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Abstract 

Background:  Migratory birds can cross geographical and environmental barriers and are thereby able to facilitate 
transmission of tick-borne pathogens both as carriers of infected ticks and as reservoirs of pathogenic microorgan‑
isms. Ixodes ricinus is one of the most abundant tick species in the Northern Hemisphere and a main vector of several 
Babesia species, some which pose a potential threat to human and animal health. At present only two cases of overt 
babesiosis in humans have so far been reported in Sweden. To better understand the potential role of birds as dis‑
seminators of zoonotic Babesia protozoan parasites, we investigated the presence of Babesia species in ticks removed 
from migratory birds.

Methods:  Ticks were collected from birds captured at Ottenby Bird Observatory, south-eastern Sweden, from March 
to November 2009. Ticks were molecularly identified to species, and morphologically to developmental stage, and the 
presence of Babesia protozoan parasites was determined by real-time PCR.

Results:  In total, 4601 migratory birds of 65 species were examined for tick infestation. Ticks removed from these 
birds have previously been investigated for the presence of Borrelia bacteria and the tick-borne encephalitis virus. 
In the present study, a total of 1102 ticks were available for molecular analysis of Babesia protozoan parasites. We 
found that 2.4% of the ticks examined, all I. ricinus, were positive for mammal-associated Babesia species. Out of all 
Babesia-positive samples, Babesia venatorum was the most prevalent (58%) species, followed by Babesia microti (38%) 
and Babesia capreoli (4.0%). B. venatorum and B. capreoli were detected in I. ricinus larvae, whereas B. microti was only 
present in I. ricinus nymphs. This supports the view that the two first-mentioned species are vertically (transovarially) 
transmitted in the tick population, in contrast to B. microti. The largest number of Babesia-infected ticks was removed 
from the common redstart (Phoenicurus phoenicurus) and European robin (Erithacus rubecula).

Conclusions:  This study reveals that Babesia protozoan parasites are present in ticks infesting migratory birds in 
south-eastern Sweden, which could potentially lead to the dissemination of these tick-borne microorganisms into 
new areas, thus posing a threat to humans and other mammals.

Keywords:  Babesia capreoli, Babesia microti, Babesia venatorum, Ixodes ricinus, Migratory birds, Tick-borne diseases, 
Sweden
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Background
The role of migratory birds as hosts of disease vectors 
such as ticks and of potentially human pathogenic micro-
organisms has been increasingly recognized. Birds can 
cross geographical and environmental barriers and take 
part in the dispersal of bacteria, viruses, and protozoa [1]. 
Seasonal migration is especially pronounced in northern 
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Europe, where a large part of the avifauna migrate, either 
to milder regions in western Europe or the Mediter-
ranean region, or long distances to sub-Saharan Africa 
or even Asia. This means that birds returning in spring 
could carry ticks from regions that better sustain year-
round transmission of tick-borne pathogens, and possi-
bly contribute to reseeding foci of infections in temperate 
and boreal areas. Indeed, several studies in the Scandi-
navian countries have shown the presence of ticks and 
tick-borne infections in returning migratory birds, espe-
cially well-studied pathogens such as Borrelia burgdor-
feri sensu lato (s.l.) [2], Rickettsia spp. [3], and tick-borne 
encephalitis (TBE) virus [4]. However, the potential for 
less-studied, rarer, or unknown pathogens in bird-borne 
ticks to be detected in birds has come into focus recently, 
for instance with the bacterium Neoehrlichia mikurensis, 
which once identified has been shown to be fairly abun-
dant in ticks [5]. Another pathogen of concern is Babesia 
spp., a protozoan parasite causing babesiosis—an emerg-
ing tick-borne human disease in the Holarctic region.

More than 100 species of Babesia have been described. 
The majority have been recorded in mammals, and 16 
species have so far been described from avian hosts [6, 
7]. In Europe, the roe deer (Capreolus capreolus) is con-
sidered the main vertebrate host of both Babesia capreoli 
and Babesia venatorum [8, 9], while Babesia divergens 
is prevalent in cattle in southern Sweden [10, 11]. Sero-
logical studies indicate that another species of Babe-
sia—Babesia motasi—may be common in sheep herds 
in south-eastern Sweden [12]. Several of the mammal-
associated species, such as B. divergens, Babesia duncani, 
B. venatorum, and Babesia microti, are zoonotic patho-
gens and of increasing medical importance, causing from 
asymptomatic infections to mild or serious, sometimes 
even fatal, human disease, particularly in immunocom-
promised persons [13–18]. In Europe, most of the severe 
cases of human babesiosis have involved infections of B. 
divergens [14, 15, 18–20]. However, the relatively recent 
discovery of the closely related B. venatorum [21, 22] may 
suggest that some of the earlier cases diagnosed as due to 
B. divergens may in fact have been caused by B. venato-
rum. During the last decades, the recorded incidence of 
human babesiosis due to B. microti, which is present in a 
reservoir of small mammals in the Holarctic region, has 
increased considerably in the north-eastern United States 
[23]. A few cases of human disease caused by B. microti 
or B. microti-like species have recently also been diag-
nosed in Europe and Asia [19, 24].

In nature, most mammalian Babesia spp. are transmit-
ted by ixodid ticks [7, 25]. However, there is circumstan-
tial evidence suggesting that some of the avian Babesia 
spp. may be vectored by soft ticks [7]. In North Amer-
ica, blood transfusion is recognized as an increasing and 

serious mode of accidental transmission of B. microti 
[26]. Human B. microti infection by blood transfusion 
has also been documented in Europe [24].

In Sweden, Ixodes ricinus is the most abundant tick spe-
cies infesting humans [27], and also the most abundant 
tick species detected on passerine birds during migra-
tion in southern Sweden [2]. Three species of potentially 
zoonotic Babesia species—B. divergens, B. microti, and 
B. venatorum—have been recorded at prevalence rates 
of 0.2%, 3.2%, and 1.0%, respectively, in questing I. rici-
nus ticks in southern Sweden [28]. In a study that exam-
ined 2038 I. ricinus ticks which had been removed from 
humans in Sweden and on the Åland Islands, Finland, B. 
capreoli, B. microti, and B. venatorum were recorded in 
0.25%, 1.60%, and 1.30% of the ticks, respectively [29].

The aim of this study is to better understand the poten-
tial role of migratory birds as disseminators of Babesia 
protozoan parasites and to determine the prevalence of 
Babesia spp. in ticks infesting birds during their spring 
and autumn migrations in south-eastern Sweden. Part of 
this study, related to data on the prevalence of Borrelia 
spp. and the TBE virus in ticks removed from migratory 
birds during 2009, has been reported elsewhere [30].

Methods
Sampling, analyses, and processing of ticks
Full details of the sampling site, procedure for bird cap-
tures and bird classification, determination of devel-
opmental stage and species of collected ticks, and total 
nucleic acid extraction from ticks and cDNA synthesis 
are available in the previous report [30].

In short, ticks were collected from birds captured 
during the periods 15 March–15 June and 15 July–15 
November 2009 at the Ottenby Bird Observatory, which 
is located on the southern point of the island of Öland 
in south-eastern Sweden (56° 12′ N, 16° 24′ E). Trapped 
birds were identified to species level and classified into 
residents, short-distance migrants, partial migrants, and 
long-distance migrants. Any collected tick was photo-
graphed and morphologically identified to stage of devel-
opment (larva, nymph, or adult), and sex of adults. Each 
tick was individually homogenized using a TissueLyser II 
(Qiagen) followed by extraction, purification, and isola-
tion of total nucleic acids using MagAttract® Viral RNA 
M48 kit in a BioRobot M48 workstation (Qiagen). The 
total nucleic acids were reverse-transcribed to cDNA 
using the illustra™ Ready-to-Go RT-PCR Beads kit (GE 
Healthcare, Amersham Place, UK), which served as tem-
plate in all the polymerase chain reaction (PCR) assays. 
To identify the genus and species of the ticks, each 
specimen was analysed by a PCR method targeting the 
tick mitochondrial 16S rRNA gene followed by DNA 
sequencing, as previously described [30].
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Sampling of birds was approved by the Swedish Board 
of Agriculture, delegated through the Animal Research 
Ethics Committee in Linköping (decision 43–09).

Detection and determination of Babesia species
Detection of Babesia spp. was done using a SYBR green 
real-time PCR assay, as previously described [10]. Prim-
ers BJ1 (5′–GTC TTG TAA TTG GAA TGA TGG–3′) 
and BN2 (5′–TAG TTT ATG GTT AGG ACT ACG–3′) 
were designed to target the Babesia 18S rRNA gene to 
amplify a 411–452-bp long amplicon depending on the 
species of Babesia [31].

A 20-μl reaction consisted of 10 µl SYBR™ Green PCR 
Master Mix (Thermo Fisher Scientific, Stockholm, Swe-
den), 0.4  µl of each primer (10  µM; Invitrogen), 6.2  µl 
RNase-free water, and 3  µl cDNA template. The PCR 
template of 3 µl consisted of a pool of cDNA from three 
tick specimens per reaction. A positive PCR control, con-
sisting of 3 µl B. microti DNA (10 ng/µl) extracted from 
an I. ricinus tick collected in Slovakia, was included in 
each run. The B. microti DNA was kindly provided by 
Dr Bronislava Víchová (Institute of Parasitology, Slo-
vak Academy of Sciences, Slovakia) through Dr Martin 
Andersson (Centre for Ecology and Evolution in Micro-
bial Model Systems, Linnaeus University, Kalmar, Swe-
den). As a negative control in the PCR assay, RNase-free 
water was used as template. When Babesia-positive pools 
were detected, the samples were re-analysed individually.

The PCR reactions were performed on a C1000™ Ther-
mal Cycler, CFX96™ Real-Time PCR Detection System 
(Bio-Rad Laboratories, Inc., Hercules, CA, USA) using an 
activation step at 94 °C for 10 min, and 35 cycles of 94 °C 
for 1 min, 55 °C for 1 min, and 72 °C for 2 min, and finally 
one cycle of 72 °C for 5 min. Immediately after comple-
tion of PCR, melting curve analyses were performed by 
heating to 95 °C for 15 s, followed by cooling to 60 °C for 
1 min, and subsequent heating to 95  °C at 0.8  °C  min−1 
with continuous fluorescence recording.

To determine the species of Babesia in the PCR-pos-
itive samples, nucleotide sequencing of the PCR-prod-
ucts was performed by Macrogen Inc. (Amsterdam, The 
Netherlands). All sequences obtained were confirmed by 
sequencing both strands. The obtained chromatograms 
were initially edited and analysed using BioEdit Software 
v7.0 (Tom Hall, Ibis Therapeutics, Carlsbad, CA, USA), 
and the sequences were examined using the Basic Local 
Alignment Search Tool (BLAST). Sequences obtained 
have been deposited in GenBank with accession numbers 
ranging from MW554592 to MW554617.

Species determination of B. microti and B. venatorum 
is possible by sequencing the amplicon from the real-
time PCR assay. B. capreoli is highly similar to B. diver-
gens, and the two species differ only at three nucleotide 

positions at the 18S rRNA gene, specifically on positions 
631, 663, and 1637 (99.83% nucleotide similarity) [32]. 
The two first positions are included in the DNA fragment 
amplified by the primers used in this study. Additional 
file 1 shows all the aligned Babesia nucleotide sequences.

Statistical analyses
Data were presented as percentages for categorical vari-
ables. The categorical variables were analysed using the 
chi-square test, but when the expected frequency was < 5 
in at least one of the cells of the contingency table, 
Fisher’s exact test was used. Statistical analyses were 
performed using GraphPad Prism version 8.0.0 for Win-
dows (GraphPad Software, San Diego, CA, USA). P val-
ues ≤ 0.05 were considered statistically significant.

Results
Ticks collected from birds and ticks available for PCR 
analyses
A total of 4601 bird individuals (4788 bird captures) of 
65 species were examined for ticks at least once during 
the study period at the Ottenby Bird Observatory. A total 
of 749 bird individuals (759 bird captures) of 35 species 
were infested with a total of 1339 ticks (Table 1). These 
results were previously reported in the study of Wil-
helmsson et al. [30].

In this study, 1102 ticks (i.e., cDNA samples) were 
available for analysis. Of these, 543 were larvae, 552 
nymphs and two ticks were adult females. Five ticks 
could not be determined to developmental stage due 
to lack of photos. The ticks available for analysis were 
molecularly identified to: I. ricinus (n = 1,051; 514 larvae, 
532 nymphs, 5 specimens of unknown developmental 
stage), I. frontalis (n = 24; 8 larvae, 15 nymphs, 1 adult 
female), Haemaphysalis punctata (n = 12; 12 larvae), and 
Hyalomma marginatum (n = 4; 1 larva, 2 nymphs, 1 adult 
female). The remaining 11 ticks could not be molecularly 
identified to species due to unreadable sequences despite 
several sequencing attempts. Instead, these 11 ticks 
were only determined to genus level, Ixodes (8 larvae, 3 
nymphs), based on the photos.

Prevalence of Babesia species in ticks removed from birds
Of the ticks analysed, 2.4% (26/1,102) were positive for 
Babesia spp. All Babesia-positive ticks belonged to I. rici-
nus (26/1,051). Of these, 2.0% of the I. ricinus larvae were 
Babesia-positive in the PCR-assay (10/514) and 3.0% of 
the I. ricinus nymphs were Babesia-positive (16/532). 
All five I. ricinus ticks that could not be determined to 
developmental stage were Babesia-negative. No signifi-
cant difference in Babesia prevalence between larvae and 
nymphs was detected.
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Three species of Babesia were identified: B. venato-
rum (n = 15), B. microti (n = 10), and B. capreoli (n = 1). 
B. venatorum was detected in 9 larvae and 6 nymphs, B. 
microti in 10 nymphs, and B. capreoli in 1 larva (Table 2).

Of all samples that were determined to Babesia spe-
cies level (n = 26; Table 2), 17 were detected in ticks cap-
tured in spring (15 March–15 June), and 9 were detected 
in ticks in late summer–autumn (15 July–15 November). 
No significant difference was detected between the pro-
portions of Babesia-positive ticks collected in spring 
(17/495) and Babesia-positive ticks collected in late sum-
mer–autumn (9/556).

Bird species with ticks positive for Babesia species
Babesia-positive I. ricinus ticks were removed from 
eight bird species in spring or in late summer–autumn 
(Table  3): the common redstart (Phoenicurus phoenicu-
rus, n = 7), European robin (Erithacus rubecula, n = 7), 
common blackbird (Turdus merula, n = 5), Eurasian wren 
(Troglodytes troglodytes, n = 2), tree pipit (Anthus trivi-
alis, n = 2), common starling (Sturnus vulgaris, n = 1), 
common whitethroat (Sylvia communis, n = 1), and lesser 
whitethroat (Sylvia curruca, n = 1).

Discussion
So far, only a few studies have investigated tick-borne 
pathogens in ticks, which are blood-feeding on migratory 
birds in northern Europe, and the current study adds new 
information to this subject. Our study is the first one to 
report the presence of Babesia species in ticks collected 
from birds in Sweden.

The prevalence of Babesia spp. detected in this study 
(2.4%) is on a similar level as what has been reported in 
ticks collected from birds in other countries in northern 
Europe, i.e., Norway, northern Germany, and north-west-
ern Russia (1.0–4.7%) [33–35]. In those studies, the Babe-
sia species were identified as B. venatorum, B. microti, 
and B. divergens. In our study, B. venatorum was the most 
prevalent species and was detected in nymphs as well as 
in larvae of I. ricinus. Both B. venatorum [8] and B. diver-
gens [36] are known to be transovarially transmitted. 
Thus, their presence in tick larvae should not be taken as 
an indication that the pathogen was derived from feeding 
upon the avian hosts. To elucidate that, one would need 
to investigate the presence of Babesia spp. in blood taken 
directly from the birds. Our data suggest that B. capreoli 
is also transovarially transmitted in I. ricinus ticks, since 
it was present in a larval tick. This was expected, given 
the close phylogenetic relationship between B. divergens 
and B. capreoli and since it is a trait regarded as common 
to all members of the genus Babesia sensu stricto [19].

B. microti, on the other hand, is not considered to 
be vertically transmitted [19], and was only found in 

nymphs. In contrast to our results, Franke et al. [37] and 
Hildebrandt et al. [34] recorded B. microti in I. ricinus lar-
vae removed from several passerine bird species in Ger-
many. We are not aware of any other reports where tick 
larvae removed from birds have been shown to harbour 
B. microti. On the contrary, the different taxa included in 
the B. microti complex are generally considered to have 
different species of small mammals, specifically rodents 
and shrews, as their main vertebrate reservoirs [13, 19, 
38–43]. It might be possible that the B. microti infec-
tions recorded by Franke et al. [37] and Hildebrandt et al. 
[34] in larvae of I. ricinus were acquired by co-feeding 
transmission from nymphal or adult ticks that had pre-
viously fed on B. microti-infected mammals. However, 
experimental evidence from North America supports 
the notion that birds can act as reservoirs of B. microti: 
Hersh and colleagues tested 10 North American mammal 
species and four bird species for reservoir competency, 
i.e., capacity to infect the main vector in North America, 
Ixodes scapularis, with B. microti. They found reservoir 
competence levels of > 17% in white-footed mouse (Pero-
myscus leucopus), racoon (Procyon lotor), short-tailed 
shrew (Blarina brevicauda), and eastern chipmunk 
(Tamias striatus), and < 6% but > 0% in all other species, 
including all four bird species tested including three spe-
cies belonging to the Turdidae family [44]. There is sig-
nificant genetic heterogeneity among strains of B. microti 
[41–43, 45]. Therefore, further genetic investigations are 
necessary as well as studies to explore whether bird spe-
cies even in Europe are systemically infected, competent 
reservoirs (transmission hosts) for any of these taxa of “B. 
microti”.

The tick species H. punctata and Hy. marginatum 
have been reported to harbour different Babesia species, 
where B. motasi, B. bovis, B. bigemina, B. caballi and B. 
major have been detected in H. punctata, and B. microti 
has been detected in Hy. marginatum [46–49]. A sero-
logical survey of sheep indicated that B. motasi may be 
present on the island of Gotland, south-eastern Sweden, 
where it is presumably vectored by H. punctata [12]. To 
our knowledge, neither H. punctata nor Hy. marginatum 
ticks removed from birds have been investigated previ-
ously for the presence of Babesia species. However, in the 
present study, only I. ricinus ticks were positive for Babe-
sia. This is not surprising, given the overall low preva-
lence of Babesia spp. detected in the I. ricinus ticks, and 
the small number of specimens of the other tick species 
analysed.

In this study, the Babesia-positive ticks were found on 
eight common passerine bird species. Given the loca-
tion, all these individuals are considered to be on active 
migration. Four of the species—European robin (Eritha-
cus rubecula), common starling (Sturnus vulgaris), 
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common blackbird (Turdus merula), and Eurasian wren 
(Troglodytes troglodytes)—are common and widespread 
short-distance migrant (or partial migrant) species that 
occur in a range of habitats, including in the vicinity of 
humans, in gardens, forests, and pastures. The other four 
species are obligatory long-distance migrants wintering 
in sub-Saharan Africa, predominantly West Africa, and 
include tree pipit (Anthus trivialis), common redstart 
(Phoenicurus phoenicurus), common whitethroat (Sylvia 
communis), and lesser whitethroat (Sylvia curruca), and 
although common, they are less associated with human 
settlements [50]. Interestingly, 17 of the bird individuals 
infested by Babesia-positive ticks were captured during 
their northward spring migration, suggesting a potential 
role of these birds as disseminators of Babesia proto-
zoan parasites into Sweden. Although the prevalence of 
Babesia spp. was low, the sheer number of birds involved 
in migration would imply a significant number of intro-
ductions of infected ticks on an annual basis. Quantify-
ing this number would require larger sample sizes and a 
wider sampling of host species. However, the presence 
of infected ticks in common passerine species that occur 
in habitats also frequented by humans and domesticated 

animals suggests that the risk of encountering poten-
tially Babesia-infective ticks exists. However, the risk to 
humans resulting from these introductions remains spec-
ulative, especially in relation to the enzootic occurrence 
of these pathogens.

Two of the three Babesia species, i.e., B. venatorum 
and B. microti, detected in this study are previously 
known to cause human disease. In Europe, the most 
common cause of clinical human babesiosis is B. diver-
gens, which typically is diagnosed in immunocompro-
mised individuals and often gives rise to a severe illness 
[16, 51]. Human disease caused by B. divergens has also 
been reported in immunocompetent patients [52]. A few 
cases of B. microti and B. venatorum infection have also 
been reported in Europe [21, 22, 24, 53]. In contrast to 
B. divergens, B. venatorum, and B. microti, B. capreoli is 
considered not to be human-pathogenic [32].

In southern Sweden, a prevalence of 2.5% for B. 
microti and/or B. divergens antibodies among healthy 
individuals was recorded, and an even higher seroprev-
alence (16.3%) among seropositive Borrelia burgdorferi 
sensu lato patients was detected [54]. Despite the high 
seroprevalence, only two cases of human babesiosis 

Table 2  Prevalence of Babesia species in Ixodes ricinus ticks removed from birds captured at the Ottenby Bird Observatory, Sweden 
2009

a  All ticks were examined for Babesia spp. by a real-time PCR assay
b  Ticks could not be identified to developmental stage due to missing photos

Tick developmental stage No. of ticks examineda No. (%) of Babesia-positive 
ticks

No. of ticks containing Babesia species determined by nucleotide 
sequencing

Babesia venatorum Babesia microti Babesia capreoli

Larva 514 10 (2.0) 9 1

Nymph 532 16 (3.0) 6 10

Unknownb 5 0 (0.0)

Total 1051 26 (2.5) 15 10 1

Table 3  Species of Babesia identified in Babesia-positive, immature Ixodes ricinus ticks removed from bird species

a  Babesia-positive I. ricinus ticks were removed from birds during 15 March–15 June and 15 July–15 November 2009 at Ottenby Bird Observatory, south-eastern 
Sweden

Bird species Babesia-positive ticks (spring/
autumn)a

Babesia venatorum (larvae/
nymphs)

Babesia microti (larvae/
nymphs)

Babesia capreoli 
(larvae/nymphs)

Phoenicurus phoenicurus 7 (5/2) 2 (2/–) 4 (–/4) 1 (1/–)

Erithacus rubecula 7 (5/2) 6 (4/2) 1 (–/1)

Turdus merula 5 (2/3) 3 (1/2) 2 (–/2)

  Troglodytes troglodytes 2 (1/1) 2 (2/–)

Anthus trivialis 2 (2/–) 2 (–/2)

Sturnus vulgaris 1 (1/–) 1 (–/1)

Sylvia communis 1 (1/–) 1 (–/1)

Sylvia curruca 1 (–/1) 1 (–/1)

Total 26 (17/9) 15 (9/6) 10 (–/10) 1 (1/–)
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have so far been reported in Sweden [18, 53]. Thus, the 
risk of developing severe babesiosis after an I. ricinus 
tick bite among healthy individuals in Sweden appears 
to be low [29]. However, as pointed out previously by 
others [19, 25, 54], we cannot exclude that this poten-
tially severe infection is underdiagnosed.

Conclusions
This is the first study showing the presence of B. vena-
torum, B. microti, and B. capreoli in ticks removed from 
birds in Sweden. The study also reveals that zoonotic 
Babesia species are present in ticks infesting migratory 
birds in south-eastern Sweden, which could lead to dis-
semination of these tick-borne microorganisms into 
new areas.
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