these data despite substantial differences in
ATAC-STARR DNA sample preparation. Furthermore, the fraction
of reads in peaks (FRiP) score, an ENCODE ATAC-seq standard
measure of noise, is considerably higher for both ATAC-STARR-
seq (0.74) and Corces et al. (2017) (0.526) than the ENCODE ac-
cepted standard (>0.2) (Fig. 2C), indicating minimal background
in our data set. The high signal-to-noise is also evident when look-
ing at normalized read pileups at a representative locus (Fig. 2D),
where the signal mirrors the Corces et al. accessibility signal pat-
terns. Based on these results, we conclude that ATAC-STARR-seq

A B

Figure 1. Schematic of the ATAC-STARR-seq methodology. (A) The experimental design of ATAC-STARR-seq consists of three parts: plasmid library gen-
eration; reporter assay; and data analysis. Open chromatin is isolated from cells with the cut-and-paste transposase Tn5 and only large DNA fragments
(>500 bp) are removed. The open chromatin fragments are cloned into a reporter plasmid and the resulting clones—called an ATAC-STARR-seq plasmid
library—are electroporated into cells. Twenty-four hours later, both reporter RNAs (blue)—which are transcribed directly off the ATAC-STARR-seq
plasmid—and ATAC-STARR-seq plasmid DNA (red) are harvested, and Illumina sequencing libraries are prepared and sequenced. The resulting ATAC-
STARR-seq data are analyzed to extract regulatory activity, chromatin accessibility, and transcription factor footprints. (B) Reporter plasmid design and
the expected outcomes for neutral, active, and silent regulatory elements. Each ATAC-STARR-seq plasmid within a library contains a truncated GFP
(trGFP) coding sequence, a polyadenylation signal sequence, an origin of replication (Ori) (which moonlights as a minimal core promoter), and the unique
open chromatin fragment being assayed. Because the accessible region is contained in the 3′ UTR, the abundance of itself in the transcript pool reflects its
activity. In this way, neutral elements do not affect the system and reporter RNAs are expressed at a basal expression level dictated by the minimal core
promoter, the Ori. Accessible chromatin fragments that are active express reporter RNAs at a higher level than the basal expression level, whereas silent
elements repress the Ori and reporter RNAs are expressed at a lower level than basal expression. Dashed boxes represent new components of the
ATAC-STARR-seq assay design and workflow.
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can accurately retain chromatin accessible peaks in the human ge-
nome with high signal-to-noise.

A sliding windows approach increases activity region calling

sensitivity

ATAC-STARR-seq tests regulatory activity in DNA enriched for ac-
cessible chromatin. Unlike whole genome STARR-seq or other
MPRAs, where the genomic DNA fragment distribution is relative-
ly constant, read coverage varies substantially from peak-to-peak
in ATAC-STARR-seq. In this way, ATAC-STARR-seq requires an
analysis strategy that calls active and silent regulatory regions
within accessibility peaks. To address this “peaks-within-peaks”
problem, we developed an analytical approach using DESeq2 to
normalize reporter RNA read counts to re-isolated plasmid DNA
read counts. DESeq2 additionally performs an independent filter-
ing stepwhich removes lowcount data confounders that can influ-
ence ratios and result in false positive peak calls (Love et al. 2014).

We tested two different approaches for regulatory activity anal-
ysis. The two approaches differ in how genomic regions are defined
prior to differential analysis with DESeq2. Our “sliding window”

method defines regions by slicing accessible peaks into 50-bp slid-
ing binswith a 10-bp step size (Fig. 3A). Alternatively, the “fragment
group” method, which is the approach used in Wang et al. (2018),
synthesizes regions by grouping paired-end sequencing fragments
by 75%or greater overlap (Supplemental Fig. S4A). Using a different
set of genomic regions, bothmethods assign and count overlapping
RNA and DNA reads to each genomic region and, using DESeq2,
identify regions where the RNA count is statistically different from
the DNA count at a Benjamini–Hochberg (BH) adjusted P-value<
0.1. The “sliding window” method yielded ∼30,000 distinct active
regions, whereas the “fragment groups” method yielded ∼20,000
distinct active regions (Supplemental Fig. S4B). In addition, nearly
all active regions defined using the fragment group method (95%)
are also captured in the sliding window method regions
(Supplemental Fig. S4C). Given this overlap and a 50% greater
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Figure 2. ATAC-STARR-seq accurately quantifies chromatin accessibility. ATAC-seq data fromCorces et al. (2017) is comparedwith ATAC-STARR-seq plas-
mid DNA data. (A) Fraction of the human genome represented by each peak set. (B) Venn diagram of peak overlap between the two data sets and the
associated Jaccard index. (C) Fraction of paired-end (PE) fragments in peaks—FRiP scores—for both samples. (D) Signal tracks comparing counts permillion
(CPM) normalized read count at a representative locus.
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recovery with the sliding windows approach, we used the sliding
windowsmethod to call active ATAC-STARR-seq regulatory regions.

Because significance is the primary threshold in our region
calling strategy, we examined the influence of replicate count
on the number of active regions called (Supplemental Text;
Supplemental Fig. S5). We found that, as expected, more replicates
result inmore active regions. However, we caution that these addi-
tional regions may represent a disproportionate number of false
positives andmayaffect the outcomes of certain accuracy-sensitive
applications like computational modeling. In this way, we believe
that three replicates are sufficient formost purposes.We also inves-
tigated the impact of read duplicates on replicate correlations and
activity region calling, finding that duplicate removal substan-
tially hindered region calling sensitivity despite yielding higher
correlation coefficients between replicates (described in more de-
tail in Supplemental Text; Supplemental Fig. S6).

Both short and long DNA fragments are required for

comprehensive region calling

BecauseDNA fragment synthesis forMPRAs is limited to 200 bp in-
cluding the adapters and barcode, a significant advantage of

ATAC-STARR-seq and other capture-based MPRAs is the ability to
measure activity of longer DNA sequences (Santiago-Algarra et al.
2017). To investigate the effect of fragment length on regulatory
region calls, we divided mapped reads into short (>125 bp) and
long (<125 bp) fragments and independently called active and si-
lent regulatory regions; 125 bpwas chosen as it bisects the bimodal
peak distribution displayed by RNA and DNA libraries (Supple-
mental Fig. S2B). Overall, read counts were similar for each sample
after splitting into short and long groups (Supplemental Fig. S7A).
Two to three times as many active and silent regions were called in
the long fragment group compared to the short group (20,833 vs.
10,789 for active and 16,872 vs. 6213 for silent). Nonetheless, a
substantial number of regions are called within the short fragment
group, although both fell short of the number of active and silent
regions called when both long and short were used (Supplemental
Fig. S7B). The regulatory regions called using long DNA fragments
are larger than those calledwith short fragments, as expected (Sup-
plemental Fig. S7C); however, they display little difference in TSS
distance, indicating that these groups are not comprised of differ-
ent genomic annotations (Supplemental Fig. S7D). A critical obser-
vation is that only 23% of active regions called using short reads
overlap active regions called using longer reads, revealing that

B

ED

F

CA

Figure 3. ATAC-STARR-seq quantifies regulatory activity within accessible chromatin. (A) Schematic of the sliding window peak calling method.
Accessibility peaks are chopped into 50-bp bins at a 10-bp step size with the BEDTools makewindows function (options -w 50, -s 10). For each window,
RNA and DNA reads are counted using Subread’s featureCounts function. Differential analysis comparing RNA and DNA read count is performed with
DESeq2. Significant bins are called at a Benjamini–Hochberg (BH) adjusted P-value < 0.1 and parsed into active or silent depending on log2 fold-change
(FC) value (± zero). Finally, bins are collapsed into regions using the BEDTools merge function. Log2FC scores are averaged across merged bins. (B) Volcano
plot of log2FC scores against –log10-transformed BH adjusted P-value fromDESeq2 for all bins analyzed. (C) The proportion of bins called as active or silent.
(D) The number of regions defined as either active or silent. (E) Overlapping density plots of active and silent regulatory region size; dashed lines represent
the medians in each case. (F ) The proportion of accessible peaks that overlap an active or silent region, or both.
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the two groups identify different regulatory regions in the genome
(Supplemental Fig. S7E); this is also true for the silent regulatory re-
gions, although to a lesser extent. Altogether, this analysis reveals
that short and longDNA fragments identify different regulatory re-
gion sets both in number and similarity. Therefore, to be as com-
prehensive as possible, STARR-seq assays should be designed to
include both short and long DNA fragments rather than impose
a size selection to remove smaller fragments.

ATAC-STARR-seq quantifies regulatory activity of open

chromatin

In the sliding window approach, bins are classified as active or si-
lent depending on whether RNA is enriched or depleted, respec-
tively, and then like-bins are merged to collapse overlaps (Fig.
3A). Using this approach, we identified ∼590,000 bins where
RNA and DNA counts were significantly different (Fig. 3B). More
specifically, this analysis identified 251,895 (4.1%) active bins
and 339,737 (5.5%) silent bins from the ∼5.6 million total bins
measured (Fig. 3C). Overlapping bins were merged into 30,078 ac-
tive and 21,125 silent regulatory regions (Fig. 3D). It is important
to note that more silent than active bins are called; however,
because silent regions are generally larger (Fig. 3E), merging over-
lapping bins results in fewer silent regions than active.
Collectively, the active and silent bins represent ∼9.5% of all
bins measured, indicating that the majority of accessible DNA is
transcriptionally neutral. Moreover, most accessible peaks do not
have an active or silent region contained within them (69.5%),
suggesting that most accessible regions are neutral regulatory re-
gions according to our assay (Fig. 3F). This suggests that themajor-
ity of accessible DNA has no regulatory potential in this cellular
context or, alternatively, that ATAC-STARR-seq is not sensitive
enough tomeasure weakly active or weakly silent regions. A recent
study in mouse embryonic stem cells made the same observation
using an orthogonal approach, suggesting this phenomenon is
present in other mammalian species (Glaser et al. 2021). We
note that a small percentage of accessible peaks (4.4%) contain
both active and silent regions, demonstrating that there can be
competing regulatory regions within the same accessible peak.

Active and silent ATAC-STARR-seq regions represent both

proximal and distal cis-regulatory elements, and lie within

functional chromatin states

To gain insight into the regulatory features of active regions,we an-
notated both active and silent regions according to genomic loca-
tion. Active regions are found in both promoter proximal and
distal areas of the genome, with a majority occurring in intronic
and intergenic sites (∼55%), whereas silent regions coincide pri-
marily with promoters (∼75%) (Fig. 4A). Functional classification
of active and silent regions by the 18-state ChromHMM model
(Roadmap Epigenomics Consortium et al. 2015) revealed that ac-
tive regions consist of TSS active, TSS flanking upstream, and En-
hancer Active 1 chromatin states and are devoid of repressive
states like Repressed Polycomb Weak and Quiescent (Fig. 4B). In
contrast, silent regions are slightly enriched for bivalent chroma-
tin states (TSSBiv, EnhBiv), consistent with the observation that
they are accessible but not active. Most silent regions also coincide
with TSS Active and TSSFlnk ChromHMM states, which corrobo-
rates their promoter proximal locations; however, their designa-
tion as “active” by ChromHMM is somewhat puzzling
considering these DNA fragments do not drive transcription in
our assay. One explanation is that silent regulatory activity, as

measured by episomal-based reporter assays, does not fully copy
regulatory activity as predicted by ChromHMM. Alternatively, ac-
tive promoters may confound the reporter assay by initiating tran-
scription from the 3′ UTR of the plasmid, causing conflicts with
active transcription from the Ori.

To further investigate if silent regions are a result of 3′ UTR
transcription initiation, we considered if an orientation bias exist-
ed in reporter RNA levels. If 3′ UTR transcription conflicts exist, we
would expect many fewer reporter RNAs when transcription re-
sults in head-on conflicts rather than occurring in the same direc-
tion as the Ori. We therefore subset reads based on whether they
arose from an insert cloned in a 3′–5′ direction or in a 5′–3′ direc-
tion (Supplemental Fig. S8A). We then assigned read counts to
all bins analyzed (Supplemental Fig. S8B,C), the bins called active
(Supplemental Fig. S8D,E), or the bins called silent (Supplemental
Fig. S8F,G). Because this is expected to be a promoter-specific ef-
fect, we also split bins into proximal and distal based on location
to the nearest transcription start site. In all cases, more than 95%
of the bins do not display an orientation bias, which we defined
as a normalized read count difference greater than five between
orientations (Supplemental Methods; Supplemental Fig. S8H).
Moreover, we observe high Pearson and Spearman’s correlation co-
efficients between orientations for all conditions (r2: 0.80–0.91
and ρ: 0.73–0.90), and the minimal contribution of orientation
bias to silent regions is in agreement with a previous report (Klein
et al. 2020). For the <5%of regions that do display orientation bias,
proximal bins are more affected than distal bins, as expected. Alto-
gether, ATAC-STARR-seq does not display a significant orientation
bias and most of the 21,000 silent regions we observe result from
legitimate silencing activity or another source.

Active and silent ATAC-STARR-seq regions are distinct

functional classes, and are enriched for specific histone

modifications and TF motifs

To further investigate the chromatin landscape of the active and
silent regions, we plotted ENCODE GM12878 ChIP-seq signal
(The ENCODE Project Consortium et al. 2020) for EP300, CTCF,
and histone modifications associated with active and repressed
chromatin states (Fig. 4C). As expected, active regions contain
EP300 at their center with histone 3 lysine 27 acetylation
(H3K27ac)more broadly distributed across the center; histone 3 ly-
sine 4 mono-methylation (H3K4me1) is also present at distal re-
gions, whereas histone 3 lysine 4 tri-methylation (H3K4me3) is
at proximal regions. In addition, histone 3 lysine 27 tri-methyla-
tion (H3K27me3)—a bivalent repressive mark—is largely absent
from active regions. Proximal silent regions, on the other hand,
are enriched for H3K27me3 and H3K4me3. This suggests many
of the proximal silent regions are accessible bivalent regulatory el-
ements in lymphoblastoid cells. To support their designation as si-
lent calls, we compared histone modification signal at accessible
peaks that contain either a silent region, an active region, both a
silent and active region, or neither, which we define as neutral ac-
cessible peaks (Supplemental Fig. S9A). Consistent with the obser-
vations above, silent accessible peaks contain more H3K27me3
signal and are devoid of H3K27ac signal relative to the other acces-
sible peak types.

It is important to note that silent regions are distinct from
neutral regions, which are defined as regions failing to reach signif-
icance in the RNA-DNA differential analysis. Overall, neutral re-
gions exhibit baseline levels of histone modifications and
distribution in genomic annotations like that of all accessible
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peaks (Supplemental Figs. S4A,B, S9B,C). Although neutral regions
represent the majority of accessible peaks, it is possible that a sub-
set are weak enhancers, as indicated by overlap with ChromHMM
states, or regulatory elements that display activity in a different cel-
lular context.

Our analysis of TF motifs within active and silent regions re-
vealed prominent differences inmotif enrichment. Distal silent re-

gions are strongly enriched for CTCF and its counterpart BORIS,
which is associated with diverse functions including gene repres-
sion and insulator activity (Fig. 4D,E; Kim et al. 2015). In addition,
we found enrichment for the SP/KLF family, several of which are
known to be transcriptional repressors (Cao et al. 2010). In con-
trast, the most enriched TFs in active regions were the IRF family,
the ETS family, subunits of the NF-kB complex, and general
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Figure 4. Regulatory regions defined by ATAC-STARR exhibit annotations, histone modifications, and TFs characteristic of their function. (A) Annotation of
regulatory regions relative to the transcriptional start site (TSS). The promoter is defined as 2 kb upstream and 1 kb downstream of the TSS. (B) Annotation of
regulatory regions by the ChromHMM 18-state model for GM12878 cells. (C) Heat maps of GM12878 ENCODE ChIP-seq signal and regulatory activity for
proximal and distal ATAC-STARR-defined regulatory regions. Proximal regions were classified as within 2 kb upstream and 1 kb downstream of a TSS; all other
regions were annotated as distal. Active and silent regions were ranked by mean activity signal for both proximal and distal regions. (D,E) Transcription factor
motif enrichment analysis as quantified by HOMER. Fold-change values are relative to the default background calculated by HOMER.
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promoter TFs such as THAP11 and YY1. These data are consistent
with our current understanding of immune gene regulation and
regulatory element function, which together corroborates the
quantification of regulatory activity with ATAC-STARR-seq.

ATAC-STARR-seq retains the ability to map in vivo TF binding

An inherent advantage of an ATAC-seq-based approach is the abil-
ity to perform TF footprinting. Computational footprinting meth-
ods identify Tn5 cleavage events or “cut sites” fromATAC-seq data
and, when combined with motif analysis, can identify TF binding
sites with high accuracy (Bentsen et al. 2020; Yan et al. 2020).
Because ATAC-STARR-seq produces similar high-quality chroma-
tin accessibility peak profiles as standard ATAC-seq, we explored
whether TF footprints were also preserved. We generated Tn5-
bias corrected cut site signal files for both Corces et al. (2017)
andATAC-STARR-seq accessibility data sets and plotted cut site sig-
nal at all accessible CTCFmotifs (Fig. 5A; Bentsen et al. 2020). As a
control, we also plotted GM12878 CTCF ChIP-seq signal from
ENCODE and ranked region order by the highest mean ChIP-seq

signal. We observed consistent depletion of Tn5 cut sites for
both Corces et al. (2017) and ATAC-STARR-seq accessibility at
CTCF sites. Moreover, we only observe footprints at motifs with
CTCFChIP-seq signal, demonstrating the utility of TF footprinting
to determine motifs that are bound or unbound by TFs. Given the
importance of TFs in driving enhancer function, this distinction is
vital when dissecting transcriptional regulation in human cells.

TF motif enrichment analysis pointed to multiple ETS family
members, including ETS1, which is an important immune cell reg-
ulator (Fig. 4D; Garrett-Sinha 2013). So, we asked whether ETS1
footprints are also present in our data. Unlike CTCF, ETS1 shares
its motif with many other transcription factors, such as ETV4;
therefore, footprinting cannot distinguish ETS1 and ETV4 binding
sites. For this reason, we refer to TFs using their ENCODE-defined
“archetypes,” which reflects the group of TFs that share the same
motif (Vierstra et al. 2020). For each archetype, we performed foot-
printing against one of the TFs within an archetype to infer motifs
bound bymembers of the group, such as ETS1 for the ETS/1 arche-
type. To assess the extent to which ETS1 footprints can be ex-
plained by ETS1 binding, we plotted GM12878 ETS1 ChIP-seq
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Figure 5. ATAC-STARR-seq identifies transcription factor footprints. (A) Comparison of ENCODE CTCF ChIP-seq signal to Corces et al. (2017) and ATAC-
STARR-seq cut count signal for all accessible CTCFmotifs. (B) Comparison of ENCODE ETS1 ChIP-seq signal to Corces et al. (2017) and ATAC-STARR-seq cut
count signal for all accessible motifs with the ETS/1 motif archetype. For both, regions were ranked by largest mean ChIP-seq signal. (C) Aggregate plots
representing mean signal for the TOBIAS-defined bound and unbound motif archetypes: CTCF, ETS/1, CREB/ATF/1, IRF/1, SPI, NFKB/2.
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signal from ENCODE within both Corces et al. (2017) and ATAC-
STARR-seq cut sites (Fig. 5B). Indeed, ETS1 ChIP-seq signal ex-
plains themajority but not all the ETS/1 footprints present.We ob-
serve similar cut site signal to Corces et al. (2017), further
indicating that ATAC-STARR-seq can detect in vivo binding of
transcription factors despite the additional cloning and transfec-
tion steps involved in producing ATAC-STARR-seq DNA libraries.

We performed footprinting for several more immune-related
TF archetypes to identify bound or unbound TF motifs (Fig. 5C).
For all TFs, bound motifs display substantially larger footprint
depth than unbound motifs. Together, this indicates that ATAC-
STARR-seq, when combined with footprinting, can identify
regions of the genome where TFs are bound. This additional
level of information can be leveraged in conjunction with accessi-
bility and activity to understand the context of TF binding while
circumventing the need to perform individual chromatin
immunoprecipitations.

Collective profiling of accessibility, in vivo TF binding, and

activity with ATAC-STARR-seq reveals distinct networks of gene

regulation

Interrogating chromatin accessibility, TF binding, and regulatory
activity together can be used to interpret locus-specific gene regu-
latory mechanisms. For example, active regulatory elements sur-
rounding the B cell–specific expressed gene ZBTB32 overlap IRF8
and NFKB1 footprints, suggesting these regions are regulated by
IRF8 and NFKB1 binding (Fig. 6A). We also observe SP1 and
KLF3 footprints overlapping a silent region at the ETV2 locus, a
gene lowly expressed in B cells, according to the Human Protein
Atlas (Uhlen et al. 2015, 2019). Together, this indicates that active
and silent regions can, in part, be explained by the occupancy of
these TFs.

To demonstrate the power of integrating TF footprints and
regulatory regions on a global scale, we clustered active and silent
regions based on the presence or absence of several TF footprints
(Fig. 6B,C). Footprintswere selected based on top hits from the pre-
vious motif enrichment analysis (Fig. 4D,E). Regulatory activity
may be driven by one or multiple TF binding events that define
the cluster and are representative of a gene regulatory network in
the genome. Indeed, we find that the putative target genes regulat-
ed by each unique group are enriched for distinct gene regulatory
pathways and are often related to the TFs in the cluster (Fig. 6D,E).
For example, cluster C is primarily defined by the presence of IRF/1
and is enriched for interferon alpha/beta signaling. It is interesting
that active clusters tend to be more associated with B cell function
than silent clusters, which are more associated with general, non–
B cell–related pathways.

Altogether, these distinct gene regulatory networks provide
an additional layer of insight into the mechanisms that control
gene expression and showcase how integration of themultiple lay-
ers of gene regulatory information provided by ATAC-STARR-seq
can narrow the focus of gene targets for active and silent regions.
We envision such an analysis could be used to interpret the func-
tional consequences of a dysregulated transcription factor or
disease-associated genetic variants. We provide this level of detail
from a single data set, which further demonstrates the strong po-
tential of our workflow to reveal distinct functional layers of hu-
man gene regulation. The resolution we achieve here would not
be possible without all three levels of regulatory information pro-
vided by ATAC-STARR-seq.

Discussion

Genome-wide approaches that integrate measurements of multi-
ple layers of gene regulation are needed to better understand en-
hancer function. By combining ATAC-seq with STARR-seq,
ATAC-STARR-seq assays regulatory activity only within the con-
text of accessible chromatin. This allows deeper coverage of regula-
tory elements by narrowing the scope but remaining inclusive of
nearly all active regulatory elements. In this report, we substan-
tially expand the capabilities of ATAC-STARR-seq and present an
improved workflow which uniquely permits simultaneous profil-
ing of accessibility, TF occupancy, and regulatory activity from a
singleDNA fragment source. Specifically,we implement key exper-
imental and analytical improvements and present data rationaliz-
ing the decisions we make. Experimentally, we adapt a modified
tagmentation protocol (Omni-ATAC) to remove mitochondrial
DNA from the DNA fragment pool. We also utilize the Ori as the
minimal promoter on the STARR-seq backbonewhich improves re-
porter RNA expression, recovery, and dynamic range over the su-
per core promoter (SCP1) backbone (Muerdter et al. 2018; Klein
et al. 2020). Furthermore, we re-isolate the transfected plasmid
DNA to capture only the DNA that is available to cells, which is
a more accurate measure of the input than sequencing prior to
transfection. Re-isolating plasmid DNA drives a greater degree of
variance between samples and better reflects a true experimental
replicate than sequencing the sameDNA sample for each RNA rep-
licate. Finally, we show that replicate number and inclusion of
long and short fragment sizes are critical for comprehensive region
calling.

Critically, we developed and tested a simple and sensitive re-
gion calling strategy that improves detection of regulatory regions
including silencers. We also quantify chromatin accessibility and
identify TF footprints, which is surprising given the added process-
ing steps in ATAC-STARR-seq including cloning, transfection, and
recapture of DNA libraries that can dull or degrade footprint signal.
This enabled us to stratify the active and silent regulatory regions
into distinct gene regulatory networks defined by the presence of
one or multiple TF footprints. Such an analysis typically requires
multiple genomic sequencing assays, but we do this using a single
data set.

With this improved workflow, we identified 30,078 active re-
gions and 21,125 silent regions in lymphoblastoid cells. Most ac-
tive regions were distal to transcription start sites, enriched for
functional active ChromHMM states, and were enriched for
known B cell–regulating TF motifs such as IRF8 and NF-kB. In
contrast, the silencers are proximal to transcription start sites
and enriched for CTCF and the SP/KLF TF family. Silent regions
are also enriched for the bivalent marks H3K27me3 and
H3K4me3 and may represent regulatory regions that are poised,
particularly at promoters. Because our plasmid design places regu-
latory regions within the 3′ UTR of the truncated reporter gene, it
is possible that the lack of observed reporter RNAs at silent regions
is a result of head-on transcriptional conflicts that arise from an-
tisense transcription initiation from the 3′ UTR. However, we
show this minimally occurs in our system and the silent regions
reflect true silencing activity or another source that has yet to
be identified. Although further studies may be needed to validate
these silent regions, this work confirms that the silencers are a dis-
tinct class of regulatory element with distinct properties com-
pared to active and neutral regions and warrant further
investigation. Even with an increasing number of studies targeted
at identifying silencers in the human genome, silencing
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regulatory regions remain an understudied aspect of gene regula-
tion and our approach provides a new strategy to investigate these
elements on a global scale (Doni Jayavelu et al. 2020; Pang and
Snyder 2020; Kim et al. 2021).

ATAC-STARR-seq data has several distinct attributes that re-
quire a tailored analysis strategy. Current MPRA bioinformatic
tools and pipelines are not tractable for these data, because in
ATAC-STARR-seq, the input itself is enriched for accessible
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Figure 6. TF footprints stratify ATAC-STARR-defined regulatory regions into gene regulatory networks. (A) ATAC-STARR-defined chromatin accessibility,
TF footprints, and regulatory regions at Chr 19: 35,611,232–35,798,446 (hg38). Signal tracks represent counts per million normalized read depth of chro-
matin accessibility. Zooms into ETV2 and ZBTB32 show that some regulatory regions are occupied by a SP1, KLF3, IRF8, or NFKB1 footprint. (B,C) Heat
maps of clustered (B) active and (C) silent regions based on presence or absence of footprints for select TF motif archetypes. (D,E) Reactome pathway en-
richment analysis for nearest-neighbor gene sets for each of the clusters. Genes counts for each cluster are displayed below their group identifier.
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chromatin and the read pileup varies considerably within these
loci. In this way, the analysis of our data required calling essential-
ly “peaks within peaks.” For this reason, it was critical to (1) nor-
malize RNA to DNA, and (2) avoid regions of low count data,
which is why we adapted approaches using DESeq2. We also
showed that including PCR duplicates was preferred over collaps-
ing duplicates. In the future, it would be beneficial to introduce
a unique molecular identifier to the system—such as the strategy
employed by UMI-STARR-seq (Neumayr et al. 2019)—to collapse
only the duplicates arising from PCR. Although we show compar-
isons of analysis strategies here, we believe that more information
could be extracted from this and future ATAC-STARR-seq data sets
with improved analysis strategies. In recent years, we have seen the
development of tailor-made peak callers for whole genome STARR-
seq, such as CRADLE (Kim et al. 2021) and STARRPeaker (Lee et al.
2020); a similarly tailored ATAC-STARR-seq peak caller could fur-
ther improve the capabilities of the method.

Although this study was limited to one condition, there are
many potential applications of ATAC-STARR-seq. With the ability
to subset enhancers by TF occupancy, ATAC-STARR-seq could be
leveraged to investigate enhancer grammar by pairing measurable
regulatory activity withmultiple TF footprints that drive enhancer
function. This approach also has the potential to identify dysfunc-
tional gene regulatory networks in diseases like cancer where neo-
plastic transformation can be driven by the dysfunction of a
specific TF. Additionally, an ATAC-STARR-seq plasmid library
may be generated from one cell type and tested in another. This
flexibility could be used as a tool to determine context dependent
activity or investigate enhancer and TF usage patterns during a dif-
ferentiation time course.

In this study, we demonstrated that our improved ATAC-
STARR-seq workflow is a powerful approach enabling joint quanti-
fication of chromatin accessibility, transcription factor occupancy,
and regulatory activity.We further demonstrate how this single as-
say can characterize the human genome at many functional levels
from chromatin accessibility to distinct gene regulatory networks.
This method provides a state-of-the-art approach to deeply inves-
tigate transcriptional regulation of the human genome. We pro-
vide a detailed protocol and a well-documented code repository
so that ATAC-STARR-seq may be easily used and adapted by the
field.

Methods

Cell culture

GM12878 cells were obtained fromCoriell and culturedwith RPMI
1640media containing 15% fetal bovine serum, 2mMGlutaMAX,
100 units/mL penicillin, and 100 μg/mL streptomycin. Cells were
cultured at 37°C, 80% relative humidity, and 5%CO2. Cell density
wasmaintained between 0.2 × 106 and 1×106 cells/mLwith a 50%
media change every 2–4 d. All cell lines were regularly screened for
mycoplasma contamination using the MycoAlert kit (Lonza).

Plasmids

The hSTARR-seq_ORI plasmid vector was a gift from Alexander
Stark (Addgene, plasmid #99296), and the pcDNA3-EGFP was a
gift from Doug Golenbock (Addgene, plasmid #13031). The bacte-
rial stabs fromAddgenewere spread onto an LB agar plate contain-
ing 100 μg/mL ampicillin and incubated overnight at 37°C. For
each, a single colony was picked and grown in 50 mL LB contain-
ing 100 μg/mL ampicillin overnight at 37°C while shaking at 225

rpm. Plasmid DNA was extracted using the ZymoPURE II Plasmid
Midiprep kit (Zymo Research, #D4200).

The linear vector used in the ATAC-STARR-seq Gibson clon-
ing step was generated by a single 50-μL PCR reaction using NEB-
Next Ultra II Q5 Master Mix (NEB, #M0544S). Although not
necessary for this study, primers were designed to add the i5 bar-
code to the linearized vector; this allows for different ATAC-
STARR-seq plasmid libraries to be pooled and tracked. Following
this approach, a universal forward primer (Fwd_universal_STARR)
and a reverse primer (Rev_N504_STARR) designed to add the N504
barcode were used (primer sequences are provided in Supplemen-
tal Table S4). PCR products were purified with the Zymo Research
DNA Clean & Concentrator-5 kit. DNA yield was determined by
NanoDrop, and purity was analyzed by gel electrophoresis; the lin-
earized vector was the only product observed on the gel.

Tagmentation

A total of eight tagmentation reactions were performed on 50,000
GM12878 cells each. We followed a slightly modified version of
the Omni-ATAC approach used in Corces et al. (2017).
Specifically, twice as much Tn5 than described in the protocol
was used. Standard Tn5 transposase was prepared in-house follow-
ing the method described in Picelli et al. (2014). Standard Tn5
transposome was assembled as described in Barnett et al. (2020)
with the following oligos: Tn5_1, Tn5_2_ME_comp, and
TN5MEREV. Tagmented products were pooled together and puri-
fied with the Zymo Research DNA Clean & Concentrator-5 kit
(#D4013). The entire elution was split and amplified via five 10-
μL PCR reactions. We used NEBNext High-Fidelity 2× PCR Master
Mix (#M0541S)—which is not a hot-start formulation—to first ex-
tend tagments before the initial denaturation step of PCR via the
following cycling parameters: 72°C for 5 min, 98°C for 30 sec;
four cycles of 98°C for 10 sec, 62°C for 30 sec, 72°C for 60 sec; final
extension 72°C for 2 min; hold at 10°C. Forward and reverse prim-
er sequences, Fwd_atac-starr_tag and Rev_atac-starr_tag, are pro-
vided in Supplemental Table S3. Amplified products were
purified with the Zymo Research DNA Clean & Concentrator-5
kit and then analyzed for concentration and size distribution
with a HSD5000 screentape (Agilent, #5067) on an Agilent 4150
TapeStation system. After amplification, we selected PCR products
<500 bp using SPRISelect beads (Beckman-Coulter, #B23317) at a
0.6× volume ratio of beads:sample. Selection was verified using a
HSD5000 screentape.

Massively parallel cloning

Four 10-μL Gibson cloning reactions were performed with
NEBuilder HiFi DNA Assembly Master Mix at a vector:insert molar
ratio of 1:2. As a negative control, we performed one cloning reac-
tion substituting tagments with nuclease-free water. Gibson prod-
ucts were pooled and purified via ethanol precipitation as
previously described in Sambrook and Russell (2006); we used gly-
coblue (150 μg/mL) as a coprecipitant. Purified Gibson products
were electroporated into MegaX DH10B T1R Electrocomp cells
(Invitrogen, #C640003) using a Bio-Rad Gene Pulser. Three elec-
troporations for the ATAC-STARR-seq sample (and one for the con-
trol) were performed with the following parameters: exponential
decay pulse type, 2 kV, 200 Ω, 25 μF, and 0.1-cm gap distance.
Prewarmed SOC media (1 mL) was added immediately following
electroporation; the three reactions were pooled and incubated
for 1 h at 37°C.We confirmed cloning success by plating a dilution
series—using a small aliquot from the ATAC-STARR-seq and nega-
tive control samples—onto prewarmed LB agar plates containing
100 μg/mL ampicillin and visualizing colonies 24 h later. The
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remaining ATAC-STARR-seq transformation was added directly to
a 1-L LB liquid culture with 100 μg/mL ampicillin and grown over-
night at 37°C while shaking at 225 rpm. The next day, plasmid
DNA was harvested from the 1-L culture using the ZymoPURE II
Plasmid Gigaprep (Zymo Research, #D4204). Before prepping, we
recorded a 1.633 optical density.

Electroporation

GM12878 cells were cultured so that cell density was between
400,000 and 800,000 cells/mL on the day of transfection. Three
replicates were performed on separate days. For each replicate, a
total of 20 electroporation reactions was performed using the
Neon Transfection System 100 µL kit (Invitrogen, #MPK10025)
and the associated Neon Transfection System (Invitrogen,
#MPK5000); 121 million GM12878 cells were collected, washed
with 45 mL PBS, and resuspended in 2178 μL Buffer R. For each re-
action, 5million cells (in 90 μL Buffer R)were electroporatedwith 5
μg of ATAC-STARR-seq plasmid DNA (in 10 μL nuclease-free water)
in a total volume of 100 μL with the following parameters: 1100 V,
30 ms, and 2 pulses. Electroporated cells were dispensed immedi-
ately into a prewarmed T-75 flask containing 50 mL of RPMI
1640 with 20% fetal bovine serum and 2 mM GlutaMAX.

Cell harvest

Twenty-four hours after transfection, the 50-mL ATAC-STARR-seq
flask was divided into two equal volumes; plasmid DNA was ex-
tracted from one volume, and reporter RNAs were extracted from
the other. Plasmid DNA was isolated with the ZymoPURE II
Plasmid Midiprep kit (#D4200) and eluted in 50 μL 10 mM Tris-
HCL, pH 8.0. Prior to lysis, cells were washed with 25mL PBS to re-
move any extracellular plasmid DNA. Reporter RNAs were extract-
ed in a stepwise process. First, total RNA was isolated from the
second volume of transfected cells using the TRIzol Reagent and
Phasemaker Tubes Complete System (Invitrogen, #A33251).
Specifically, 5 mL TRIzol were added to homogenize the washed
and pelleted cells. Next, polyadenylated RNAwas isolated from to-
tal RNA using oligo(dT)25 Magnetic Beads (NEB, #S1419S) at a 1 μg
total RNA to 10 μg beads ratio. We performed this step at 4°C and
eluted into 50 μL 10 mM Tris-HCl, pH 7.5. The extracted poly(A)+

RNA was treated with DNase I (NEB, #M0303S). This reaction was
cleaned up using the Zymo Research RNA Clean & Concentrator-
25 kit (Zymo Research, #R1018).

First-strand cDNA synthesis

For each sample, 10 50-μL reverse transcription reactions were car-
ried out using PrimeScript Reverse Transcriptase (Takara, #2680)
and a gene specific primer (STARR_GSP) as described by
Muerdter et al. (2018). Single-stranded cDNA was treated with
RNase A at a concentration of 20 μg/mL in low-salt concentra-
tions and cleaned up with a Zymo Research DNA Clean &
Concentrator-5 kit.

Illumina sequencing library preparation

For re-isolated plasmid and reporter RNA samples, Illumina-com-
patible libraries were generated using NEBNext Ultra II Q5
MasterMix and a unique combination of the followingNextera in-
dexes: N504-N505 (i5) and N701-N702 (i7); see Supplemental
Table S1 for primer sequences. DNA samples were amplified for
eight PCR cycles, and RNA was amplified for 12–13 cycles. In
both cases, products were purified with the Zymo Research DNA
Clean & Concentrator-5 kit and analyzed for concentration and
size distribution using a HSD5000 screentape. Purified products

were sequenced on an Illumina NovaSeq, PE150, at a requested
read depth of 50 or 75 million reads, for DNA and RNA samples,
respectively, on an Illumina NovaSeq 6000 machine through the
Vanderbilt Technology for Advanced Genomics (VANTAGE) se-
quencing core. Reads were processed and analyzed as described
in the Supplemental Methods. We provide guidelines for ATAC-
STAR-seq quality control in the Supplemental Text.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE181317. Python scripts and additional code for
ATAC-STARR-seq data analysis are available at GitHub (https://
github.com/HodgesGenomicsLab/ATAC-STARR-seq) and as
Supplemental Code. An interactive version of the protocol is posted
on protocols.io (https://www.protocols.io/view/atac-starr-seq-
b2nuqdew.html) and a PDF version of the protocol at publication
date is included as a Supplemental File.
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