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Abstract: Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and
anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent
rationale for the development of protective drugs. 15-Deoxy-∆12,14-prostaglandin J2 (15d-PGJ2) can
modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation.
Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether
15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse
brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2

stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner
in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo.
Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species
(ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of
protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective
inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun
N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was
blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated
through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1),
leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation
assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified
the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1
could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured
by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated
through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and
the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells.

Keywords: HO-1; 15d-PGJ2; bEnd.3; ROS; interleukin-6; lipopolysaccharide; Sp1; AP-1

1. Introduction

Microvascular endothelium, one of the main elements of the blood–brain barrier
(BBB), has been proposed to maintain the integrity of BBB and homeostasis, provide
support and protection for the neurons, and participate in the immune and repairment
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responses to brain injury. One common feature of brain injuries is the presence of brain
edema resulting from BBB breakdown. Many reports have implicated that recruitment of
inflammatory cells, apparently via breakdown of BBB, participates in a variety of brain
pathogenesis. Thus, the failure of the tight junction of endothelium is critically involved
in the pathogenesis and degeneration of the brain [1–4]. Several pieces of evidence have
shown that endothelium may contribute to the brain inflammatory process and produce
inflammatory mediators, including neurotoxic substances and cytokines. Endothelial
cells are thought to be responsible for neural death and brain injuries after exposure to
β-amyloid or lipopolysaccharide (LPS) [5–10]. LPS in the central nervous system (CNS) has
been shown to initiate neurodegenerative diseases such as Alzheimer’s disease through the
upregulation of diverse inflammatory genes, including cyclooxygenase (COX)-2, cytosolic
phospholipase A2, matrix metalloproteinases, and cytokines. Thus, LPS may be a risk factor
for the upregulation of inflammatory proteins in neurodegenerative diseases. Although
endothelial cells have been claimed to be an important component in brain injury, the
implication of these cells in neurodegenerative diseases is still unknown.

Prostaglandins (PGs) and thromboxane A2 are formed when the plasma membrane
releases the arachidonic acid by the action of phospholipases and is metabolized by the
sequential actions of PGG/H synthase or COX. COXs convert the arachidonic acid to PGH2,
which is enzymatically converted to a series of prostanoids such as PGE2, PGF2, PGI2,
and PGD2. Among these prostanoids, PGD2 can undergo chemical dehydration, losing
a molecule of water to form the cyclopentenone prostaglandin PGJ2 [11]. PGJ2 is further
metabolized to produce ∆12-PGJ2 and 15-deoxy-∆12,14-PGJ2 (15d-PGJ2). Growing evidence
has indicated that the 15d-PGJ2 possesses neuroprotection via inducing the Nrf2 pathway in
various types of cells [12,13]. In addition, 15d-PGJ2 has anti-inflammatory properties such
as inhibiting COX-2 expression, preventing IκB degradation, and inhibiting tumor necrosis
factor (TNF)-α release [14,15]. However, whether 15d-PGJ2 can induce anti-inflammatory
proteins such as heme oxygenase (HO)-1 in brain endothelium remains unclear. Thus, we
investigated whether 15d-PGJ2 can possess the anti-inflammatory effects in a brain damage
model created by LPS and dissected the possible mechanisms of its anti-inflammation in
mouse brain endothelial (bEnd.3) cells.

The expression of HO-1 is relatively low in the normal brain. However, HO-1 could
be markedly upregulated by various disease states in the CNS [16]. Upregulation of HO-1
has been demonstrated to have advantageous effects in many brain injury models, such
as ischemia/reperfusion injury [17], traumatic spinal cord injury [18], and traumatic brain
injury [19]. HOs are microsomal rate-limiting enzymes in the oxidative degradation of
pro-oxidant heme into effective antioxidants, including free iron (ferrous iron), carbon
monoxide (CO), and biliverdin which is converted to bilirubin mediated through biliverdin
reductase [20]. Biliverdin and bilirubin exert potent antioxidative and anti-nitrosative
effects in diverse cell culture models, including endothelial cells [21]. CO exerts potent
anti-inflammatory [22] and anti-apoptotic [22] effects and prevents BBB disruption [23]
effects in in vitro and in vivo studies. Iron release from HO activity leads to the post-
translational release of the translational repression of ferritin. Therefore, ferritin synthesis is
increased [24]. Overexpression of ferritin reduced apoptosis in a model of I/R injury after
liver transplantation; ferritin confers cytoprotection against oxidative stress and performs
an intermediate role in the HO-mediated anti-apoptotic effect [25]. There are three isoforms
of HO, including one inducible isoform (HO-1) and two constitutive isoforms (HO-2 and
HO-3). All three byproducts of heme are responsible for the cryoprotective properties of
HO-1 [21]. Lin et al. revealed that the upregulation of 15d-PGJ2 by transferring adenoviral
COX-1 (Adv-COX-1) reduced infarct volume in the ischemic cortex and increased HO-
1 level in a rat stroke model [26]. Koyani et al. indicated that 15d-PGJ2 induces the
expression of HO-1 mediated through a reactive oxygen species (ROS) synthesis-activated
p38 mitogen-activated protein kinase (MAPK)/Akt/Nrf2-Egr1 cascade in the MG-63 cell
line [27]. Another report employing rat vascular smooth muscle cells showed that 15d-PGJ2
induces HO-1 upregulation mediated through ROS and the p38 MAPK pathway, leading to
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Nrf2 nuclear translocation but not peroxisome proliferator-activated receptor (PPAR)-γ [28].
Thus, in the present study, we examine whether 15d-PGJ2 can induce HO-1 upregulation
through various signaling components in bEnd.3 cells. Our present findings support
that 15d-PGJ2-stimulated HO-1 upregulation is modulated by a ROS/protein kinase C
(PKC)δ/c-Jun N-terminal kinase (JNK)1/2-dependent axis to activate specificity protein 1
(Sp1) and activator protein 1 (AP-1) transcription activities in mouse brain endothelial cells.

2. Materials and Methods
2.1. Reagents

15d-PGJ2, anti-HO-1 polyclonal antibody (ADI-SPA-895), and MitoTEMPO were ac-
quired from Enzo Life Science (Farmingdale, NY, USA). Fetal bovine serum (FBS) and
Dulbecco’s modified Eagle’s medium (DMEM)/F-12 were purchased from Invitrogens
(Carlsbad, CA, USA). The Western blotting detection system, enhanced chemilumines-
cence, and Hybond C membrane were from GE Healthcare Biosciences (Buckinghamshire,
UK). Ro318220, diphenyleneiodonium chloride (DPI), Rottlerin, and MitoTempo were
from Biomol (Plymouth Meeting, PA, USA). Anti-glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) antibody (Cat# MCA-1D4) was from EnCor Biotechnology (Gainesville,
FL, USA). The bicinchoninic acid protein assay kit was from Pierce (Rockford, IL, USA).
Anti-Sp1 (phospho Thr453, ab37707) and anti-Sp1(ab227383) antibodies were purchased
from Abcam (Cambridge, UK). CM-H2DCFDA was from Molecular Probes (Eugene, OR,
USA). siRNAs of PKCδ, JNK2, Sp1, and c-Jun, LPS (L2630), the 2,3-bis-(2-methoxy-4-nitro-5-
sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay kit, TRIzol, and other chemicals
were from Sigma-Aldrich (St. Louis, MO, USA). Sodium dodecyl sulfate-polyacrylamide
gel electrophoresis supplies were from MDBio Inc (Taipei, Taiwan). GenMute™ siRNA
Transfection Reagent was purchased from SignaGen Laboratories (Rockville, MD, USA).
Anti-lamin A (H-102)(sc-20680), anti-β-actin (C4) (sc-47778), anti-JNK1/2 (E5) (sc-7891), and
anti-c-Jun (sc-44) antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Anti-phospho-c-Jun (Ser63, #2361), anti-phospho-SAPK/JNK(Thr183/Tyr185),
anti-phospho-PKCδ (Thr505, #9374), and anti-PKCδ (#9916) were purchased from Cell Sig-
naling Technology (Danvers, MA, USA). Mithramycin A and SP600125 were purchased
from Cayman Chemicals (Ann Arbor, MI, USA).

2.2. Cell Cultures and Treatment

The bEnd.3 cells, isolated from BALB/c mice brain endothelial cells transformed by a
retrovirus vector that expresses polyomavirus middle T antigens, were adopted to study the
anti-inflammatory and antioxidative effects on the endothelial cells of the brain. The bEnd.3
cells were purchased from Bioresource Collection and Research Centre (BCRC, Hsinchu,
Taiwan) and grew in DMEM/F-12 containing 10% FBS and antibiotics in a humidified 5%
CO2 atmosphere at 37 ◦C, as described previously [29]. When grown to confluence, cells
were released with 0.05% (w/v) trypsin. The cell suspension was diluted to a concentration
of 2 × 105 cells/mL using DMEM/F-12 containing 10% FBS. The cell suspension was
plated onto (1 mL/well) 12-well culture plates and (10 mL/dish) for the analysis of RNA
expression, protein, or promoter activity. The culture medium was changed every 4 days.

The cells were identified by an indirect immunofluorescent staining method using a
monoclonal antibody of F-VIII to characterize the isolated and cultured bEnd.3 cells and to
exclude contamination by fibroblasts and epithelial cells. Over 95% of the cultured cells
were reacted positively with an antibody targeting F-VIII.

2.3. Protein Preparation and Western Blot Analysis

The bEnd.3 cells at confluence were made quiescent by incubation in serum-free
DMEM/F-12 for 24 h. Growth-arrested cells were incubated without or with 15d-PGJ2
for the indicated time intervals at 37 ◦C. When inhibitors were employed, they were
administrated 1 h with cells before the exposure to 15d-PGJ2.
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The cells were rapidly washed with ice-cold phosphate-buffered saline (PBS) and
collected in a lysis buffer. The lysates were dissolved in 1.25× sample buffer and heated
at 95 ◦C for 5 min. The denatured proteins were centrifuged at 13,000× g for 1 min,
as described previously [30]. The mixed samples (15 µL) were subjected to SDS-PAGE
using a 10% running gel. Proteins were transferred to a nitrocellulose membrane, and the
membrane was incubated sequentially with 5% (w/v) bovine serum albumin in Tween
Tris-buffered saline (TTBS) for 1 h at room temperature. Membranes were incubated with
an anti-target protein antibody used at a dilution of 1:1000 in TTBS overnight at 4 ◦C.
Then, membranes were incubated with 1:2000 dilution of an anti-rabbit or anti-mouse
horseradish peroxidase-conjugated antibody for 1 h after being washed with TTBS several
times. Following incubation, the membranes were washed extensively with TTBS. The
immunoreactive bands were detected using enhanced chemiluminescence reagents and
captured by a UVP BioSpectrum 500 Imaging System (Upland, CA, USA). To conduct the
image densitometry analysis, UN-SCAN-IT gel software (Orem, UT, USA) was used.

2.4. Transient Transfection with siRNAs in bEnd.3 Cells

Mouse siRNAs of SMARTpool RNA duplexes corresponding to NOX4 (EMU023701,
NM_015760), Sp1 (EMU061231; NM_013672), and scrambled control (negative control
type 1) siRNA were from Sigma-Aldrich (St. Louis, MO, USA). The following siRNA du-
plexes were used: PKCδsiRNA (NM_011103.3) sense, 5′-CCAUGUAUCCUGAGUGGAATT-
3′ and antisense, 5′-UUCCACUCAGGAUACAUGGTT-3′. c-Jun siRNA (sc-29224, NM_010591.2)
and JNK2 siRNA (sc-39102, NM_001163671.1) were from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Briefly, transient transfection of siRNAs was performed by using Genmute
reagent and Opti-MEM, as described previously [30]. The transfection complex (Genmute
reagent 2.5 µL, Opti-MEM 100 µL, and siRNA 100 nM) was directly administrated to the
cells and incubated for 5 h. Transfection complex medium was replaced with DMEM/F-12
medium containing 10% FBS overnight. Then, the cells were changed to a serum-free
medium for 24 h.

2.5. Quantitative Real-Time PCR Analysis

Total RNA was extracted from bEnd.3 cells after 10 µM 15d-PGJ2 stimulation for
various time points in culture dishes (10-cm) using 1 mL TRIzol reagent, as described pre-
viously [29]. The levels of RNA were spectrophotometrically measured at 260 nm. mRNA
was reverse-transcribed into cDNA and determined by real-time RT-PCR, as described
previously [30]. Real-time PCR was performed using Kapa Probe Fast qPCR Kit Master
Mix (2X) Universal (KK4705; KAPA Biosystems, Wilmington, MA, USA), a StepOnePlusTM
real-time qPCR system (ThermoScientific-Applied Biosystems, Foster City, CA, USA), and
primers specific for HO-1 (NM_010442.2): 5′-CACGCATATACCCGCTACCT-3′ (sense); 5′-
TCT GTCACCCTGTGCTTGAC-3′ (antisense) and for interleukin-6 (IL-6; NM_001314054.1):
5′-ACAACCACGGCCTTCCCTACTT-3′ (sense), 5′-CACGATTTCCCAGAGAACATGTG-3′

(antisense). The levels of mRNA expression were analyzed by normalizing to GAPDH
expression with primers as the following: GAPDH (XM_036165840.1): 5′-GGGCTGCC
CAGAACATCAT-3′(sense); 5′-CAGATCCA CGACGGACACATT-3′(antisense). Relative
gene expression was calculated by the ∆∆Ct method, where Ct meant the threshold cycle.
All experiments were carried out in triplicate.

2.6. Measurement of Intracellular ROS Accumulation

This method is based on detecting fluorescent 2′-7′dichlorofluorescein (DCF), oxida-
tively converted from non-fluorescent 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-
DA) by H2O2, as described previously [30]. The intracellular H2O2 levels were determined
by measuring the fluorescent intensity of DCF. For this intention, cells were washed with
warm PBS and incubated in PBS containing 10 µM H2DCF-DA for 30 min at 37 ◦C. Suc-
cessively, PBS containing DCFH-DA was discarded and changed to a fresh medium. Cells
were treated with 15d-PGJ2 in the absence or presence of inhibitors of NOX or a ROS
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scavenger. Cells were washed twice with PBS, and then fluorescent intensity was measured.
The fluorescent intensity was detected using a fluorescent microplate reader (SynergyH1
Hybird Reader, BioTek, Winooski, VT, USA) at 495/529 nm and FACSCalibur equipped
with CellQuest software (BD Biosciences, San Jose, CA, USA).

2.7. NOX Activity Assay

The cells were gently scraped and centrifuged at 400× g for 10 min at 4 ◦C after
exposure to 10 µM 15d-PGJ2 for the indicated time intervals. The cell pellet kept on ice
was resuspended with ice-cold PBS (35 µL). To a final 200 µL volume of pre-warmed
(37 ◦C) PBS containing either lucigenin (20 µM) or NADPH (1 µM), 5 µL of cell suspension
(2 × 104 cells) was added to initiate the reaction, followed by immediate measurement of
chemiluminescence in a luminometer (SynergyH1 Hybird Reader, BioTek, Winooski, VT,
USA), as described previously [31].

2.8. Cytoplasmic and Nuclear Protein Extraction

The assay was performed by the method with modifications, as described previ-
ously [31]. bEnd.3 cells were seeded onto culture dishes (10-cm). The cells were starved
for 24 h in DMEM/F-12 medium without FBS when they reached 90% confluence. After
incubation with 10 µM 15d-PGJ2 for the time intervals, the cells were washed once with
ice-cold PBS and scraped into a 1.5 mL tube with 1 mL of PBS added to each dish. Cells
were collected by centrifuge at 8000 rpm for 5 min. The pellets were suspended with
300 µL Cytoplasmic Extraction Reagent I (CREI). The suspension was broken by syringes.
After being put on ice for 30 min, the lysates were centrifuged at 8000 rpm for 10 min.
The pellet was collected as the nucleus fraction and the supernatant as a cytosol fraction.
The pellets were resuspended and then sonicated for 5 s twice using a sonicator (Misonix,
Farmingdale, NY, USA). The protein concentration of each sample was measured. Samples
from these fractions (200 µL protein) were denatured and subjected to SDS-PAGE using
a 12% (w/v) running gel. The levels of translocation were identified and quantified by
Western blot analysis.

2.9. Chromatin Immunoprecipitation Assay (ChIP)

The assay was performed by the method with modifications, as described previ-
ously [30]. In short, bEnd.3 cells stimulated with 10 µM 15d-PGJ2 for the indicated time
points were cross-linked with 1% formaldehyde for 10 min at 37 ◦C and washed thrice
with ice-cold PBS containing 1% aprotinin and 1 mM phenylmethyl-sulfonyl fluoride. The
purified DNA was subjected to amplification by real-time PCR using the primers specific
for the region (−460 to−2; NC_000074.7) containing a putative AP-1 binding site present in
the mHO-1 promoter region (sense primer: 5′-GGACGCGGAGGAGCAGGGGCTAGCAT-
3′; antisense primer: 5′-CACGTCCGCTCTCCTTGCCAGGACT-3′) with the product size
of 238 bp and Sp1 binding site present in the mHO-1 promoter region (sense primer: 5′-
AGACTTGCCAGAGTCATATGATTTATCCCCTTAC-3′; antisense primer: 5′-GCTCGAGA
CGGCTCTGCGCGGGCAGGCTCCAC-3′) with the product size of 224 bp. Real-time
PCR was carried out using Luna Universal qPCR Master Mix (M3003; New England Bio-
Labs, Ipswich, MA, USA) on a StepOnePlus™ real-time PCR system (Applied Biosystems,
Foster City, CA, USA).

2.10. Preparation of Recombinant Adenovirus

A recombinant adenovirus containing human HO-1 (AdvHO-1) was kindly provided
by Dr. L.Y. Chau (Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan).
Recombinant adenovirus was generated by homologous recombination and amplified in
293 cells. Large scales of viral vectors were purified by CsCl ultracentrifugation and stored
in 10% (v/v) glycerol, 1 mmol/L MgCl2, and 10 mmol/L Tris-HCl (pH 7.4) at −80 ◦C until
used for experiments. Virus titers were measured on a 293-cell monolayer by a plaque assay.
The recombinant adenovirus was diluted with DMEM/F12 medium and added directly to
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the cells based on the indicated multiplicity of infection (MOI = 20, 30, and 40), as described
previously [32]. The cells were incubated with LPS for the indicated time intervals after
24 h of infection. Cell lysates and the media were analyzed by Western blotting and ELISA
kits, respectively.

2.11. Measurement of IL-6 Generation

The levels of IL-6 released into the media of bEnd.3 cell cultures were detected using
an ELISA kit (R&D System, Minneapolis, MN, USA) according to the manufacturer’s
instructions (https://www.rndsystems.com/products/mouse-il-6-quantikine-elisa-kit_
m6000b; Accessed date: 3 April 2022).

2.12. Statistical Analysis of Data

GraphPad Prism Program 6.0 software (GraphPad, San Diego, CA, USA) was used
to perform statistical analysis. We used one-way ANOVA followed by Dunnett’s post
hoc test when comparing more than two groups of data, as previously described [30]. p-
values of 0.01 were statistically significant. Post hoc tests were analyzed only if F achieved
p < 0.01 and there was no variance inhomogeneity. Error bars were omitted when they fell
within the dimensions of the symbols. All the data were expressed as the mean ± SEM,
three individual experiments (n = 3).

3. Results
3.1. 15d-PGJ2 Induces Expression of HO-1 mRNA and Protein in bEnd.3 Cells

bEnd.3 cells were incubated with 1, 3, and 10 µM 15d-PGJ2 for the indicated time points
to examine the effect of 15d-PGJ2 on the expression of HO-1. As shown in Figure 1A, 15d-
PGJ2 produced a time- and concentration-dependent expression of HO-1 protein assessed
by Western blot. The response reached a significant rise within 6 h, with a maximal level
within 16 h, and slightly declined within 24 h. The mRNA expression of HO-1 was also
time-dependently induced by15d-PGJ2 with a maximal response within 6 h, evaluated by
real-time PCR (Figure 1B) during the period of observations. Additionally, the findings
of the XTT assay (Figure 1C) indicated that there was no cellular toxicity under 30 µM
15d-PGJ2 treatment within 24 h. These results indicated that HO-1 expression could be
induced by 15d-PGJ2 in bEnd.3 cells. The concentration of 15d-PGJ2 10 µM used in this
study was based on previous studies and the inhibitory efficacies of inhibitors [28,33].

3.2. 15d-PGJ2 Induces HO-1 Expression via Mitochondria- and NOX-Generated ROS

ROS could be produced by an enzymatic source such as NOX under various patholog-
ical conditions. NOX/ROS has been revealed to induce HO-1 expression, which possesses
anti-inflammatory and cytoprotecting functions [34]. Thus, we investigated whether, in
bEnd.3 cells, NOX activity and ROS production contribute to 15d-PGJ2-induced HO-1
expression. Cells were pretreated with the indicated dosages of DPI (an inhibitor of NOX)
or MitoTempo (a mitochondria-targeted antioxidant agent) for 1 h before exposure to
15d-PGJ2 (10 µM) for 6 h. As presented in Figure 2A, preprocessing cells with DPI or
MitoTempo significantly diminished the protein expression of HO-1 as compared with
those of the basal levels. Similarly, 15d-PGJ2-induced mRNA expression of HO-1 was also
attenuated by these two inhibitors (Figure 2B). Further, our data unveiled the participation
of NOX-derived ROS generation in 15d-PGJ2-induced HO-1 upregulation in bEnd.3 cells
by measuring NOX activity and generation of ROS. As displayed in Figure 2C, 15d-PGJ2,
in a time-dependent manner, promoted NOX activity and ROS production with a maximal
response within 30 min during the observation periods. Moreover, pretreatment with either
DPI or MitoTempo attenuated 15d-PGJ2-stimulated both NOX activity and ROS generation
(Figure 2D). These findings indicated that 15d-PGJ2 could stimulate NOX activity, leading
to ROS production in these cells. Thus, in bEnd.3 cell, NOX-derived generation of ROS
plays a critical role in 15d-PGJ2-induced HO-1 expression.

https://www.rndsystems.com/products/mouse-il-6-quantikine-elisa-kit_m6000b
https://www.rndsystems.com/products/mouse-il-6-quantikine-elisa-kit_m6000b
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incubated with 15d-PGJ2 (1, 3, 10 μM) for 0, 2, 4, 6, 16, and 24 h. The cell lysates were examined by 
Western blotting using the polyclonal antibody of HO-1 or GADPH (serving as a loading control). 
(B) The cells were stimulated with 10 μM 15d-PGJ2 for 0.5, 1, 2, 4, and 6 h. The HO-1 gene expression 
was analyzed by real-time PCR. (C) The cells were incubated with 10 μM of 15d-PGJ2 for 2, 4, 6, 16, 
and 24 h (upper panel) and with various doses (1, 3, 10, 20, and 30 μM; lower panel) for 24 h, and 
then cell viability was analyzed by an XTT assay. Data are expressed as the mean ± S.E.M. of three 
independent experiments. # p < 0.01, as compared with the vehicle alone or basal level. Abbrevia-
tions: 15d-PGJ2: 15-deoxy-Δ12,14-prostaglandin J2; HO-1: heme oxygenase-1. 
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of three independent experiments. # p < 0.01, as compared with the vehicle alone or basal level.
Abbreviations: 15d-PGJ2: 15-deoxy-∆12,14-prostaglandin J2; HO-1: heme oxygenase-1.

3.3. Involvement of PKCδ in 15d-PGJ2-Induced Expression of HO-1

Previous studies have uncovered that PKCs can upregulate HO-1 expression [35].
PKCs activated by 15d-PGJ2 have important effects on cellular functions [36]. The se-
lective inhibitor of PKCδ (Rottlerin) and a non-selective PKC inhibitor (Ro318220) were
adopted to address the possible role of PKC activation in 15d-PGJ2-induced HO-1 expres-
sion. bEnd.3 cells were pretreated, each above the inhibitor, for 1 h and then stimulated
with 15d-PGJ2 (10 µM) for 6 h. As exhibited in Figure 3A, pretreating cells with Rottlerin or
Ro318220 dose-dependently attenuated 15d-PGJ2-induced HO-1 expression. Additionally,
pretreating cells with Ro318220 or Rottlerin also attenuated 15d-PGJ2-promoted HO-1
mRNA levels (Figure 3B). We used PKCδ siRNA transfection to ensure the role of PKCδ

in 15d-PGJ2-induced HO-1 expression in bEnd.3 cells. Consistent with the results ob-
tained with Rottlerin, the knockdown of PKCδ by PKCδ siRNA transfection blocked the
15d-PGJ2-stimulated HO-1 protein level (Figure 3C). Further, we investigated whether
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phosphorylation of PKCδ was involved in 15d-PGJ2-mediated responses. As shown in
Figure 3D, 15d-PGJ2 can stimulate phosphorylation of PKCδ within the period observed,
which was inhibited by respective pretreatment with Rottlerin, DPI, or MitoTempo. Pre-
treatment with SP600125 did not significantly inhibit PKCδ phosphorylation induced by
15d-PGJ2 (Figure 4D). These results suggested that in bEnd.3 cells, PKCδ, as a downstream
signaling molecule of the NOX/ROS cascade, is essential for the HO-1 expression induced
by 15d-PGJ2.
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Figure 2. 15d-PGJ2 induced expression of HO-1 in bEnd.3 cells via NOX activation and mitochondria-
generated ROS. (A) The cells were pretreated with the indicated doses of DPI or MitoTempo for
1 h before incubation with 10 µM 15d-PGJ2 for 6 h. To determine the HO-1 protein expression, the
cell lysates were analyzed by Western blot with GAPDH as an internal control. (B) The cells were
pretreated by 3 µM DPI or 100 nM MitoTempo for 1 h before incubation with 15d-PGJ2 (10 µM) for
4 h. The HO-1 gene expression was analyzed by real-time PCR. (C) The cells were incubated with
10 µM 15d-PGJ2 for 15, 30, and 60 min. (D) Cells were pretreated with MitoTempo (100 nM) or DPI
(3 µM) for 1 h and then stimulated with 15d-PGJ2 (10 µM) for 30 min. (C,D) The activity of NOX
and ROS generation were measured by NOX activity assay and H2DCF-DA assay, respectively. Data
are expressed as the mean ± S.E.M. of three independent experiments. # p < 0.01, as compared with
the basal level or the cells treated with 15d-PGJ2 alone. Abbreviations: DPI: diphenyleneiodonium
chloride; Mito: MitoTempo; NOX: NADPH oxidase; ROS: reactive oxygen species.
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Figure 3. Involvement of PKCδ in HO-1 upregulated by 15d-PGJ2 in bEnd.3 cells. (A) The indicated
doses of Ro318220 or Rottlerin pretreated cells for 1 h before cells were incubated with 15d-PGJ2

(10 µM) for 6 h. To determine the HO-1 expression, the cell lysates were assessed by Western blot with
GAPDH as an internal control. (B) The cells were pretreated with Rottlerin (3 µM) or Ro318220 (3 µM)
for 1 h and then incubated with 10 µM 15d-PGJ2 for 4 h. mRNA levels of HO-1 were quantified by
real-time PCR. (C) The cells were transfected with scrambled or PKCδ siRNA and then challenged
with 15d-PGJ2 (10 µM) for 6 h. The PKCδ and HO-1 protein expression were assessed by Western
blot with GAPDH as an internal control. (D) The cells were preprocessed with Rottlerin (3 µM), DPI
(3 µM), or MitoTempo (100 nM) for 1 h and then challenged by 15d-PGJ2 (10 µM) for 1, 2, and 4 h.
The phosphorylation of PKCδ was assessed by Western blot with GAPDH as an internal control.
Data are expressed as the mean ± S.E.M. of three independent experiments. # p < 0.01, as compared
with the basal level or 15d-PGJ2 treatment alone. Abbreviations: Scrb: scrambled; Ro: Ro318220;
Rott: Rottlerin.
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Figure 4. Involvement of JNK1/2 in HO-1 expression stimulated by 15d-PGJ2 in bEnd.3 cells. (A) The
cells were pretreated with the indicated doses of SP600125 for 1 h before incubation with 15d-PGJ2

(10 µM) for 6 h. To determine the HO-1 protein expression, the cell lysates were examined by Western
blot with GAPDH as an internal control. (B) The cells were pretreated with SP600125 (10 µM) for
1 h and then treated with 15d-PGJ2 (10 µM) for 4 h. The mRNA levels of HO-1 were quantified by
real-time PCR. (C) The cells were transfected with JNK2 siRNA and then challenged by 15d-PGJ2

(10 µM) for 6 h. The protein levels of JNK2 and HO-1 were examined by Western blot with GAPDH
as an internal control. (D) The cells pretreated with SP600125 (10 µM) or Rottlerin (3 µM) for 1 h
were stimulated by 15d-PGJ2 (10 µM) for 1, 2, and 4 h. The phosphorylation of JNK1/2 or PKCδ

was determined by Western blot with GAPDH as an internal control. Data are expressed as the
mean ± S.E.M. of three independent experiments. # p < 0.01, as compared with the basal level or
treatment with 15d-PGJ2 alone. Abbreviations: JNK: c-Jun N-terminal kinase.

3.4. 15d-PGJ2 Enhances Expression of HO-1 via JNK1/2

Stimulation of JNK1/2 in various types of cells represents one of the main regulatory
mechanisms induced by 15d-PGJ2 [37,38]. To explore whether, in bEnd.3 cells, JNK1/2
is engaged in 15d-PGJ2-induced HO-1 expression, the cells were preprocessed with the
indicated dosage of SP600125 (an inhibitor of JNK1/2) for 1 h before incubation with 10 µM
15d-PGJ2 for 6 h. As presented in Figure 4A, pretreating cells with SP600125 significantly
reduced HO-1 expression induced by 15d-PGJ2. In addition, 15d-PGJ2-induced mRNA
expression of HO-1 was attenuated by SP600125 pretreatment (Figure 4B). To ascertain
that JNK1/2 participates in the expression of HO-1, the bEnd.3 cells were transfected
with JNK2 siRNA. As shown in Figure 4C, downregulation of JNK2 attenuated the 15d-
PGJ2-stimulated HO-1 expression. Further, we investigate whether phosphorylation of
JNK1/2 was required for 15d-PGJ2-mediated responses. The data in Figure 4D showed that
15d-PGJ2 could stimulate JNK1/2 phosphorylation, which was blocked by either SP600125
or Rottlerin pretreatment. These findings suggest that in bEnd.3 cells, 15d-PGJ2-stimulated
HO-1 upregulation can be mediated through a PKCδ-dependent JNK1/2 pathway.
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3.5. Sp1 Is Involved in 15d-PGJ2 Induced HO-1 Upregulation

Previous studies have unveiled that Sp1 in various types of cells is an important
transcription factor that is involved in the expression of HO-1 [39]. To evaluate whether Sp1
is involved in the HO-1 expression, the bEnd.3 cells were preprocessed with Mithramycin
A (1, 3, and 5 µM) for 1 h and then stimulated with 15d-PGJ2 for 6 h. As demonstrated in
Figure 5A, 15d-PGJ2-induced protein levels of HO-1 expression were dose-dependently
reduced by Mithramycin A. In addition, 15d-PGJ2-induced gene expression of HO-1 at
4 h was attenuated by pretreatment with 5 µM Mithramycin A for 1 h (Figure 5B). We
further adopted scrambled or Sp1 siRNA transfection to certify the function of Sp1 in the
15d-PGJ2-induced expression of HO-1 in bEnd.3 cells. The results in Figure 5C showed that
knockdown of Sp1 protein attenuated the 15d-PGJ2-induced HO-1 induction, consistent
with data obtained with Mithramycin A. Moreover, to investigate whether phosphorylation
of Sp1 participated in 15d-PGJ2-mediated responses, as demonstrated in Figure 5D, 15d-
PGJ2-stimulated phosphorylation of Sp1 reached a maximal increase within 1–2 h, which
was inhibited by pretreating cells with Mithramycin A (5 µM) or SP600125 (10 µM). Pre-
treatment with Mithramycin A did not significantly block the phosphorylation of JNK1/2
stimulated by 15d-PGJ2. According to these data, we demonstrated that the phospho-
rylation of JNK1/2 mediated Sp1 activation, which, in turn, led to HO-1 upregulation
in bEnd.3 cells stimulated with 15d-PGJ2. To verify the binding activity of Sp1 with the
HO-1 promoter, the cells were treated by 15d-PGJ2 (10 µM) for 15, 30, and 60 min, and cell
lysates were evaluated by a ChIP assay using an Sp1 antibody for immunoprecipitation and
primers of Sp1 promoter for amplification DNA. The data proved that 15d-PGJ2-enhanced
binding of Sp1 with the HO-1 promoter was significantly increased within 15–60 min, which
was attenuated to the basal level by pretreatment with either SP600125 or Mithramycin A
(Figure 5E). These findings suggest that in bEnd.3 cells, Sp1 possesses a key effect in regu-
lating HO-1 expression through JNK1/2-dependent Sp1 activation triggered by 15d-PGJ2.

3.6. c-Jun Is Involved in 15d-PGJ2 Stimulated Expression of HO-1

c-Jun has been revealed to regulate HO-1 induction as an important transcription
factor. The bEnd.3 cells were transfected with c-Jun siRNA to knock down the level of
total c-Jun protein expression and to evaluate whether c-Jun is involved in HO-1 induction.
We observed that downregulation of c-Jun protein using c-Jun siRNA attenuated the 15d-
PGJ2-upregulated protein level (Figure 6A) and gene expression (Figure 6B) of HO-1. Fur-
thermore, to investigate whether c-Jun phosphorylation is involved in 15d-PGJ2-mediated
effects, as shown in Figure 6C, 15d-PGJ2-stimulated c-Jun phosphorylation reached a
maximal level within 1-4 h, which was inhibited by pretreating cells with SP600125. To
examine whether the phosphorylation of c-Jun was dependent on JNK1/2 activity, the cells
were transfected with JNK2 siRNA and then challenged with 10 µM 15d-PGJ2 for 4 h. As
demonstrated in Figure 6D, downregulation of JNK2 can attenuate the 15d-PGJ2-stimulated
phosphorylation of c-Jun. According to these data, we demonstrated that JNK1/2 mediated
c-Jun activation, which, in turn, led to the expression of HO-1 in bEnd.3 cells stimulated by
15d-PGJ2. Moreover, our data also unveiled that 15d-PGJ2 stimulated c-Jun translocation
into nuclear fractions of bEnd.3 cells (Figure 6E). To verify the binding activity of c-Jun
with the HO-1 promoter, 15d-PGJ2 (10 µM) treated cells for 15, 30, and 60 min, and the cell
lysates were evaluated by a ChIP assay using a c-Jun antibody for immunoprecipitation
and primers of the AP-1 promoter. The data demonstrated that the 15d-PGJ2-stimulated
binding of c-Jun with the HO-1 promoter was significantly augmented within 30–60 min,
which was reduced by pretreatment with Tanshinone IIA or SP600125 (Figure 6F). These
results indicate that c-Jun has a significant role in regulating the expression of 15d-PGJ2-
induced HO-1 mediated through the JNK1/2-dependent activation of the AP-1 cascade in
bEnd.3 cells.
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Figure 5. Involvement of transcription factor Sp1 in HO-1 expression stimulated by 15d-PGJ2 in
bEnd.3 cells. (A) The cells were preprocessed with Mithramycin A (1, 3, and 5 µM) for 1 h and then
challenged with 15d-PGJ2 (10 µM) for 6 h. The HO-1 protein expression was determined by Western
blot with GAPDH as an internal control. (B) Mithramycin A (5 µM) pretreated the bEnd.3 cells for
1 h, which were challenged with 15d-PGJ2 (10 µM) for 4 h. The mRNA expression of HO-1 was
analyzed by real-time PCR. (C) The bEnd.3 cells were transfected with scrambled or Sp1 siRNA and
then challenged with 15d-PGJ2 (10 µM) for 4 h. The levels of HO-1 and Sp1 protein expression were
determined by Western blot with GAPDH as an internal control. (D) bEnd.3 cells were preprocessed
with Mithramycin A (5 µM) or SP600125 (10 µM) for 1 h and then administrated with 15d-PGJ2

(10 µM) for 1, 2, and 4 h. The phosphorylation levels of Sp1 and JNK1/2 were determined by Western
blot with GAPDH as an internal control. (E) bEnd.3 cells were stimulated with 15d-PGJ2 for 15, 30,
and 60 min alone or 30 min while cells were pretreated with Mithramycin A (5 µM) or SP600125
(10 µM) for 1 h. The binding of Sp1 to the promoter region of HO-1 was determined with a ChIP assay.
Data are expressed as the mean ± S.E.M. of three independent experiments. # p < 0.01, as compared
with the basal level or treatment with 15d-PGJ2 alone. Abbreviations: Mithra. A: Mithramycin A; SP:
SP600125; Sp1: specificity protein 1.

3.7. 15d-PGJ2-Induced HO-1 Upregulation Attenuates LPS-Stimulated IL-6 Secretion

IL-6 is recognized as a crucial inflammatory mediator in brain diseases. To deter-
mine whether upregulation of HO-1 can downregulate IL-6 expression and secretion, we
pretreated bEnd.3 cells with 10 µM 15d-PGJ2 for 1 h and then challenged them with LPS
(20 µg/mL ) for 6 h and observed the levels of HO-1 and IL-6 mRNA. The data in Figure 7A
show that 15d-PGJ2 enhanced the mRNA expression of HO-1 (open bars) and reduced
LPS-stimulated IL-6 mRNA expression (solid bars) in bEnd.3 cells. Next, the levels of
IL-6 secretion into media were measured using an ELISA kit. We verified that in bEnd.3
cells, LPS-stimulated secretion of IL-6 was also attenuated by pretreatment with 15d-PGJ2
(Figure 7B). In addition, we determined whether 15d-PGJ2-attenuated IL-6 secretion was
mediated through the upregulation of HO-1. bEnd.3 cells were infected with the vector
of adenovirus or adenovirus-HO-1 in various MOIs. As demonstrated in Figure 7C, the
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protein levels of HO-1 were gradually increased by infecting cells with adv-HO-1 at the
indicated doses (20, 30, and 40 MOI) but not by LPS. bEnd.3 cells were infected with the
vector of adenovirus or adenovirus-HO-1 (20, 30, and 40 MOI) and then were stimulated
with LPS (20 µg/mL). As demonstrated in Figure 7D, upregulation of HO-1 by infection
with adenovirus-HO-1 (20, 30, and 40 MOI) attenuated IL-6 secretion induced by LPS com-
pared with infection with the vector of adenovirus (20 MOI). These findings indicated that
15d-PGJ2-induced expression of HO-1 can exert anti-inflammatory effects on LPS-triggered
expression and secretion of IL-6 in bEnd.3 cells.
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Figure 6. Involvement of transcription factor c-Jun in the expression of HO-1 induced by 15d-PGJ2 in
bEnd.3 cells. (A,B) The cells were transfected with scrambled or c-Jun siRNA and then challenged
with 15d-PGJ2 (10 µM) for 6 h (A) or 4 h (B). (A) The levels of HO-1 protein expression were analyzed
by Western blot with GAPDH as an internal control. (B) The HO-1 mRNA expression was analyzed by
real-time PCR. (C) bEnd.3 cells were pretreated with SP600125 (10 µM) for 1 h and then administrated
with 15d-PGJ2 (10 µM) for 1, 2, and 4 h. The phosphorylation of c-Jun was determined by Western
blot with GAPDH as an internal control. (D) The bEnd.3 cells were transfected with scrambled or
JNK2 siRNA and then challenged with 15d-PGJ2 (10 µM) for 4 h. The phosphorylation of c-Jun was
examined by Western blot with GAPDH as an internal control. (E) bEnd.3 cells were stimulated
with 15d-PGJ2 for 1, 2, and 4 h. The cells were harvested, and cytosolic and nuclear fractions were
separated by centrifugation. The nuclear and cytoplasmic fractions were analyzed by Western blot
to evaluate the c-Jun expression, with GAPDH (cytosol) and Lamin A (nucleus) as internal controls.
(F) bEnd.3 cells were stimulated with 15d-PGJ2 for 15, 30, and 60 min alone or 30 min while cells
were pretreated with Tanshinone IIA (3 µM) or SP600125 (10 µM) for 1 h. The binding of c-Jun to the
promoter region of HO-1 was determined by a ChIP assay. Data are expressed as the mean ± S.E.M.
of three independent experiments. # p < 0.01, as compared with the basal level or the cells treated
with 15d-PGJ2 alone. Abbreviations: AP-1: activator protein 1; TSIIA: Tanshinone IIA.
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Figure 7. HO-1 upregulation by 15d-PGJ2 attenuates LPS-stimulated IL-6 secretion in bEnd.3 cells.
(A,B) The cells were pretreated with 10 µM 15d-PGJ2 for 1 h and then challenged with 20 µg/mL
LPS for 4 h. (A) The cell lysates were collected to analyze the mRNA expression of IL-6 and HO-1
by real-time PCR. (B) The media were collected to measure the secretion of IL-6 by an ELISA kit.
(C,D) Cells were infected with the vector of adenovirus or adenovirus-HO-1 at the indicated MOI (20,
30, and 40) for 48 h and then challenged with or without 20 µg/mL LPS for 6 h. (C) The cell lysates
were examined for the protein expression of HO-1 by Western blot, with GAPDH as an internal
control. (D) The media were collected to measure the secretion of IL-6 by an ELISA kit. Data are
summarized and expressed as mean± S.E.M. for four individual experiments. # p < 0.01, as compared
with the basal level or the cells treated with 15d-PGJ2 alone. Abbreviations: Adv: adenovirus; IL-6:
interleukin-6; LPS: lipopolysaccharide; MOI: multiplicity of infection.

4. Discussion

A growing body of evidence indicates that several molecules, such as 15d-PGJ2, can
produce HO-1, which is important for antioxidant and anti-inflammatory effects [40,41].
Previous studies have indicated that Nrf2 is involved in 15d-PGJ2-induced HO-1 expres-
sion [27,28]. In the present study, 15d-PGJ2-stimulated HO-1 expression is expanded and,
at least in part, mediated through the activation of either Sp1 or AP-1 transcription activity
dependent on a ROS/PKCδ/JNK1/2 cascade in mouse brain endothelial cells. This report
also clarifies that 15d-PGJ2 protects brain endothelial cells against LPS-induced IL-6 release
via the upregulation of the anti-inflammatory molecule HO-1. Moreover, the mechanisms
of HO-1 upregulation by 15d-PGJ2 are, at least in part, mediated through mitochondria- or
NOX-derived ROS generation-dependent activation of the PKCδ/JNK1/2 cascade, leading
to activating Sp1 and c-Jun in bEnd.3 cells (Figure 8).
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Figure 8. Schematic signaling pathways are involved in 15d-PGJ2-induced HO-1 expression protect-
ing against LPS-induced IL-6 secretion in bEnd.3 cells. 15d-PGJ2 stimulates NOX- and mitochondria-
derived ROS generation, which sequentially activates PKCδ, JNK1/2, and transcription factor Sp1 or
c-Jun activity. Activated Sp1 and c-Jun are translocated into the nucleus and then bind with respective
Sp1 and AP-1 binding sites on the HO-1 promoter, leading to the induction of HO-1 expression.
Moreover, upregulation of HO-1 by 15d-PGJ2 attenuates LPS-induced IL-6 expression and secretion,
which could protect against inflammatory responses in bEnd.3 cells. Abbreviations: HMOX1: heme
oxygenase 1 gene; Mito: mitochondria. ⊥: inhibition; ↑: activation/increase.

The results of this study demonstrated that the levels of protein and mRNA expression
of HO-1 were significantly induced by 15d-PGJ2 in bEnd.3 cells. ROS are created by
various chemical processes and enzymatic reactions. Most endogenous sources of ROS
come from NOX, mitochondrial electron transport chain, endoplasmic reticulum stress,
and oxidative enzymes. The signaling of NOX/ROS is associated with the regulation of
cell-related pathways to the expression of various pro-inflammatory mediators, such as
IL-6, IL-1, and TNF-α [42]. In contrast, ROS are also well-known as second messengers to
protect cells against oxidative stress by maintaining the homeostasis of cellular redox. Our
previous studies have demonstrated that NOX/ROS takes part in the induction of HO-1 by
various inducers in various types of cells [43–45]. In this study, our data also consistently
showed that NOX-derived ROS participated in 15d-PGJ2-stimulated HO-1 upregulation
in bEnd.3 cells, which were mitigated by pretreating cells with either DPI or MitoTempo.
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These results elucidate that the NOX and mitochondrial sources of ROS are involved in
15d-PGJ2-induced HO-1 induction in bEnd.3 cells.

ROS could act as second messengers that further activate various protein kinases,
including PKCs. The PKCs belong to serine/threonine kinases, which control a variety
of cellular functions, including proliferation, cell survival, and death. A growing body of
evidence shows that PKCδ, in particular, contributes to the cellular homeostatic responses
against hypoxic stress [46]. The generation of ROS has been uncovered to be able to
activate PKCδ, in turn leading to the expression of HO-1. For example, Lee and Yang found
that PKCδ translocation triggered by 2,3,7,8,-tetrachlorodibenzo-p-dioxin was mediated
through a ROS-dependent pathway in rabbit articular chondrocytes [47]. Fisetin mediated
the upregulation of HO-1 in human umbilical vein endothelial cells to protect against
oxidative stress, which was blocked by pharmacological inhibitors and PKCδ siRNA [48].
In another study, acrolein enhanced the induction of HO-1, which was also mitigated
by Rottlerin, a selective PKCδ inhibitor, and PKCδ siRNA in human bronchial epithelial
cells [49]. Consistent with these reports, our findings found that 15d-PGJ2-stimulated
HO-1 upregulation was also mediated through activating PKC-δ, which was blocked by
a selective PKCδ inhibitor, Rottlerin. This finding suggests that PKCδ takes part in 15d-
PGJ2-induced HO-1 expression, which is further supported by the transfection with PKCδ

siRNA. We also noted that 15d-PGJ2 is one of the natural PPAR-γ agonists. Our recent
report also uncovered that PPAR-γ agonist rosiglitazone enhanced HO-1 expression via
PKCα activation in alveolar epithelial cells of the human lung [50]. This difference may
be due to the various isoforms of PKCs expressed on these different types of cells and/or
different experimental conditions.

JNK1/2 is one member of the MAPK family, which regulates various cellular functions,
including the expression of various proteins. A previous study from our team revealed that
JNK1/2 has a vital function in CO-releasing molecule (CORM)-2 related effects on human
cardiomyocytes, which protects against cardiomyocyte hypertrophy [51]. In addition,
our recent report found that JNK1/2-dependent activation of c-Jun participates in the
upregulation of HO-1 triggered by Mevastatin, leading to suppression of TNFα-mediated
vascular cell adhesion protein 1 expression in the alveolar epithelial cells of the human
lung [45]. However, Lim et al. proved that 15d-PGJ2 stimulated HO-1 upregulation via p38
MAPK activation and the ROS pathway but not JNK1/2 to activate Nrf2 in vascular smooth
muscle cells [28]. Alvarez-Maqueda et al. also indicated that ROS generated through
xanthine oxidase and Fenton reactions, p38 MAPK activation, and nuclear factor-κB but
not PPAR-γ is involved in 15d-PGJ2-induced HO-1 expression in human lymphocytes [52].
Koyani et al. also indicated that 15d-PGJ2 induces the expression of HO-1 mediated
through the ROS synthesis-dependent p38 MAPK/Akt/Nrf2-Egr1 cascade in the MG-63
cell line [27]. Some of the discrepancies between these findings and our current results may
be due to differences in the types of cells and/or experimental conditions. Additionally,
several pieces of evidence have indicated that 15d-PGJ2 could activate JNK1/2 activity
and ROS generation to exert multiple effects on various types of cells [38,53]. Our data
consistently demonstrated that JNK1/2 plays an important role in the upregulation of
HO-1 by 15d-PGJ2, which was regulated by the phosphorylation of JNK1/2. The function
of JNK1/2 on HO-1 induction was supported by the inhibition of SP600125 or transfecting
cells with JNK2 siRNA, which attenuated the HO-1 upregulation in these cells. These
findings suggested that JNK1/2 is involved in 15d-PGJ2-stimulated HO-1 induction in
bEnd.3 cells.

Previous studies have indicated that transcription factors Sp1 and AP-1 have a vital
function in regulating HO-1 expression in in vitro and in vivo studies [54–56]. Thus, our
study focused on transcription factors, including Sp1 and c-Jun (a subunit of AP-1), to
dissect their roles in the regulation of gene expression of HO-1 in bEnd.3 cells. In this study,
we found that 15d-PGJ2-stimulated HO-1 upregulation is mediated through Sp1 and c-Jun
activation. Moreover, the PKCδ/JNK1/2 signaling pathway can regulate 15d-PGJ2-induced
phosphorylation of Sp1 and c-Jun, contributing to the upregulation of HO-1 expression. A



Antioxidants 2022, 11, 719 17 of 21

previous study observed that the PKC-ζ pathway resulted in increased activity of Sp1 and
upregulation of HO-1 [57]. Our results revealed that in bEnd.3 cells, activation of PKCδ

leads to the activation of Sp1 activity and the upregulation of HO-1. Our previous report
also indicated that HO-1 upregulation exerts a cytoprotective effect mediated through a
p38 MAKP and JNK1/2/Sp1-dependent cascade in human cardiomyocytes stimulated
with CORM-2 [51]. The vascular endothelial dysfunction can be improved by JNK/c-Jun-
pathway-mediated HO-1 expression with the intervention of Tongxinluo [58]. In addition,
we also uncovered that Erk1/2-dependent signaling activates c-Jun and Sp1 to cooperate
with Nrf2, leading to increased expression of HO-1 in rat brain astrocytes stimulated with
CORM-2 [59]. The current study also uncovered that JNK1/2 regulates HO-1 induction
mediated through the transcription factors Sp1 and c-Jun activation. Phosphorylation of
Sp1 was blocked by pretreatment with SP600125 and Mithramycin A; the latter had no
effect on the phosphorylation of JNK1/2. In addition, the phosphorylation of c-Jun was
attenuated by pretreatment with SP600125 or transfection of JNK2 siRNA. These findings
indicate that JNK1/2 is an upstream component of Sp1 and c-Jun. Moreover, Sp1 and c-Jun
binding with the promoter of HO-1 were also inhibited by pretreatment with SP600125
(Figures 5 and 6). Some of the discrepancies between these findings and our current results
may be due to differences in stimuli, cells, and/or experimental conditions. Taken together,
Sp1 and c-Jun were, at least partially, activated by the signal transduction of PKCδ/JNK1/2
by 15d-PGJ2, leading to the induction of HO-1. Based on the present findings, we clarify
that 15d-PGJ2 induces HO-1 gene expression via the Sp1 and AP-1 (c-Jun) activation in
mouse microvascular bEnd.3 cells.

Endothelial cells are essential for cell–cell adhesion and the formation of the BBB.
Therefore, there is considerable interest in the specific characteristics of endothelial cells
during the progression of brain pathologies. To study the anti-inflammatory effects of the
HO-1 expression induced by15d-PGJ2, LPS was used to mimic the cellular inflammation.
Some previous reports have indicated that stimulation of LPS can induce IL-6 release.
Cytokines have been found to play a broader role in pathology, which are initially thought
to be components of the immune system. The levels of cytokines, including TNF, IL-6, and
IL-1β, have been demonstrated to be increased in the CNS after injury or inflammation [60].
The previous study showed that IL-6 may affect neuronal function in Parkinson’s disease
patients who have higher IL-6 expression in ventricular cerebrospinal fluid [61]. Thus, IL-6
has a crucial function in the development of inflammatory responses that may increase BBB
permeability and destroy tight junctions [60]. 15d-PGJ2 has been proved to alleviate acute
liver injury induced by ConA in mice via upregulating HO-1 and to reduce autophagy in
hepatic cells [33]. Moreover, other studies have demonstrated that 15d-PGJ2 is beneficial for
anti-inflammation, such as inhibition of the LPS-induced TNFα expression [62]. Consistent
with these reports, in our model, we revealed that the IL-6 mRNA expression and secretion
induced by LPS were, at least partially, inhibited by 15d-PGJ2-induced HO-1 upregulation.
Therefore, 15d-PGJ2-induced HO-1 can be considered an effective intervention for anti-
inflammation effects on brain diseases.

5. Conclusions

In summary, our results propose that 15d-PGJ2-induced expression of HO-1 is reg-
ulated by the activation of the NOX- and mitochondria-derived ROS/PKCδ/JNK1/2
signaling pathway to activate Sp1 and c-Jun activities in bEnd.3 cells. In addition, HO-1
upregulation in bEnd.3 cells finally contribute to the 15d-PGJ2-promoted anti-inflammatory
effects, which can inhibit the LPS-triggered expression and secretion of IL-6 (Figure 8).
These results provide new insights into the mechanisms of 15d-PGJ2-induced HO-1 and
support the hypothesis that 15d-PGJ2 may contribute to protecting against LPS-mediated
brain inflammation. The lack of animal models to verify in vitro results is the limitation
of this study. In order to better interpret the effects of 15d-PGJ2, it is worth performing
additional in vivo experiments using animal models of neuroinflammation. This study
improves the understanding of the mechanisms underlying HO-1 inducers when exerting
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their potential in the induction of antioxidant enzymes, including HO-1, and the effects of
anti-inflammation, which may be beneficial for treating neurodegenerative diseases. More-
over, a better understanding of how 15d-PGJ2 regulates LPS-induced pro-inflammatory
mediators may also create opportunities for the development of potential anti-inflammatory
therapeutics for neuroinflammation and brain disorders.
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