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Simple Summary: Cancer patients are at increased risk of infections and related complications,
including sepsis. We developed a scoring system for mortality prediction based on readily available
clinical and laboratory data, including the quick sequential organ failure assessment (qSOFA) score,
cancer subtype, and several laboratory markers (procalcitonin, C-reactive protein, lactate dehydroge-
nase, and albumin) that can be used in emergency departments for cancer patients with suspected
infection. The prediction score, which stratifies patients into four different risk groups (from low
risk to very high risk), achieved excellent performance in predicting 14-day mortality, with an area
under the receiver operating characteristic curve value of 0.88 (95% confidence interval 0.85–0.91).
The score was also effective in predicting intensive care unit admission and 30-day mortality.

Abstract: Cancer patients have increased risk of infections, and often present to emergency depart-
ments with infection-related problems where physicians must make decisions based on a snapshot of
the patient’s condition. Although C-reactive protein, procalcitonin, and lactate are popular biomark-
ers of sepsis, their use in guiding emergency care of cancer patients with infections is unclear. Using
these biomarkers, we created a prediction model for short-term mortality in cancer patients with
suspected infection. We retrospectively analyzed all consecutive patients who visited the emergency
department of MD Anderson Cancer Center between 1 April 2018 and 30 April 2019. A clinical
decision model was developed using multiple logistic regression for various clinical and laboratory
biomarkers; coefficients were used to generate a prediction score stratifying patients into four groups
according to their 14-day mortality risk. The prediction score had an area under the receiver operating
characteristic curve value of 0.88 (95% confidence interval 0.85–0.91) in predicting 14-day mortality.
The prediction score also accurately predicted intensive care unit admission and 30-day mortality.
Our simple new scoring system for mortality prediction, based on readily available clinical and
laboratory data, including procalcitonin, C-reactive protein, and lactate, can be used in emergency
departments for cancer patients with suspected infection.

Keywords: emergency department; infectious oncologic emergencies; procalcitonin; C-reactive
protein; lactic acid; sepsis
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1. Introduction

The incidence of infection and sepsis is remarkably higher in cancer patients when
compared with the general population [1–3]. Multiple factors, including cancer-related fac-
tors (e.g., leukemia-associated neutropenia), treatment-related factors (e.g., chemotherapy-
induced neutropenia), and patient-related factors, account for the increased risk [3,4].
Roughly 60% of deaths in patients with hematologic malignancies and 50% in patients
with solid tumors are a direct result of infectious complications [5–7]. Infections in cancer
patients often occur acutely and may progress rapidly. Therefore, the emergency depart-
ment (ED) is often the first clinical setting to which cancer patients present for diagnosis
and management of infection/sepsis.

Biomarkers, including lactate, C-reactive protein (CRP), and others, play an important
role in diagnosing sepsis and guiding its management [8–10]. Lactate is a metabolite gener-
ated from glycolysis, and accumulation in the blood reflects poor tissue perfusion and sub-
stantial hemodynamic compromise. In sepsis, lactate has been used as a prognostic [11–13],
diagnostic [8], monitoring [13], and stratification biomarker [8,11–13]. CRP is an acute
phase reactant, and increased circulating CRP levels follow rising levels of cytokines
(e.g., interleukin-6, tumor necrosis factor-a), which are sustained in the course of sepsis.
Plasma CRP > 62.8 mg/L is an optimal cutoff value for predicting high risk of death
from sepsis [14]. Other biomarkers include procalcitonin, cluster of differentiation 64, and
proadrenomedullin [15].

In recent years, procalcitonin has become a very important biomarker for bacterial
infection and sepsis. Procalcitonin is a 116-amino acid protein with an approximate molec-
ular weight of 14.5 kDa, and it is encoded by the CALC-1 gene on chromosome 11 [16,17].
It is a prohormone primarily produced by the C cells of the thyroid gland [17,18], and
it has very low circulating concentrations (<0.1 ng/mL) in healthy humans [18]. In the
event of a bacterial infection, procalcitonin production and release into the circulation is
part of the systemic response to circulating cytokines and endotoxins [19]. The plasma
concentration of procalcitonin correlates with the severity of infection and sepsis [19].
Procalcitonin levels are higher in systemic bacterial infection than in localized viral or
bacterial infection [19], but procalcitonin levels may also be low early in Gram-positive
bacterial systemic infection regardless of severity [20]. The top organism isolated from
the blood culture of patients with low procalcitonin is Staphylococcus aureus [21]. False
negatives, such as those associated with Gram-positive bacterial infections [20,21], as
well as false positives [22–24], decrease the accuracy of plasma procalcitonin levels in pre-
dicting bacterial systemic infection. However, procalcitonin is more helpful in identifying
Gram-negative bacterial systemic infections [25], and the accuracy of procalcitonin in
predicting Gram-negative bacteremia in leukemia patients is quite good (area under the
receiver operating characteristic curve (AUROC) = 0.779) [26]. Longitudinal assessment
using serial procalcitonin measurements can predict prognosis and treatment efficacy
in infections [27], and this assessment is used in antibiotic stewardship [28–30]. Procal-
citonin is also used as an independent predictor of clinical deterioration in ED patients
with suspected sepsis [31].

Early diagnosis and treatment significantly reduce sepsis mortality. When integrated
with clinical information (e.g., clinical scores, such as the quick sequential organ failure
assessment (qSOFA) score), biomarkers have great potential to improve diagnostic and
prognostic assessment of patients [32,33]. Combining the qSOFA score with procalcitonin
was shown to predict 28-day mortality among high-risk sepsis patients better than qSOFA
alone [33,34]. Currently, our institution, which serves cancer patients specifically, has
implemented an early sepsis alert warning system based on vital signs that suggest the
presence of systemic inflammatory response syndrome. However, in the ED, infection
in cancer patients may be in different stages and severity levels, and the assessment
is cross-sectional. It is challenging to integrate the clinical and laboratory information
available to the ED physician to guide clinical decisions for this patient population. The
aim of the current study was to determine whether plasma levels of procalcitonin, CRP,
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and lactate, which are routinely measured in patients with suspected infection or sepsis
in our ED, could be combined with clinical information to accurately predict mortality
rates and risk-stratify cancer patients in the ED with suspected infection.

2. Materials and Methods
2.1. Study Participants and Data Collection

To assess the role of procalcitonin, CRP, lactate, and other clinical factors in the
management of suspected infection in cancer patients, we conducted a retrospective cohort
study. Our study was approved by the Institutional Review Board of The University of
Texas MD Anderson Cancer Center, protocol number DR08-0066. This study included all
consecutive patients with a known cancer diagnosis who presented to the ED between
1 April 2018 and 30 April 2019, and had procalcitonin levels measured during their ED
visit. Patients younger than 18 years and those without a confirmed cancer diagnosis prior
to the ED visit were excluded from the analysis (Figure S1).

2.2. Statistical Analysis

Descriptive statistics were used to summarize the main characteristics of the final
cohort. Variations in lactate, CRP, and procalcitonin levels among patients with dif-
ferent qSOFA scores or different bacterial blood culture results (growth or no growth)
were investigated. The variation of procalcitonin levels among patients with differ-
ent cancer stages was also examined. The Wilcoxon-Mann-Whitney test or one-way
analysis of variance followed by a post hoc Tukey test was used where appropriate to
identify significant differences in inter-group comparisons. A two-tailed p value < 0.05
was considered statistically significant. All statistical analyses were performed using
R software (version 3.5.1, The R Foundation, http://www.r-project.org, accessed date:
25 September 2018). Relevant packages used include randomForest, pROC, survival,
survminer, ggplot2, and ggthemes.

Cancer patients are frequent visitors of the ED, and each visit is unique in terms of
related clinical presentation and laboratory results. Therefore, we used the ED visit as the
unit of observation. Death within 14 days was chosen as the primary outcome for the de-
velopment of a prediction model. qSOFA scores were calculated for each visit by adding
1 point for each qSOFA parameter (altered mental status, systolic blood pressure ≤ 100,
and respiratory rate ≥ 22), stratifying patients into one of two groups: not high risk for
in-hospital mortality (qSOFA score: 0–1) and high risk for in-hospital mortality (qSOFA
score: 2–3) [35–37]. Fourteen-day mortality rates were first examined for different qSOFA
scores, after which a primary prediction model was built using a multivariable logistic
regression model consisting of the three main studied biomarkers (procalcitonin, CRP,
and lactate) combined with the qSOFA score. Variables included in the primary predic-
tion model development phase were the clinical variables that have been previously
shown to be associated with mortality in patients with infection/sepsis [8,9,38]. The
AUROC metric was used to evaluate the predictive performance of classifiers of the
primary model [39]. We then examined the possibility of improving the prediction
model by adding cancer type, along with other clinical and laboratory factors that are
readily collected in the ED. Investigated variables with more than 20% missing val-
ues were not included in further analysis, and missing values for the other predictor
variables (≤20% missing values) were imputed using proximity from the R package
“randomForest” (rfImpute function).

Cancer types were stratified according to risk of death within 14 days using a multi-
variable logistic regression model controlling for age and creatinine levels, and the model
was further simplified by grouping cancer types with similar adjusted odds ratios (AORs)
into one of three groups: high risk (AOR ≥ 2), intermediate risk (AOR between 1 and 2),
and low risk (AOR ≤ 1). Random forest prediction of 14-day mortality was performed to
identify clinical and laboratory variables with high relative importance as predictors of
the outcome. The cancer type risk groups (high, intermediate, and low) and the variables

http://www.r-project.org
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with the top mean decrease in Gini from the random forest model were added to the
primary prediction model, building the final multivariable logistic regression model. The
Hosmer–Lemeshow goodness-of-fit statistic was used to calibrate the model. Repeated
K-fold cross-validation was used to internally validate the model. AUROC was used to
assess the prediction performance of the final prediction model, and the DeLong test was
used to identify statistically significant differences between the models.

2.3. Construction and Evaluation of the Final Predictive Scoring System

Once the final prediction model was determined, laboratory variables were catego-
rized using the current clinical cutoff point used in cancer patients or a new optimal cutoff
point selected using the Youden index. Then, to construct the final prediction score, we
assigned points to each predictor based on its beta coefficient (i.e., the beta coefficient for
each predictor in the final prediction model was divided by the coefficient of the predictor
with the smallest coefficient, rounding the result to the nearest integer). Patients were
categorized into four risk groups using three different cutoff points of the prediction score.
The cutoff points were chosen on the basis of pre-set criteria that the 14-day mortality rate
was low (<1%), intermediate (1–10%), high (10–25%), or very high (>25%). We also evalu-
ated the performance of the prediction score in predicting 30-day mortality and intensive
care unit (ICU) admission, reporting the respective rates for each of the four risk groups.
Figure S2 demonstrates the steps involved in the development of the final prediction score.
Kaplan–Meier survival analysis followed by the log-rank test was used to estimate the
difference in 3-month survival rates between the final prediction score risk groups. Patients
who did not die within 3 months after presentation were censored at the time of their
last known contact date, as were those who were lost to follow-up at 3 months (90 days)
after the index ED visit. Univariate and multivariable Cox proportional hazards analyses
were used to investigate the association between each risk group and survival duration,
calculating the hazard ratio (HR) with a 95% confidence interval (CI) and controlling for
age, sex, and race in the multivariable analysis.

3. Results
3.1. Patient Characteristics

The total number of unique cancer patients eligible for inclusion in our study was
3623 patients, who made 5118 unique ED visits (Figure S1). Seventy-two percent of the
patients had only one ED visit during the period studied. The median number of days to
ED revisit for the patients who had more than one visit was 36 days (interquartile range
(IQR): 17–76 days). The demographic and clinical characteristics of the patients, as well as
by ED visit, are shown in Table 1. The median age of the study population was 62 years,
and 48.7% were female and 51.3% were male. Leukemia (16.6%), lymphoma (10.9%), breast
cancer (9.1%), lung cancer (8.6%), and sarcoma (5.8%) were the most frequent cancer types.
The 14-day mortality rates by qSOFA score for ED visits are shown in Table S1. Bacteremia
was confirmed in 488 of the visits (9.5%). For most visits (4912 (96.0%)), the patient had
a qSOFA score of ≤1, and of the 224 patients who died within 14 days of their ED visit,
187 (83.5%) had a qSOFA score of ≤1. A total of 4890 (95.5%) blood samples were collected
and cultured; of these, 488 (10.0%) were positive. Of the positive cases, 254 were Gram
negative and 234 were Gram positive.
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Table 1. Demographic and clinical characteristics of cancer patients who visited the emergency
department (ED) with suspected infection during the period studied.

Characteristic No. of Patients (%) No. of ED Visits (%)

Total 3623 5118
Age (interquartile range), years 62 (50–70) 62 (49–70)

Sex
Female 1764 (48.7) 2433 (47.5)
Male 1859 (51.3) 2685 (52.5)
Race

Nonwhite 1107 (30.6) 1636 (32.0)
White 2516 (69.4) 3482 (68.0)

Cancer type
Leukemia 602 (16.6) 992 (19.4)

Lymphoma 394 (10.9) 597 (11.7)
Breast 330 (9.1) 432 (8.4)
Lung 313 (8.6) 390 (7.6)

Sarcoma 210 (5.8) 333 (6.5)
Multiple myeloma 202 (5.6) 322 (6.3)

Head and neck 181 (5.0) 257 (5.0)
Colorectal 163 (4.5) 202 (3.9)

Hepatobiliary 149 (4.1) 209 (4.1)
Male genital 142 (3.9) 186 (3.6)
Pancreatic 130 (3.6) 169 (3.3)

Uterine 108 (3.0) 138 (2.7)
Melanoma 91 (2.5) 106 (2.1)

Gastroesophageal 82 (2.3) 106 (2.1)
Ovarian 83 (2.3) 100 (2.0)
Kidney 69 (1.9) 82 (1.6)
Bladder 65 (1.8) 95 (1.9)
Thyroid 50 (1.4) 69 (1.3)

Brain and spinal cord 48 (1.3) 57 (1.1)
Others 211 (5.8) 276 (5.4)

Cancer stage
Local/undetermined 755 (20.8) 1000 (19.5)

Hematologic 1198 (33.1) 1911 (37.3)
Advanced/metastatic 1670 (46.1) 2207 (43.1)

3.2. Variation of Infection Biomarkers

We examined the variation of lactate, CRP, and procalcitonin levels among patients
with different qSOFA scores (Figure 1 and Table S2). All three biomarkers were signifi-
cantly higher with each incremental increase in qSOFA score. For example, in patients
with a qSOFA score of 3 compared with a score of 0, median lactate was 4.20 mmol/L
compared with 1.30 mmol/L, median CRP was 257.60 mg/L compared with 67.10 mg/L,
and median procalcitonin was 2.70 ng/mL compared with 0.16 ng/mL (p < 0.001 for all
comparisons). Similarly, the three biomarkers were significantly higher among patients
with positive blood culture (Figure 1 and Table S3). Median procalcitonin levels did
not significantly differ among those with advanced/metastatic cancer (0.21 ng/mL, IQR:
0.1–0.62 ng/mL), localized/undetermined cancer (0.14 ng/mL, IQR: 0.07–0.35 ng/mL),
and hematologic malignancy (0.21 ng/mL, IQR: 0.11–0.54 ng/mL; Figure S3). Median
procalcitonin and lactate levels were significantly (p < 0.001) higher in patients with Gram-
negative blood cultures (median procalcitonin [IQR] = 2.18 [0.48–6.28] ng/mL and me-
dian lactate [IQR] = 1.8 [1.3–2.8] mmol/L) when compared to patients with gram-positive
blood culture (median procalcitonin [IQR] = 0.41 [0.20–1.60] ng/mL and median lactate
[IQR] = 1.5 [1.1–2.2] mmol/L; Figure S4).
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infection. Upper panel: Distribution of (A) lactate, (B) C-reactive protein (CRP), and (C) procalcitonin levels by qSOFA 
score. A one-way analysis of variance followed by the post hoc Tukey test was used for statistical analysis. Lower panel: 
Distribution of (D) lactate, (E) CRP, and (F) procalcitonin levels for positive and negative bacterial blood culture results. 
The Wilcoxon-Mann-Whitney test was used for statistical analysis. * p < 0.05; ** p < 0.01; *** p < 0.001. 

3.3. Logistic Regression Model Analyses 
Multivariable logistic regression was used to build the primary prediction model, 

which had four components (qSOFA, procalcitonin, CRP, and lactate). This primary 
model yielded an AUROC of 0.83 (95% confidence interval 0.79–0.87) for predicting 14-
day mortality (Figure S5). Stratification of cancer type according to risk resulted in three 
groups defined by AOR (Table S4): high-risk cancer (gastric, esophageal, hepatobiliary, 
and pancreatic cancer), intermediate-risk cancer (lung cancer, melanoma, colorectal 
cancer, urinary cancer, breast cancer, and gynecologic cancer), and low-risk cancer (all 
other types). For the other clinical and laboratory data predictor variables, random forest 
analysis identified two important laboratory components (lactate dehydrogenase and 
albumin) that can predict 14-day mortality (Figure 2). Therefore, cancer type risk group, 
lactate dehydrogenase, and albumin were added to the primary prediction model. The 
predictive performance of the resulting final prediction model improved (Figure S5), 
yielding an AUROC of 0.88 (95% confidence interval 0.85–0.91), which was significantly 
higher than in the primary prediction model (DeLong test, p = 0.044). Hosmer–Lemeshow 
p = 0.837 for the final prediction model, indicating no evidence of poor fit. Internal 
validation using K-fold cross-validation of the final prediction model showed a mean 
accuracy of 0.969 with a prediction error of 0.0274, with K = 10 (Figure S6). 

Figure 1. Variation of infection/sepsis biomarker levels stratified by quick sequential organ failure assessment (qSOFA)
scores and bacterial blood culture results in cancer patients presenting to the emergency department with suspected
infection. Upper panel: Distribution of (A) lactate, (B) C-reactive protein (CRP), and (C) procalcitonin levels by qSOFA
score. A one-way analysis of variance followed by the post hoc Tukey test was used for statistical analysis. Lower panel:
Distribution of (D) lactate, (E) CRP, and (F) procalcitonin levels for positive and negative bacterial blood culture results. The
Wilcoxon-Mann-Whitney test was used for statistical analysis. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.3. Logistic Regression Model Analyses

Multivariable logistic regression was used to build the primary prediction model,
which had four components (qSOFA, procalcitonin, CRP, and lactate). This primary model
yielded an AUROC of 0.83 (95% confidence interval 0.79–0.87) for predicting 14-day mor-
tality (Figure S5). Stratification of cancer type according to risk resulted in three groups
defined by AOR (Table S4): high-risk cancer (gastric, esophageal, hepatobiliary, and pan-
creatic cancer), intermediate-risk cancer (lung cancer, melanoma, colorectal cancer, urinary
cancer, breast cancer, and gynecologic cancer), and low-risk cancer (all other types). For the
other clinical and laboratory data predictor variables, random forest analysis identified two
important laboratory components (lactate dehydrogenase and albumin) that can predict
14-day mortality (Figure 2). Therefore, cancer type risk group, lactate dehydrogenase,
and albumin were added to the primary prediction model. The predictive performance
of the resulting final prediction model improved (Figure S5), yielding an AUROC of 0.88
(95% confidence interval 0.85–0.91), which was significantly higher than in the primary
prediction model (DeLong test, p = 0.044). Hosmer–Lemeshow p = 0.837 for the final
prediction model, indicating no evidence of poor fit. Internal validation using K-fold
cross-validation of the final prediction model showed a mean accuracy of 0.969 with a
prediction error of 0.0274, with K = 10 (Figure S6).
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Figure 2. Classification of 14-day mortality using common clinical and laboratory variables among
cancer patients presenting to the emergency department with suspected infection. Abbreviations:
LDH, lactate dehydrogenase; BUN, blood urea nitrogen; AST, aspartate aminotransferase; WBC,
white blood cell count; ANC, absolute neutrophil count; GFR, glomerular filtration rate; SpO2,
oxygen saturation.

3.4. Constructing and Evaluating the Scoring System

To build the prediction score system, the continuous variables were first categorized
as stated in the methods section: procalcitonin ≥ 0.15 ng/mL, lactate ≥ 2.0 mmol/L,
CRP ≥ 115 mg/L, lactate dehydrogenase ≥ 285 U/L, and albumin < 3.5 g/dL. A multivari-
able logistic regression final model was built using qSOFA score, cancer type risk group,
and the established dichotomous laboratory variables. Based on the beta coefficients of the
variables in this final model, a prediction score was built by assigning points to each vari-
able by dividing the beta coefficient of the predictor by the beta coefficient of the predictor
with the smallest coefficient (i.e., 0.367 for the intermediate cancer risk group), rounding
the result to the nearest integer (Table 2). Calculating the score for each patient yielded
good discriminatory partitioning of the 14-day mortality rates among groups (Table S5).

Table 2. Final prediction model used to derive the prediction score for 14-day mortality among cancer patients presenting
to the emergency department with suspected infection.

Variable a Beta Coefficient Standard Error Odds Ratio
(95% Confidence Interval) p Assigned Point(s)

qSOFA score
0 Reference
1 1.003 0.249 2.73 (1.67–4.45) <0.001 3
2 1.382 0.349 3.98 (1.97–7.77) <0.001 4
3 2.222 0.800 9.23 (1.87–46.03) 0.005 6

Procalcitonin ≥ 0.15 ng/mL 0.853 0.399 2.35 (1.13–5.52) 0.033 2
Lactate ≥ 2.0 mmol/L 1.153 0.234 3.17 (2.01–5.04) <0.001 3

CRP ≥ 115 mg/L 0.535 0.241 1.71 (1.07–2.76) 0.026 1
LDH ≥ 285 U/L 1.295 0.245 3.65 (2.28–5.99) <0.001 4

Albumin < 3.5 g/dL 1.124 0.287 3.08 (1.79–5.54) <0.001 3
Cancer type risk group

Low Reference
Intermediate 0.367 0.249 1.44 (0.88–2.34) 0.140 1

High 0.588 0.352 1.80 (0.87–3.51) 0.095 2
a Abbreviations: qSOFA, quick sequential organ failure assessment; CRP, C-reactive protein; LDH, lactate dehydrogenase.
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Based on the pre-set criteria (see the methods section) and these results, the stratified
risk groups and cutoff points were as follows: low risk: ≤5 points; intermediate risk:
6–9 points; high risk: 10–15 points; and very high risk: ≥16 points (Figure 3). Using these
cutoff points, the 14-day mortality rates for each group were as follows: low risk 0.4%,
intermediate risk 4.2%, high risk 14.2%, and very high risk 41.2% (Table S6). The final
scoring system algorithm is shown in Figure 4.
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Kaplan–Meier analysis showed a significant difference (p < 0.001) in the 3-month
survival rate between the final risk groups (Figure S7). The poorest survival was observed
in patients with high (HR = 8.81, 95% CI = 7.42–10.48, p < 0.001) and very high risk
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(HR = 24.90, 95% CI = 17.38–35.67, p < 0.001) in both the univariate and multivariable Cox
proportional hazards analyses (Table S8).

We further tested the scoring system on two other outcomes: 30-day mortality and
ICU admission. The score showed good performance in predicting both outcomes: patients
in the low-risk group had a 1.7% 30-day mortality rate and a 0.4% ICU admission rate,
whereas patients in the very-high-risk group had a 56.9% 30-day mortality rate and a 41.2%
ICU admission rate (Table S7).

4. Discussion

Using data from cancer patients who presented to the ED of a comprehensive cancer
center with suspicion of infection/sepsis, we devised a clinical prediction scoring system
to stratify the risk of 14-day mortality among these patients (Figure 4). The major strength
of our prediction model is that it combines clinical and laboratory factors with the patient’s
cancer type to achieve a prediction score that is more suitable for cancer patients needing
emergency care than the known scoring systems used in the general population. The
prediction score achieved excellent performance in predicting 14-day mortality, with a rate
of 0.4% for the low-risk group compared with 41.2% for the very high-risk group. The
prediction score also showed excellent performance when tested for two other outcomes:
ICU admission and 30-day mortality.

Multiple biomarkers have been used as diagnostic and/or prognostic biomarkers
predicting outcomes for patients with infection/sepsis, including lactate [8,11–13], CRP [9],
cluster of differentiation 64 [40], proadrenomedullin [41], interleukin-6 [9,10], procal-
citonin [9,10,15,16,42], and many others [10,40,41,43]. The sensitivity of procalcitonin
for diagnosing bacteremia overall (both Gram-positive and Gram-negative organisms)
was reported to be 62% at a cutoff value of >0.5 µg/L, 76% at >0.25 µg/L, and 92% at
>0.1 µg/L [21]. Therefore, the sensitivity of procalcitonin alone for bacteremia is not good
enough for use as a rule-out test [21], and a procalcitonin measurement result should be
interpreted in the context of the patient’s clinical information and data about the current
medical condition, rather than being used as the single criterion for diagnosing a bacterial
systemic infection [25].

Limitations also exist in the use of procalcitonin as a tool for the diagnosis of infection
in oncologic emergencies. For example, there is still no consensus on the cutoff points to be
used when interpreting procalcitonin levels, and established protocols differ by clinical
setting (e.g., ICU vs. ED) [44]. Appropriate cutoff points for procalcitonin to diagnose
bacterial systemic infection may also vary among different patient populations, and using
two cutoff points (high and low cutoff points optimized for specificity or sensitivity) may
be more clinically useful than using a single cutoff point for the diagnosis of systemic
infection [45]. In the context of the current study, the biomarkers were used to determine
prognosis and not for diagnosis of infection, and we found that using a single cutoff point
provided the simplest regression model without compromising the performance of our
final prediction model for determining prognosis.

Using this rationale, we were able to formulate a prediction score that can accurately
guide patient treatment based on mortality risk. With an AUROC of 0.88, the prediction
score appears to have excellent discrimination compared with other scoring systems, such
as the Acute Physiology and Chronic Health Evaluation II score (0.714–0.828), Acute
Physiology and Chronic Health Evaluation IV score (0.665–0.82), and Simplified Acute
Physiology Score II (0.71–0.778) [46–49]. In addition, the absence of a poor fit in the
Hosmer–Lemeshow statistic (0.837) indicates that the final prediction model was well-
calibrated; no major discrepancy was noted between the observed and expected mortality
rate predicted by the final model. The prediction score ranges from 0 to 21 and permits
the stratification of patients with a cancer diagnosis into four categories correlating to the
expected mortality rate. An important advantage of our final prediction model is that
it includes basic clinical data recorded for all patients (qSOFA), as well as markers that
are often routinely measured in patients with a cancer diagnosis (e.g., albumin, lactate
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dehydrogenase). The type of malignancy is also often overlooked in risk prediction scores,
despite being readily available. The absence of these elements in traditional scores may put
oncology patients at a disadvantage. This was particularly apparent in our cohort: 187 of
the deaths that occurred in our study (79.0%) involved individuals with a qSOFA score ≤1.
This reflects the inadequacy of traditional assessment systems in our target population. As
such, adding clinical variables made our prediction score better tailored to patients with a
cancer diagnosis. In addition, the multi-ethnic character of our population added to the
external validity of the prediction score.

The ability to stratify patients by mortality risk holds great value for treating physi-
cians, patients, and their families. In addition to assisting in triage and guiding patient
disposition (ICU or regular ward), the prediction score gives physicians an accurate assess-
ment to better optimize and personalize the patient’s management plan. This is particularly
important because the cause of death in patients undergoing chemotherapy is often unre-
lated to the cancer itself, but rather to separate entities, such as infections, thromboembolic
events, or metabolic derangements [50]. The prediction score may also be used by physi-
cians and administrators for a more accurate performance assessment and benchmarking
in a cancer treatment setting. Naturally, an accurate impression of a patient’s expected
prognosis is important for patients and their families. Being aware of accurate statistics tai-
lored to the patient’s population is vital in ensuring proper communication by physicians.
Subsequently, this would lead to the creation of accurate expectations and goal setting by
all involved parties.

Our study has some limitations. First, the prediction score was developed using
values obtained only upon admission. Therefore, the final prediction model was not tested
for sequential scoring of patients, and it remains to be seen whether a correlation exists
between daily sequential assessment of patients with the prediction score and overall
mortality. In addition, although several variables were considered during the formation
of the prediction score, some factors could have been overlooked, such as the stage of
the malignancy in question, rather than just the type. Given the retrospective nature of
the study, information bias is possible, whereby some patients were not tested for all
studied variables. As noted in the methods section, this risk was mitigated by excluding
all variables that were not examined in at least 80% of patients. A risk of selection bias also
exists given that the database used was from a single center. In addition, patients were
considered to have bacteremia if they had any positive blood culture that was collected for
suspected infection during the EC visit, regardless of the pathogen identified. Finally, it is
important to note that despite the relatively large sample size used, some subcategories
may have been underrepresented. For instance, only 14 patients presented with a qSOFA
score of 3.

5. Conclusions

In summary, our study showed that lactate, CRP, and procalcitonin were independent
predictors of short-term survival and ICU admission in cancer patients presenting to the ED
with suspected infection/sepsis. We developed a new prediction score for clinical outcome
that can be used in oncologic emergency settings for cancer patients with suspected infec-
tion/sepsis. This simple prediction score can stratify the risk of 14-day mortality, 30-day
mortality, and ICU admission for each patient. A further prospective study is needed
to validate this prediction score and assess its generalizability. The prediction score is a
potentially important prognostic tool for emergency physicians to evaluate cancer patients
with suspected infection/sepsis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164087/s1, Figure S1: Flow diagram for identifying study participants and deter-
mining study eligibility, Figure S2: Steps involved in the development of the final prediction score,
Figure S3: Variation of procalcitonin levels by cancer stage, Figure S4: Variation of different infection
biomarkers by blood culture gram stain, Figure S5: Area under the receiver operating characteristic
curve (AUROC) analysis of the primary prediction model and the final prediction model, Figure S6:
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K-fold cross-validation accuracy of the final prediction model (K = 10), Figure S7. Association of final
risk group with 3-month survival. Table S1: Fourteen-day mortality by quick sequential organ failure
assessment (qSOFA) score for emergency department (ED) visits (n = 5118), Table S2: Variation of
infection biomarkers by quick sequential organ failure assessment (qSOFA) score, Table S3: Variation
of infection biomarkers by blood culture result, Table S4: Cancer type risk stratification, Table S5:
Fourteen-day mortality rates stratified by prediction score, Table S6: Fourteen-day mortality rates
stratified by prediction score risk group, Table S7: Thirty-day mortality and intensive care unit (ICU)
admission rates stratified by prediction score risk group, Table S8: Univariate and multivariable Cox
proportional hazards model analysis of three months survival for different final risk groups.
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