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ABSTRACT Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific
interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods
offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems
biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse
engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis–Hastings
and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated
gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the
overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our
simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the
performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for
highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior
performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented
topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers
in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.
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COMPLEX diseases such as Alzheimer’s disease and type 2
diabetes are influenced by intricate gene-to-gene and

gene-by-environment interactions (Peila et al. 2002; Huang
et al. 2005; Liu et al. 2007; Rhinn et al. 2013). The goal of
gene network reverse engineering is to learn the gene-to-gene
interaction architecture underlying such diseases. Some algo-
rithms output networks that correspond to putative causal

relationships among genes, by combining SNP and expression
data. These inferred networks can be used to generate hypoth-
eses that can be validated experimentally (Schadt et al. 2005;
Chen et al. 2007; Aten et al. 2008; Ferrara et al. 2008; Chaibub
Neto et al. 2008, 2013; Duarte and Zeng 2011). In particular,
Bayesian approaches to inferring causal networks are becom-
ing a common practice in the field of systems biology (Zhu
et al. 2007, 2008; Chaibub Neto et al. 2010; Hageman et al.
2011; Moon et al. 2014) and have successfully generated novel
insights into biological processes (Zhang et al. 2013). Nonethe-
less, inferring the structure of Bayesian networks remains
a challenging statistical and computational problem. Specifi-
cally, the relative performance of different causal network re-
construction algorithms is unclear when they are applied to
real biological data sets. Therefore, to enable more accurate
network reconstructions, we conduct a systematic comparison
of the performance of several Markov chain Monte Carlo
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(MCMC) samplers, as well as novel sampling methods. Our
conclusions facilitate the recovery of correct networks under
a range of biologically realistic scenarios.

We report the results of a large-scale simulation study
comparing the relative performance of state-of-the-art MCMC
samplers (Grzegorczyk and Husmeier 2008; Goudie and
Mukherjee 2011) with novel sampler variations developed by
us and with the standard Metropolis–Hastings structure sam-
plers (Madigan et al. 1995; Giudici and Castelo 2003). Efforts
to compare MCMC samplers have focused on data generated
from a handful of benchmark networks such as the ALARM
network (Beinlinch et al. 1989). Such limited test sets can lead
to conclusions about the performance of various methods that
are not necessarily robust. Therefore, to reach high-confidence
conclusions, we evaluated the merits of various network re-
construction algorithms over a wide range of biologically rele-
vant networks. For instance, envision that researchers develop
sampler A that, in theory, is expected to outperform an alter-
native sampler, B, on sparse networks. To empirically check
this hypothesis, the researchers may restrict their attention to
a single benchmark network. Even if multiple networks are
generated to test this hypothesis, they likely come from a spe-
cific parameter set, such as 200 data samples generated from
a sparse network consisting of 40 continuous variables, via
a set of linear structural equations with moderate values for
the regression coefficients and residual variances. Suppose fur-
ther that, as expected, sampler A does outperform sampler B
across most of the simulations. Although the researchers might
be inclined to claim that sampler A is better than B in sparse
networks, we argue that the researchers cannot really support
this statement because the effect of sparsity on the sampler’s
performance is confounded with the effects of the other simu-
lation parameters, namely, the sample size, the number of
nodes, and the amounts of signal and noise. That is, it is not
possible to determine whether sampler A outperforms sampler
B, because the benchmark network is sparse or because, in
reality, sampler A is better than B for the particular choice of
simulation parameters adopted in the simulation. All the
researchers can claim is that sampler A performs better than
B for the particular values of the simulation parameters
adopted in the study, but there are no guarantees that sampler
A would outperform sampler B, had the researchers chosen
a different set of simulation parameter values.

Therefore, to perform a rigorous comparison of the
performance of different MCMC samplers and to investigate
the conditions under which one sampler performs better than
another, we designed a multifactorial simulation study with
crossed factors. In our simulation study, network parameters
played the role of factors, and the difference in area under the
response curve of different samplers played the role of the
response variable (Figure 1). By comparing the performance of
methods across many different situations, the differences in
performance we observe are less likely to be due to a specific
parameter setting. Moreover, we can track how different types
of network topology influence the performance of all methods
or a specific method. This enables biologists to understand how

data sets with different origins and features are likely to affect
the accuracy of estimated networks and which methods are
optimized for the characteristics of a particular biological
data set.

In our simulations, we investigated the effects of eight
distinct simulation parameters, namely sample size, network
topology, the number of network nodes, incorporation of
genetic information, average edge density, average gene-to-
gene signal, average SNP-to-gene signal, and intrinsic expres-
sion noise. (See Methods for further details.) These simulation
variables were chosen to represent aspects of biological data
sets that are reasonably expected to vary in a wide range of
future applications. For instance, the strength of gene–gene
correlations is controlled by a variety of biophysical processes
such as transcription factor binding, chromosome configura-
tion, and epigenetics (Gaiteri et al. 2014). We compared the
performance of four published MCMC samplers and five novel
sampler variations that we developed. The published samplers
included (i) the foundational Metropolis–Hastings structure
sampler (“STR sampler”) (Madigan et al. 1995; Giudici and
Castelo 2003), (ii) the “REV” Metropolis–Hastings sampler
(Grzegorczyk and Husmeier 2008), (iii) the single-parent set
block Gibbs sampler (“1PB”), and (iv) the two-parent sets
block Gibbs sampler (“2PB”) (Goudie and Mukherjee 2011).
The new samplers included (v) the three-parent sets block
Gibbs sampler (“3PB”), (vi) the four-parent sets block Gibbs sam-
pler (“4PB”), (vii) the connected two-parent sets block sam-
pler (“c2PB”), (viii) the connected three-parent sets block
sampler (“c3PB”), and (ix) the connected four-parent sets
block sampler (“c4PB”). Descriptions and comments on each
of these samplers are provided in the Appendix.

Since our multifactorial design involves a large number of
distinct factor-level combinations (1458 in total), and for
each combination we run nine distinct MCMC samplers, we
considered only a single replication per simulation param-
eter combination. Each sampler was run for a fixed time
with either a single longer chain or multiple shorter chains.
Collectively, the experiment included 52,488 instances of
reverse-engineering gene regulatory networks. To the best of
our knowledge, this is the largest simulation study comparing
MCMC samplers for structure learning in Bayesian networks.

Methods

Bayesian networks

Background and technical material on Bayesian networks
and the MCMC samplers investigated in this study are pre-
sented in the Appendix.

Setting of the MCMC runs

Each sampler was run for a fixed time with either a single
longer chain or multiple shorter chains, starting from different
random initial structures. For 30, 65, and 100 node networks,
we executed MCMC samplers in 30, 300, and 2100 sec,
respectively, on an Opteron 2.2-GHz core. For single-chain
running, we collected at most 5000 networks uniformly from
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a chain and 20% of initial networks were discarded as burn-in.
When running multiple chains, the chain length was controlled
so that on average 50 chains completed in the time allotted.
The last network of a chain was collected from each chain.

Program implementation

All the MCMC samplers were implemented in MATLAB
2012a (MathWorks). To conduct fair comparisons, the routines
shared across the MCMC samplers were implemented in the
same way by using the same subfunctions. Moreover, the
routines specific for each MCMC sampler were highly opti-
mized. All the programs were compiled by MATLAB Compiler
to enable batch execution. The code to run all methods is
available for download (DOI: 10.7303/syn2910187).

Simulation parameters

The selection and range of simulation parameters were
designed to reflect characteristics of typical systems genetics
experiments. To investigate the relative performance of the
different structure samplers, we designed a multifactorial
simulation experiment with crossed factors, focusing on the
effects of seven distinct simulation parameters, namely the
following:

1. Network topology t, with levels “random” and “EIPO”
(exponential in in-degree and power law on out-degree,
as proposed by Guelzim et al. 2002).

2. Number of network nodes, p, with levels “30,” “65,” and
“100.”

3. Edge density, d, with levels “low,” “medium,” and “high.”
The edge density of a network is defined as the number
of edges divided by the number of possible edges,
namely, p3 ðp2 1Þ: For each simulation, d was set to
0.02, 0.04, and 0.06 as low, medium, and high edge
density, respectively. We did not limit the maximum num-
ber of parent nodes in simulated networks, even though
sampling methods often limit the number of possible
parents, for reasons of computational efficiency.

4. Average gene-to-gene signal, h; defined as the average
absolute value of the nonzero coefficients (of the regression
of a gene on another). For each simulation, h was sampled

uniformly from the ranges [0, 0.33], [0.33, 0.66], [0.66, 1]
corresponding to low, medium, and high, respectively.

5. Intrinsic expression noise, s2; with levels low, medium,
and high, and defined as the variance of the error term,
e � Nð0;s2Þ; used in the simulation of the expression
values (via linear structural equations). For each simula-
tion, s2 was sampled uniformly from the ranges [0, 1],
[1, 2], [2, 3] corresponding to low, medium, and high,
respectively.

6. Average SNP-to-gene signal, g; defined as the average
absolute value of the nonzero coefficients (of the regres-
sion of an expression phenotype on a SNP). For each
simulation, g was sampled uniformly from the ranges
[0, 1], [1, 2], [2, 3] corresponding to low, medium,
and high, respectively.

7. Sample size, n, with levels 100, 200, 300. This choice
reflects typical sample sizes observed in the literature
for causal gene networks (Zhang et al. 2013).

In total, our experiment was conducted based on 2 3 3 3
3 3 3 3 3 3 3 3 3 = 1458 distinct networks.

Simulation of network structures

We generated network structure based on EIPO topology
observed in transcriptional regulatory networks (Guelzim
et al. 2002). Random topology networks were also gener-
ated as reference. We did not limit the maximum number of
parent nodes for the simulated networks. Network struc-
tures were generated using the SysGenSIM software (Pinna
et al. 2011). This software allows the user to control
the number of nodes and the network average degree
(=2ðp2 1Þd), as well as choose among several topology
types, including the random network topology and the EIPO
topology. Although the software can also simulate genotype
and expression data from experimental crosses (where the
latter are generated according to nonlinear ordinary differ-
ential equations), we do not employ those features for data
generation. Instead, we generate genotype data from out-
bred populations and simulate expression data from a mul-
tivariate normal distribution consistent with the structural
equation model representing the network structure.

Figure 1 Workflow of simulation study. Systems
genetics data composed of gene expression and
genotyping data were generated based on a regu-
latory network consisting of genes and SNPs.
Bayesian networks were estimated by applying var-
ious structure MCMC samplers to these systems
genetics data, generated by a known network
structure. The composite networks obtained by
Bayesian model averaging were then compared
with a true network structure. AUCPR and
AUCROC are employed as a performance mea-
sure. Overall performance of different MCMC sam-
plers and identification of the network features
that affect the accuracy of network reconstruction
were investigated through ANOVA of the AUCPR
or AUCROC results.
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Simulation of SNP data

To incorporate realistic genetics data in our simulations, we
generate SNP data matrices by randomly selecting chunks of
real SNP data from the HapMap3 database. To do this, we
first randomly choose p genes from the refGene in the UCSC
Genome Browser and then select all cis-SNPs associated with
the p genes from genotype data on a Caucasian population. We
define a cis-SNP as any SNP physically located between (2)
110 kb upstream of the transcription start site and (+)40 kb
downstream of the transcription end site, because this region is
thought to contain 99% of cis-eSNPs (e: expression single nu-
cleotide polymorphism) (Veyrieras et al. 2008).

Simulation of network data

Given the SNP data and a (possibly cyclic) directed network
structure, G, with continuous (gene expression) and discrete
(SNP) nodes, we generated multivariate normal gene ex-
pression data with a covariance structure implied by the
structural equation model (SEM) describing G. Because the
SNP nodes are necessarily exogenous variables in G, the asso-
ciated SEM can be represented, in matrix notation, as

X ¼ BX þ CQþ e (1)

(Liu et al. 2008), where (i) e is a p3 n matrix of indepen-
dent and identically distributed Nð0;s2Þ residual error
terms, (ii) X is a p3 n matrix of expression levels, and (iii)
Q is a k3 n matrix of SNP genotype codes. B is a p3 p
matrix of gene-to-gene causal effects, where the element
bij represents the partial regression coefficient of the regres-
sion of gene i on gene j. The structure of matrix B corre-
sponds to the directed graph representing the interactions
between the genes with edges corresponding of nonzero
elements of B. Because we adopt independent residual error
terms, matrix B can be rearranged into a lower triangular
matrix when G is acyclic, but will be necessarily nontrian-
gular for cyclic graphs. C is a p3 k matrix of SNP-to-gene
causal effects. Each entry (i; j) of C represents the partial
regression coefficient of the regression of gene i on SNP j.
The SNP-to-gene edges in G are represented by the nonzero
elements of C. Given the matrices B, C, Q, and e; we gener-
ate the expression data matrix as X ¼ ðI2BÞ21ðCQþ eÞ:
Note that because each column of e follows a Npð0;s2IpÞ
distribution, we have that the conditional distribution
of each column Xj of X given B, C, and Q is
Np

�
ðI2BÞ21CQj;s

2ðI2BÞ21ððI2BÞ21Þt
�
: Furthermore, no di-

agonal dominance enforcement of ðI2BÞ was necessary to
ensure matrix invertibility since the simulated networks were
small; the diagonal and most of the off-diagonal entries of B
were zero (due to the absence of self loops and relatively low
connectivity of the simulated networks), and the nonzero
entries of B consisted of low values.

The values of the nonzero partial regression coefficients
in B and C are sampled randomly from a uniform distribu-
tion and then rescaled so that the average of their absolute
values is h and g; respectively. The range of h; g; and r is

determined so that the variance of the expression phenotypes
explained by eSNPs in simulated data covers that observed in
real data, which ranges from 0.1 to 0.3 (Grundberg et al. 2012;
McKenzie et al. 2014; Yang et al. 2014). In particular, the
median variance explained by SNPs of our simulated data
was 0.11 with a median absolute deviation of 0.15. An addi-
tional constraint to C was that 20% of the expression pheno-
types have SNPs, which was based on the empirical proportion
of genes with eSNPs, ranging from 5% to 35% (Brown et al.
2013). In addition, each such expression phenotype can have
at most two SNPs, since three independent eSNPs for a single
gene were very rare in studies with moderate sample size
(Stranger et al. 2012). Consequently, 80% of the rows of C
are completely 0, and the remaining 20% of the rows can have
at most two nonzero entries.

eSNP mapping

We perform eSNP mapping tailored to the network structure
by evaluating conditional independence relations between
expression traits and SNPs, given their expression trait
parents (Chaibub Neto et al. 2010). The likelihood ratio
between the full model and the null model that is generated
by removing the SNPs term from the equation can be used as
a formal test of conditional independence. The empirical
null distribution of the likelihood ratio is estimated by
1000 permutations of individual labels as follows. At each
time, the individual labels of either expression trait or SNPs
were randomly permuted so that relations between expres-
sion trait and SNPs were broken while keeping the correla-
tion structure among expression traits intact (and while
preserving the correlation structure of the SNPs as well).
Then the likelihood ratios of all the pairwise relationships
between expression traits and their cis-SNPs were calcu-
lated, followed by the collection of the maximum value
across all computed likelihood ratios. The permutation null
distribution generated by this procedure is then used to test
the null hypothesis of detecting an association given that
none of the SNPs are associated with the expression trait.
The genome-wide error rate of detecting cis-eSNP associa-
tions was controlled at 0.05.

Performance measures

We evaluated network reconstruction performance, using
the area under the curve of the precision-recall plot (AUCPR),
where

precision ¼ number of true positives
total number of edges detected

;

recall ¼ number of true positives
total number of true edges

;

and a true positive was defined as an inferred directed edge
that existed in the true network used to generate the
expression data. In some cases, the area under the curve
of the receiver operating characteristic (AUCROC) was used
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for performance evaluation. AUCROC is a composite mea-
sure based on true positive rate (recall) and false positive
rate, defined as

false positive rate ¼ number of false positives
total number of true absent edges

;

where a false positive was defined as an inferred directed
edge that did not exist in the true network used to generate
the expression data.

Results

Network characteristics affect the performance of
Bayesian network reconstruction

To elucidate effects of various biological characteristics on
network estimation accuracy, we performed a systematic sim-
ulation experiment with an ensemble of systems genetics data
where each parameter (network characteristic) was sampled
over a biologically plausible range. To evaluate the accuracy of
an estimated network, we applied Bayesian model averaging to
the probabilistic network estimates produced by any given
method, to obtain a composite adjacency matrix. Then, AUCPR
as adopted as a measure of correctness of an output adjacency
matrix, given a true network. Using this response variable, we
used ANOVA to identify network features that have significant
impact on the performance of network reconstruction.

All the network characteristics tested, as well as various
2 3 2 interactions among these, were found to be significantly
associated with AUCPR (Figure 2), but the strength of the
effects and form of the interactions varied widely. Our exper-
iment indicates that network topology affects the accuracy of
network reconstruction. Networks with EIPO topology were
reconstructed more accurately than those with random topol-
ogy (Figure 2A). The experiment also identified harmful and
beneficial effects of network characteristics on estimation ac-
curacy. The increase in the number of genes, edge density, and
noise level decreased AUCPR monotonically. Conversely, the
increase of sample size and strength of SNP-to-gene signal
positively contributed to the accuracy of reverse engineering
(Figure 2A). Unlike the other network characteristics, gene-to-
gene signal strength showed a nonmonotonic effect on AUCPR
(Figure 2A). Initially, the increase in gene-to-gene signal
strength had a beneficial effect on performance because stron-
ger signals aided in distinguishing true regulations from noise.
However, once the gene-to-gene signal strength exceeded a cer-
tain point, it showed the opposite effect (Figure 2A). Strength
of gene-to-gene signal also showed significant interactions with
other characteristics, including sample size, the number of
genes, edge density, and network topology (Figure 2B). How-
ever, these interactions did not alter the nonmonotonic trend
of the effect of gene-to-gene signal on AUCPR (Supporting
Information, Figure S1).

We found that secondary effects of gene-to-gene signaling
accounted for the nonmonotonic effect of gene-to-gene signal
on AUCPR. We observed that high average gene-to-gene signal

strength monotonically increased the correlations between
directly connected genes and also those between indirectly
connected genes (Figure 3A). These indirect effects of gene-to-
gene signal strength were quantified by M = log10(directCor/
indirectCor) based on the average correlations of directly con-
nected genes and those of indirectly connected genes. This M
measure showed a nonmonotonic trend along with the amount
of gene-to-gene signal strength (Figure 3A) and was well cor-
related with AUCPR (Figure 3B). This suggests that the poor
network reconstruction performance against networks with
high gene-to-gene signal is due to the low M of the data set
through the increase of indirect signals.

Comparison of structural samplers

Next we investigated general performances of structural
samplers. For rigorous quantification, both AUCPR and AUCROC
were employed as performance measures. Based on these
measures, c2PB, c3PB, and REV outperformed other samplers,
whereas STR, a traditional sampler, showed the worst perfor-
mance (Figure 4A). The main methodological difference be-
tween top-performing samplers c2PB, c3PB, and REV and STR
is the magnitude of modifications to a network offered at each
step. Specifically, REV and c2PB update parents of two nodes
and c3PB updates parents of three nodes simultaneously at
each step. By contrast, STR modifies only a single edge of
a network at each step. Superior performance of c2PB, c3PB,
and REV was quite robust over many types of networks tested
(Figure S2), suggesting samplers that execute drastic network
modifications at a single step can potentially generate more
accurate network structures within a set time compared to
methods that employ smaller updates.

The performance of the samplers interacted with various
network and simulation parameters (Figure 4B). We found
that sample size and MCMC chain type had practically impor-
tant contributions to the performance of the samplers. The
performance gain offered by larger sample size was not ob-
served uniformly: a limited set of samplers, namely c2PB,
c3PB, and REV, benefits most from larger sample size (Figure
4C). Note that these samplers are all able to execute drastic
network modifications in a single step and also showed supe-
rior performance even for small sample sizes. Samplers such as
STR and 1PB showed only slight or no performance gains with
the increase of sample size (Figure 4C). This observation
suggests method selection is crucial in benefiting from larger
sample sizes. MCMC chain type also showed a significant in-
teraction with structural samplers. We employed two types of
MCMC chains: a single longer chain and multiple shorter
chains. Our results indicated that STR, 2PB, 3PB, 4PB, c3PB,
and c4PB performed better with a longer single chain, whereas
1PB, c2PB, and REV performed better with shorter multiple
chains (Figure 4C). The differences between these two types of
samplers could be generated by differences in the time re-
quired to reach a stationary distribution. Specifically, in the
case of samplers with slow convergence such as STR, 4PB,
and c4PB, each short chain was terminated before reaching
the stationary distribution. Therefore, the average Bayesian
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information criterion (BIC) of multiple chains is higher than that
of a single chain (Figure S3), which resulted in lower AUCPRs.
Conversely, the samplers including 1PB, c2PB, and REV that
reach a stationary distribution faster would have potential ben-
efits from exploring optimal networks over the large network
space by employing shorter multiple chains from different initial
networks. We note, however, that the minimum BIC of each
sampler did not depend on the convergence speed (Figure S3).
This suggests that some samplers with fast convergence speed
such as 1PB can reach suboptimal networks quickly, but are not
able to exit from the suboptimal configuration state.

To classify MCMC samplers based on their performance,
we used hierarchical clustering analysis of AUCPR and
AUCROC results (Figure 5). In this analysis, we treated a sin-
gle longer chain and multiple shorter chains as separate
methods. The clustering analysis based on the AUCPR result
suggested MCMC samplers can be clustered into four types,
which were driven by differences in performance on four
primary types of data sets (Figure 5). Examination of net-
work characteristics associated with the four groups of data
sets revealed the number of genes, edge density, and gene-
to-gene signal strength are major characteristics that differ-
entiate the performance of various samplers (Figure S4A).
In AUCPR-based clustering, 1PB, 2PB, and 3PB running with
multiple shorter chains were in the same group and showed
strong performance, especially for networks with high num-
bers of genes, high edge density, and high gene-to-gene
signal strength. The top-performing samplers, c2PB, c3PB,
and REV, were also clustered together and worked well
across many simulations, except for networks with low
gene-to-gene signals. STR and 4PB fell into the same cluster,
showing poor performances over most network results. In the
AUCROC-based clustering, we also observed four clusters of

MCMC samplers and four groups of datasets (Figure 5). The
three network characteristics, numbers of genes, edge density,
and gene-to-gene signal strength were again associated with
the four groups of data sets (Figure S4B). This further sup-
ports the large impact of these three network parameters on
the accuracy of the reverse engineering of gene-regulatory
networks. Similar to the AUCPR result above, 1PB, 2PB,
and 3PB and c2PB, c3PB, and REV clustered into the same
group (Figure 5). However, the strongest factor contributing
to the cluster separation was the chain type employed. Run-
ning with multiple chains resulted in clearly higher AUCROC
than with single-chain execution.

Detailed comparison of top-performing samplers

Next we investigated the differences among the top-
performing samplers, REV, c2PB, and c3PB. To evaluate rel-
ative performance of any pair of structure samplers, A and B,
we used single-replicate multiway ANOVA, with the response
given by WAB = AUCPRA – AUCPRB. We focus here on the
AUCPR results from a single-chain condition to reveal differ-
ences in characteristics across samplers. Two parameters, gene-
to-gene signal strength and network topology, had significant
effects (P, 1e-16) on the performance of c3PB relative to REV
(Figure 6). As the strength of gene-to-gene signaling increased,
the c3PB performance improved considerably over that of REV.
Also c3PB performed significantly better than REV for the net-
works with EIPO topology compared to networks with random
topology. Compared to REV, c2PB also performed slightly bet-
ter with increased gene-to-gene signaling (Figure 6). None of
the other parameters were significantly associated with the
difference between c2PB and REV, indicating these two sam-
plers are almost comparable in terms of the type of networks
where they work well. Finally, two parameters, gene-to-gene

Figure 2 Effect of network features on the perfor-
mance of Bayesian network reconstruction. (A) Mar-
ginal performance plots for each one of the seven
simulation parameters. The dashed horizontal line
represents the mean of the AUCPR distribution. (B)
The heatmap represents significance for the interac-
tions between any two pairs of the seven simulation
parameters.
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signal and network topology, are associated with the difference
between c3PB and c2PB, just as they are between c3PB and
REV (Figure 6). These results demonstrate that a newly de-
signed sampler, c3PB, is superior to REV, especially for
highly correlated biological networks.

Evaluation of the effect of genetic information

We designed our algorithm to incorporate SNPs as nodes in
a Bayesian network, which means we estimated the struc-
ture of gene-to-gene networks and the eSNP mapping
simultaneously. The incorporation of SNPs creates new sets
of conditional independence relations, allowing us to distin-
guish between gene regulatory networks with equivalent
likelihood. Furthermore, by including SNPs in the model we
can potentially improve the model fit, leading to higher
network recovery scores. We evaluated the benefit of in-
corporating SNP information for both the accuracy of the
estimated network and the model fit to gene expression data,
as follows. First, gene expression data and SNP data were
simulated from networks composed of genes and SNPs. Then,
gene expression data alone or both gene expression and SNPs
were applied to the Bayesian network estimation programs.

Our results show that AUCPR and average BIC score
significantly improve when both gene expression data and
SNP data are used for reverse engineering (Figure 7A). We
also investigated parameters that affected the performance
gain when SNPs were incorporated (Figure 7B). As the
strength of SNP-to-gene signal ramped up, the benefit of in-
corporating SNPs also increased the network reconstruction
accuracy. Conversely, as the number of genes, edge density,
and noise level increased, the beneficial effect of SNPs became
more limited. The effects on inferred network accuracy that
stem from incorporating SNPs are independent of MCMC sam-
pler, sample size, and network topology. Our simulation study
indicates that SNP information is often helpful to estimate
Bayesian networks, but might be less effective on data sets
generated by real networks that are large, are noisy, or have
dense sets of interactions.

Discussion

Reverse engineering of gene networks from systems genetics
data (Jansen 2001) is an active research area. Although we
focused on MCMC samplers for gene network structure learn-
ing in the present article, many other statistical approaches/
frameworks have been proposed in the literature. For instance,
Chaibub Neto et al. (2008) applied the PC algorithm (Spirtes
et al. 2000) to first infer the skeleton of the gene network
and then used expression QTL (eQTL) to determine the direc-
tions of the edges in the phenotype network. Liu et al. (2008)
proposed a two-step approach wherein an encompassing
directed network (EDN) is first generated from assembled
pairwise regulator–target relationships (which might be direct
or indirect), followed by the application of structural equation
models to search for a (possibly) cyclic network nested in the
EDN, which best fits the data according to the BIC criteria. By
restricting the network space to networks nested in the EDN,
this approach is able to handle networks with hundreds of
genes and eQTL. Logsdon and Mezey (2010) proposed a
multiple-step approach where an association analysis is carried
out to identify local eQTL, followed by the inference of an un-
directed network of gene expression traits and eQTL nodes via
a covariance selection approach based on the adaptive lasso
feature selection procedure and subsequent mapping of the un-
directed network into a possibly cyclic gene expression network.
Zhang and Kim (2014) adopted sparse conditional Gaussian
graphical models for modeling undirected gene networks under
SNP perturbations, where the gene network structure learning
task and the SNP feature selection task are performed jointly by
solving a single optimization problem containing the lasso (for
SNP feature selection) and the graphical lasso (for gene net-
work structure learning) as special cases.

A common feature of these non-Bayesian approaches is
that the output of the reverse-engineering algorithm is a single
point estimate of the gene network, and no statistical measure
of uncertainty about the inferred network is available. The
MCMC samplers, on the other hand, output an entire poste-
rior distribution of network structures, from which Bayesian

Figure 3 Tracking both direct and indirect gene-to-
gene correlations explains how moderate correla-
tions lead to the most accurate network inference.
(A) Increasing the gene-to-gene signal strength
increases the average correlation between genes,
as expected. The strength of indirect correlations be-
tween genes also increases as gene-to-gene signal
strength increases. Direct and indirect correlations
are the average correlation of directly connected
genes and indirectly connected genes, respectively.
The M measure represents the log10 ratio between
direct correlation and indirect correlation in each
data set. (B) The bell-shaped response of AUCPR to
increasing direct gene-to-gene correlations might be
unexpected, but once the concurrent increase of in-
direct correlations is taken into account (through the
M measure), the expected relationship between in-
creasing signal and increased network accuracy is
found (bottom right).
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model-averaged estimates of the probability for the presence
and direction of any particular edge in the network are readily
available. This provides information about which parts of the
inferred network were reconstructed with stronger confidence.
This feature is particularly important for reverse engineering of
gene networks since expression data are notoriously noisy. The
main drawback is the increased computational requirements,
compared to non-Bayesian/point estimate approaches, which
are generally faster and scalable to larger networks. Nonetheless,
MCMC approaches have been successfully applied to genome-
scale real data (Zhu et al. 2008; Zhang et al. 2013) by first
clustering the gene expression data into much smaller groups
via weighted gene coexpression analysis (Zhang and Horvath
2005), followed by Bayesian networks reconstruction for the
separate and more manageable gene clusters.

MCMC samplers based on moves in the space of node
orders (Friedman and Koller 2003; Eaton and Murphy 2007;
Ellis and Wong 2008) have been shown to considerably im-
prove the mixing of the Markov chain. Nonetheless, these sam-
plers do not allow the explicit specification of prior distributions
over network structures. Since our main applied interest is the

reconstruction of Bayesian networks with noisy genomic data,
where the incorporation of prior knowledge can improve re-
construction performance, we focus our attention on MCMC
approaches based on moves in network structure space.

To investigate network inference in the context of data
sets that are likely encountered by experimental biologists,
we conducted the largest simulation study comparing MCMC
samplers for structure learning in Bayesian networks to date.
By ranging over combinations of biologically plausible param-
eter settings, we can be confident in our conclusions about
the relative performance of different inference methods. The
variability in generative network structures also allows us to
understand how network characteristics affect the performance
of various network inference methods. Specifically, our simu-
lation study is designed in the spirit of a multifactorial ex-
periment with crossed factors, where simulation parameters
play the role of factors. This allows us to investigate the effect
of each parameter on the accuracy of Bayesian networks, in
addition to comparing performance of MCMC samplers.

The average edge density and the average gene-to-gene
signal significantly affected the learning performance. As the

Figure 4 Performance comparison of network structure samplers. (A) Marginal performance plots for the nine MCMC samplers. (B) Significance of
interaction between MCMC samplers and the nine simulation parameters. Asterisks indicate the variables that are significant at P-value ,10E-16. (C)
The interaction plots for the nine MCMC samplers and two simulation parameters: sample size and MCMC chain type.
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average edge density increased, the learning performance of
every method decreased monotonically. One possible reason
for this behavior is that for Bayesian network inference, we
restricted the number of parents to,= 3, to reduce the size
of the network space to evaluate. On the other hand, we did
not pose any restriction on the number of parents in simu-
lated networks where the maximum edge density was set as
0.06, which means each node in networks with size 30, 65,
and 100, is expected to have 1.8, 3.9, and 6 parents on
average, respectively, assuming random network topology.
Because of this limitation, it is possible that we miss some
true incoming regulatory relationships for genes that are
regulated by many other genes. However, in real applica-
tions, since screening the genes with many children is likely
to be a predominant question of interest, this limitation may
not be critical. Another reason for the generally harmful
effect of edge density on performance could be the correla-
tion strength of the data set. In our simulation framework,
the average gene-to-gene correlation is influenced by edge
density and the strength of gene-to-gene signaling. Gener-
ally, it is difficult to estimate true regulations in a highly
correlated data set, since the Markov equivalence classes
of a directed network cannot be identified uniquely (Uhler
et al. 2013). STR, the simplest sampler, showed the worst
performance against networks with high edge density and
high gene-to-gene signal, probably due to being trapped in
suboptimal structures. This limitation has practical consequen-
ces for recent attempts to define causal networks within gene
coexpression networks, since those coexpression networks
are composed of correlated gene variables. However, our

new sampler, c3PB, showed better performance compared
with STR as well as REV, for the networks with high gene-
to-gene signal, indicating c3PB works well for elucidating
complex and correlated biological networks.

Our multifactorial simulation was designed to cover
many biologically plausible conditions, but there still exist
a few common assumptions underlying the simulation and the
inference that might bias our comparison results. For instance,
during the Bayesian network estimation process, we restricted
the number of parents per node. Since the amount of
computation required for each MCMC iteration differs greatly
among the samplers, this restriction may affect the perfor-
mance of each sampler differently. Specifically, since REV and
higher-order PBs samplers need to calculate all the parent set
combinations in every MCMC iteration, the number of parents
affects the number of iterations completed in a fixed time
window. On the other hand, the STR sampler does not need to
keep track of the parent sets. However, the inherent poor
mixing of the STR sampler becomes an even more important
issue when no restriction on the number of parents is imposed,
as the sampler needs to search over a larger network space and
a larger number of iterations is required for the convergence of
the chain. Another assumption in our study is that 20% of the
genes have eSNPs, and no more than two SNPs per gene are
allowed. While these conditions are based on characteristics of
real data (Stranger et al. 2012), they still influence the extent
of the SNP’s contribution to the gene regulatory system, and
different samplers might respond differently to the distinct
amounts of genetic influence. One factor that partially miti-
gates this limitation is that in addition to SNP frequency, other

Figure 5 Cluster analysis for MCMC samplers. Top panels contain the heatmaps of the normalized AUCPR and AUCROC and associated dendrograms
obtained through hierarchical clustering of the results. The rows indicate MCMC samplers running either single chain or multiple chains. The columns
indicate simulated networks. Bottom panels represent the number of genes, edge density, and gene-to-gene signal averaged across networks clustered
together in the dendrograms.
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factors such as the strength of the SNP-to-gene associations
also contribute to the total percentage of variance explained
by SNPs in real systems. While we fix the number of genes with
eSNPs, we still examine a range of scenarios for percentage of
variance explained by SNPs, because we utilize three levels of
SNP-to-gene coupling.

Zhu et al. (2007) provided a detailed simulation investiga-
tion of the effect of the integration of genetic and expression
data in Bayesian network reconstruction performance. They
focused on simulations from a single (biologically motivated)
network structure, in contrast to our present study investigat-
ing many characteristics across 1458 distinct and biologically
plausible networks. In Zhu et al. (2007), the authors concluded
that the integration of SNP and expression data can greatly
improve network reconstruction. In our simulations, we also
observed that the genetic information has beneficial effects,
but found that the effect size for genetics is smaller than the
effect of other parameters, such as the particular method
employed. We further clarified the benefit of genetics by show-
ing that the advantage of including genetics was maximized
when the strength of SNP-to-gene signal was high and the
intrinsic noise was low. Signal strength and noise level actually
determine the extent of SNPs’ contribution to gene expression
levels. The middle range of signal strength and noise level
corresponds to an average effect size of eSNPs commonly
observed in real data. At this level of effect size, improper
selection of an inference method and running setting of the
MCMC chain potentially diminishes the benefit of utilizing

SNP information. Alternatively, for systems where SNPs
strongly influence expression, incorporating SNP data can pro-
duce a greater marginal increase in performance than the
choice of MCMC method. For instance, incorporation of SNP
data will likely be most beneficial for causal network inference
of gene expression phenotypes clustered in strong hotspots.

In our generative model, single SNPs regulated the expres-
sion level of single genes. This setting might underestimate the
contribution of SNP to gene expression, since pleiotropic effects
of SNPs have been noted (Wagner and Zhang 2011) and a sin-
gle SNP might be able to regulate multiple genes directly
through remodeling of chromatin structure and sharing func-
tional DNA motifs. From the viewpoint of eSNP identification,
the mapping of SNPs in the context of gene-to-gene networks
potentially increases power and reduces false positives for
detecting eSNPs (Chaibub Neto et al. 2010). Latent variables
such as influences from other genes or experimental conditions
can mask true signals from SNPs. Stegle et al. (2010) proposed
the removal of such effects from the expression data prior to
eSNP analysis. SNP-incorporated Bayesian networks jointly in-
fer the effects of SNPs and latent effects from other genes and
thus are promising tools for investigating genetic architecture.

In this study, we extended the block Gibbs samplers
proposed by Goudie and Mukherjee (2011) to, in theory, in-
clude an arbitrary number of parent sets. As a practical dem-
onstration, we test one to four parent sets, to understand how
higher-order blocking contributes to performance. While the
performances of 2PB and 3PB are clearly superior to that of

Figure 6 Pairwise comparison of top-performing samplers. Shown are marginal effect plots for the comparison between REV, c2PB, and c3PB with
a single chain running. The dashed horizontal line represents a baseline representing equivalent performance.
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1PB, the performance of 4PB decreased substantially (Figure
4A). Although the use of higher-order parent blocks improves
the mixing of the Markov chain, it also exponentially increases
the amount of computation necessary to keep track of the
allowable combinations of parent sets, so that the number of
steps completed by the sampler in a fixed time window is de-
creased. Hence, in spite of the better mixing of the chain, we
still observe a performance drop. These results indicate that
both drastic modifications for escape from suboptimal net-
works and computational efficiency are important in effective
sampler operation.

We designed “connected” block Gibbs methods, as a hy-
brid of the classic block Gibbs and REV methods, motivated by
limitations of the older methods exposed by our simulation
framework. At a given time step, both REV and 2PB update
the parent sets of two nodes. However, the performance of 2PB
was inferior to that of REV (Figure 4A). This result was un-
expected because Gibbs samplers accept network modification
at every step and thus are potentially more efficient than a
Metropolis–Hastings sampler. A major difference between 2PB
and REV that accounts for this is that 2PB updates parent sets
of every pair of two nodes sequentially, whereas REV updates
only parent sets of the two connected nodes. Therefore, we
designed c2PB, which performs 2PB updates for only the two
connected nodes at each step and also extended c2PB to ones

with higher-order blocking, namely c3PB and c4PB. Figure 4A
shows our connected PB samplers clearly improve the formal
PB Gibbs samplers, resulting in comparable or better perfor-
mance than that of REV. The performance improvements of
cPB likely result from two sources. First, the speed of chain
convergence is higher in cPBs compared with corresponding
PBs (Figure S3). Second, cPBs can reach networks with lower
BIC, meaning optimized network structures explain the data
set better (Figure S3). These improvements are also evident
when comparing c2PB with REV. cPBs can be seen as weighted
versions of a PB sampler. Specifically, each gene is not updated
with equal frequency, but rather the update probability for each
gene is weighted based on the current network structure. Since
cPBs weight all linearly connected gene pairs uniformly, a more
complex weighting procedure may be useful to explore in the
future.

The relatively close performance of top-performing
methods c2PB, c3PB, and REV (Figure 4) compared to other
methods raises the possibility of a performance ceiling in
Bayesian network reconstruction for biological data sets. While
performance among these top methods differs substantially for
certain classes of networks, does their collective performance
indicate anything about the future of network inference? The
issue at the heart of performance limitations on network in-
ference is finding reasonable accurate network structures amid

Figure 7 Effect of genetic information on network accuracy. (A) Marginal AUCPR and average BIC plots for the use of genetic information. The average
BIC is calculated as mean of BIC of sampled networks in each MCMC run (lower BIC scores are better). (B) Marginal effect plots for the comparison
between the Bayesian network reconstruction based on gene expression and SNP information vs. gene expression only. The dashed horizontal line
represents a baseline representing equivalent performance. DAUCPR is defined as the difference of all AUCPRs from simulations with genetics minus all
AUCPRs from simulations without genetics.
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the enormous space of possible networks, which is superexpo-
nential with the number of nodes. For instance, networks from
our “medium-size” simulations containing 65 nodes have a
number of possible configurations that exceed the estimated
number of atoms in the observable universe. Both algorithmic
advances in network update steps or brute-force computational
approaches could be used to improve network inference, with
more efficient or more comprehensive approaches to exploring
this huge search space. Our method comparison primarily fo-
cuses on algorithmic advances, although computational con-
straints also influenced the results, especially for inefficient
methods. From a computational perspective, starting from
many different random networks can help to avoid becoming
stuck in local minima, as can performing more drastic update
moves. Our results for single vs. multiple chains indicate that
1PB, c2PB, c3PB, and REV methods that converge rapidly will
benefit the most from a massively parallel approach to finding
optimal networks. But results from the classic STR method
demonstrate that even an excess of computational resources
is not sufficient to overcome a method that is easily trapped in
local optima. At the same time, limitations on computational
capabilities can hold back algorithms that should produce su-
perior performance. For instance, we see increasing perfor-
mance across 1PB, 2PB, and 3PB, yet performance of 4PB
falls off, as computational overhead overcomes its theoretical
advantages. Therefore, based on this simulation study, our
general advice for future applications of the methods tested
here is to devote substantial computational resources to the
latest methods, such as c3PB, that are able to benefit from
these resources. If a data set is known to have particular char-
acteristics such as high levels of noise, etc., then the recom-
mended method will shift to one that is known to function well
under that regime, although we note that some methods such
as c3PB function well under a majority of tested scenarios.

One practical goal of network inference methods in early-
stage drug discovery is to identify a small number of genes
that control a specific molecular network or a disease signature.
Perturbation experiments in model disease systems indicate
that causal networks can indeed predict some disease-relevant
genes and downstream targets (Chen et al. 2008; Yang et al.
2009). While large-scale causal network inference has been
most frequently applied to data from mouse crosses whose
common genetic background creates strong eQTL, these meth-
ods have also been applied to paired genetics and gene expres-
sion data sets from humans (Zhang et al. 2013). However, these
previous applications employed variants of the STR method,
which is outperformed by all other methods tested here. While
previous studies have made some correct predictions, there are
also numerous false positive and false negative predictions,
based on comparing the expected vs. actual (measured) down-
stream targets of perturbed genes in model systems (Zhang
et al. 2013). The greater accuracy of top-performing methods
is therefore key to deriving accurate predictions from human
expression data sets, with or without genetics.

Because many gene expression studies do not include
paired genetics data, correlation-based coexpression networks

are frequently used to attempt to identify key disease genes
(Gaiteri et al. 2014). Specifically, hub genes within disease-
correlated networks are often invoked as key disease genes.
However, coexpression hubs are not necessarily causal in gen-
erating a phenotype of gene signature, because a gene at the
top of a regulatory cascade may have only a few direct inter-
actions. Such genes may be ignored when focusing on coex-
pression hub genes. Similarly, hub genes may be subject to
incoming regulatory relationships, which cannot be detected
in an undirected coexpression framework. Our simulations
show that for typical human data sets, even in the absence
of genetic priors, we can identify conditional dependence net-
works of genes that accurately reflect the true regulatory struc-
ture. This sparse hierarchical output could be utilized to aid in
selecting genes that control a particular disease-relevant mo-
lecular system. Causal networks could even be useful in de-
fining relationships across different diseases, to find directed
interactions that mediate comorbidity. However, such data sets
likely involve .100 genes, which entails a large network
search space. The potential of causal inference to identify hu-
man regulatory networks among a large number of genes, with
or without genetic priors, reinforces the need to use top-
performing methods that do not become trapped in suboptimal/
inaccurate network states.
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Appendix

Bayesian Networks Background and Notation

A Bayesian network (Pearl 1988) is a multivariate probabilistic model whose conditional independence relations can be
represented graphically by a directed acyclic graph (DAG) with vertices V ¼ ðV1; :::;VpÞ and directed edges ði; jÞ 2 E⊂V3V
(note that we use the notations i and Vi interchangeably, to refer to a node). If ði; jÞ 2 E; we say i is a parent of j and j is a child
of i. We define a directed path as any unbroken, nonintersecting sequence of vertices in a graph that go along the direction of
the edges. We say that a descendant of a vertex i is any vertex j such that there is a directed path from i to j, whereas
a nondescendant of i is any vertex k such that there is no directed path from i to k. A vertex j in a DAG G corresponds to
a random variable Xj in the Bayesian network. Assuming the local directed Markov property that states that each variable is
independent of its nondescendant variables conditional on its parent variables, we can factor the joint distribution as

PðX jGÞ ¼
Yp
j¼1

PðXj jXGjÞ; (A1)

where X ¼ ðX1; :::;XpÞT ; Gj is the set of parents of j, and XGj ¼ fXi : i 2 Gjg. Note that G can be decomposed into a set of parent
sets such that G ¼ ðG1; :::;GpÞ ¼ ðGj;G2jÞ; where G2j ¼ ðG1; :::;Gj21;Gjþ1; :::;GpÞ; and that the prior predictive distribution in
(A1) factorizes across vertices into local components PðX j jXGjÞ that are functions of these parent sets. The network scores are
computed according to the BIC approximation to the prior predictive distribution (Kass and Raftery 1995). For structure
learning, we focus on the posterior distribution of DAG structures

PðG jXÞ ¼ PðX jGÞPðGÞP
G2GPðX jGÞPðGÞ; (A2)

where PðGÞ is a prior on the network structure G, and G represents the space of all DAGs with p vertices. This posterior is the
target equilibrium distribution for the MCMC samplers described in the next section.

Checking for Cycles

The main computational cost for structure samplers is due to checking for cycles. Following Goudie and Mukherjee (2011),
we adopt the algorithm from King and Sagert (2002), for cycle checking, in our implementations. This algorithm tracks the
transitive closure of the current state of the sampler, represented by matrix TG; which, for a graph G, is represented as the
directed graph ðV; E*Þ; where ðVi;VjÞ 2 E* if and only if a path exists from Vi to Vj: Inspection of the adjacency matrix of
the transitive closure shows which network modifications can be made without introducing a cycle in the following way: the
addition of an edge ði; jÞ will introduce a cycle if and only if TG

ji ¼ 1; whereas the removal of an edge can never introduce
a cycle. An efficient implementation of this algorithm keeps track of a path count matrix CG (with rows indexing parents,
columns indexing children, off-diagonal entries representing the number of distinct paths from Vi to Vj in G, and diagonal
entries set to 1). Observe that TG

ij ¼ 1 if and only if CG
ij . 0; and query operations can be performed by simply checking

whether the relevent entries are positive. As pointed by Goudie and Mukherjee (2011), updating CG is straightforward.
Consider a graph G9 formed by adding an edge ði; jÞ to graph G. Let CG

�i represent the ith column of CG and CG
j� represent the jth

row of CG: Then the updated count matrix for the addition of an edge ði; jÞ is computed as CG9 ¼ CG þ CG
�i5CG

j� ; whereas the
updated count matrix after the deletion of an edge ði; jÞ is computed as CG9 ¼ CG 2CG

�i5CG
j� :

Summary Characteristics of Structure MCMC Samplers for Learning Bayesian Networks

The STR sampler (Madigan et al. 1995; Giudici and Castelo 2003)
The STR sampler performs simple modifications to the current DAG state. At each iteration, it adds, drops, or reverses
a single edge of the network and accepts the modified network according to the standard Metropolis–Hastings acceptance
probability. Each time an edge is added or reversed, it is necessary to check whether the new network has a cycle, and if it
does, the move needs to be discarded. [This sampler was proposed by Giudici and Castelo 2003 as an improvement over the
Markov chain Monte Carlo model composition (MC3) sampler proposed by Madigan et al. 1995 that considered only addition
and deletion moves.] A consequence of using the simplest possible network alterations that are made without consideration
for the larger structure of the network around them is that the mixing of the Markov chain is usually very slow, and the chain
tends to get trapped in local maxima.
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The REV sampler (Grzegorczyk and Husmeier 2008)
The REV sampler adopts an alternative edge reversal move (“REV move”) to improve the mixing of the Markov chain. The
steps to perform this network alteration are (i) select an edge whose direction is to be reversed; (ii) for each of the nodes
connected by the selected edge, drop the incoming edges (that is, “orphan” the nodes); (iii) reverse the direction of
the selected edge; and (iv) sample new parents for the nodes involved in the edge reversal (in addition to keeping the
reversed edge) with a probability proportional to their scores. Note that contrary to the STR sampler, which allows the
reversal of an edge only if it leads to a new valid DAG, the REV move always leads to a DAG. Even for those edges that could
be reversed by the STR reversal move, it is still advantageous to use the REV move since it usually leads to higher acceptance
rates. It does this by sampling completely new parent sets, instead of simply changing the direction of a single edge. Because
the adoption of the REV move alone does not guarantee the ergodicity of the Markov chain, the REV sampler is actually
implemented as a combination of REV and STR moves. In this article we adopt a sampler with REV moves performed in 50%
of the iterations.

The single-parent set block Gibbs sampler—1PB (Goudie and Mukherjee 2011)
Because our novel samplers are extensions of the block Gibbs samplers proposed by Goudie and Mukherjee (2011), we
present their method in greater detail in this section and the next section. For Bayesian networks the most natural blocks are
given by the parent sets of each node. Because the prior predictive distribution factorizes according to each node and its
parent set, we can parameterize a DAG G according to the parent sets Gj of each vertex j ¼ 1; :::; p; such that the posterior
distribution of G is represented by

PðG1; . . . ;Gp jXÞ} P
�
G1; . . . ;Gp

�Yp
j¼1

PðXj jXGjÞ: (A3)

To construct a block Gibbs sampler over the parent set blocks, we need to construct the full conditional distributions of
each parent set, conditional on all other parent sets. Because Bayesian networks are DAGs, we have that parent sets Gj; for
which G ¼ ðGj;G2jÞ is cyclic, must have probability zero, and the full conditional distribution of Gj given G2j is given by

PðGj jG2j;XÞ ¼
PðGj;G2j jXÞP

Gj2K*
j

PðGj;G2j
�� XÞ; (A4)

where K*
j represent the set of parent sets Gj such that G is acyclic. The computation of K*

j can be done efficiently, using the
path count matrix. Recall that adding an edge ði; jÞ will introduce a cycle if and only if CG

ji . 0: Therefore, the set of nodes that
can be added as parents of Vj is given by the set Kj ¼ fVi : CG

ji ¼ 0g Since any subset of Kj can also be added as parents of Vj;

we have that K*
j ¼ PðKjÞ; the power set of Kj:

In this article we assume a uniform prior for network structures and adopt the BIC approximation for the marginal
likelihood (Kass and Raftery 1995) so that

P
�
Gj;G2j jX

�
} exp

(
2
BICðGj;G2jÞ

2

)
¼ S

�
Gj;G2j

�
; (A5)

where BIC(Gj;G2j) is computed as the sum of the piecewise local BIC scores associated with the factorization of G according
to Gj and G2j and where each local score corresponds to the BIC score of the regression of each node on its parents.

The full conditional distributions for this sampler are then given by

P
�
GðiÞ
j ¼ gj

���GðiÞ
2j ¼ gðiÞ2j;X

�
¼

S
�
gj; g

ðiÞ
2j

�
X

gj2K*
j

S
�
gj; g

ðiÞ
2j

�; (A6)

where gðiÞ2j corresponds to the configuration of the sampled parent sets of the nodes other than j at iteration i of the algorithm.
For instance, for node V4; g

ðiÞ
24 ¼ ðgðiÞ1 ; gðiÞ2 ; gðiÞ3 ; gðiÞ5 ; gðiÞ6 Þ:

The two-parent sets block Gibbs sampler—2PB (Goudie and Mukherjee 2011)
Goudie and Mukherjee (2011) pointed out that the 1PB sampler described above might still suffer from slow convergence
when the parent sets are highly correlated. To circumvent this problem, the authors proposed the 2PB sampler, where pairs
of parent sets are blocked together. In their original implementation, both the parent set pairs and the updating order are
randomly selected at each iteration of the algorithm.
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The full conditional distributions for this sampler are given by

P
�
GðiÞ
j1

¼ gj1 ;G
ðiÞ
j2

¼ gj2
���GðiÞ

2ðj1;j2Þ ¼ gðiÞ2ðj1;j2Þ;X
�

¼
S
�
gj1 ; gj2 ; g

ðiÞ
2ðj1;j2Þ

�
P

ðgj1 ;gj2 Þ2K*
j1 ;j2

S
�
gj1 ; gj2 ; g

ðiÞ
2ðj1;j2Þ

�; (A7)

where gðiÞ2ðj1;j2Þ corresponds to the configuration of the sampled parent sets of the nodes other than j1 and j2 at iteration i of the
algorithm, and K*

j1j2 represents the set of parent set pair configurations, (Gj1 ;Gj2 ), such that G ¼ ðGj1 ;Gj2 ;G2f j1 j2gÞ is acyclic.
Efficient implementation of the 2PB sampler depends on the fast computation of K*

j1 j2 ; and, once again, we make use of the
path count matrix. Let Kj1 ¼ fVi : CG

j1i ¼ 0g and Kj2 ¼ fVi : CG
j2i ¼ 0g represent the set of nondescendants of nodes Vj1 and Vj2 ;

respectively. Similarly, define the respective complement sets as Kc
j1 ¼ fVi : CG

j1i . 0g and Kc
j2 ¼ fVi : CG

j2i . 0g As before, let
K*
j1 ¼ PðKj1Þ and K*

j2 ¼ PðKj2Þ represent the sets of parent sets that can be added separately to Vj1 and Vj2 without creating
a cycle. As pointed out by Goudie and Mukherjee (2011), K*

j1; j2 6¼ K*
j1 3K*

j2 ; since the Cartesian product of K*
j1 and K*

j2 might
contain networks where a descendant of Vj1 is added as a parent of Vj2 and a descendant of Vj2 is added as parent of Vj1 ;

leading to cycles that do not exist when we consider K*
j1 and K*

j2 separately.
The solution proposed by Goudie and Mukherjee (2011) was to consider the following partition of K*

j1j2   : (i) parent set
pairs that lead to DAGs with no path connecting Vj1 and Vj2 ; (ii) parent set pairs where a descendant of Vj1 is a parent of Vj2 ;

but no descendant of Vj2 is a parent of Vj1 ; and (iii) parent set pairs where a descendant of Vj2 is a parent of Vj1 ; but no
descendant of Vj1 is a parent of Vj2 : This partition can be represented graphically by three DAGs: (i) Vj1 Vj2 ; (ii) Vj1 ⇒ Vj2 ; and
(iii) Vj1 ⇐ Vj2 ; where the double arrows represent not directed edges between vertices but the existence of a path connecting
the vertices. An enumeration of parent sets for each of the three cases described above is given by

path parent  sets  for  Vj1 parent  sets  for  Vj2

Vj1 Vj2 ; V∖HV

�
Kc
j1 [ Kc

j2

�
3 V∖HV

�
Kc
j1 [ Kc

j2

�
;

Vj1⇒Vj2 ; V∖HV

�
Kc
j1 [ Kc

j2

�
3 HK*

j2

�
Kc
j1

�
;

Vj1⇒Vj2 ; HK*
j1

�
Kc
j2

�
3 V∖HV

�
Kc
j1 [ Kc

j2

�
;

(A8)

where V ¼ Pðf1; 2; :::; pgÞ is the power set of all node indexes, and HAðBÞ is a set function defined (for any set B, and any set
of sets A) as

HAðBÞ ¼ fa 2 A : aI b 2 Bg; (A9)

where (in words) we select the sets on A that contain an element of the set B. For instance, for
A ¼ f∅; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg; B1 ¼ f2g; and B2 ¼ f1; 3g; we have that HAðB1Þ ¼
ff2g; f1; 2g; f2; 3g; f1; 2; 3gg and HAðB1Þ ¼ ff1g; f1; 2g; f1; 3g; f1; 2; 3g; f3g; f2; 3gg

Note that for case i, we have that the set of parent sets of both Vj1 and Vj2 is given by the remaining parent sets of V; after
we removed all sets containing Vj1 ; Vj2 ; or their descendants. [In other words, we restrict our attention to parent sets
composed of nondescendants of both Vj1 and Vj2 : Note that an alternative expression for the set V∖HVðKc

j1 [ Kc
j2Þ is

K*
j1 \ K*

j2 .] For case ii, we have that the parent sets of node Vj1 are still given by V∖HVðKc
j1 [ Kc

j2Þ; since we do not allow node
Vj2 ; or any of its descendants, to be a parent of Vj1 or a descendant of Vj1 to be one of its parents. The set of parents of node
Vj2 ; on the other hand, is given by HK*

j2
ðKc

j1Þ; since the existence of a path connecting Vj1 to Vj2 implies that Vj1 ; or one of its
descendants at least, must be a parent of Vj2 : The rationale of case iii is analogous to that of case ii and follows by replacing
Vj1 by Vj2 : For any pair of parent sets (Gj1 ;Gj2), K*

j1j2 is given by the union of the three Cartesian products in (A8).

Higher-order parent sets block Gibbs samplers—3PB and 4PB
Here we extend the 2PB sampler to blocks formed by an arbitrary number u of parent sets. Clearly, the full conditional
distributions for the Gibbs sampler are given by

P
�
GðiÞ
j1 ¼ gj1 ;G

ðiÞ
j2 ¼ gj2 ; ::: ;G

ðiÞ
ju ¼ gju

���GðiÞ
2ð j1; j2;:::; juÞ ¼ gðiÞ2ðj1;j2;:::; juÞ;X

�

¼
S
�
gj1 ; gj2 ; :::  ; gju ; g

ðiÞ
2ðj1; j2;:::; juÞ

�
P

ðgj1 ;gj2 ;:::;gju Þ2K*
j1 ;j2 ;:::; ju

S
�
gj1 ; gj2 ; :::  ; gju ; g

ðiÞ
2ðj1; j2;:::; juÞ

�; (A10)
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where K*
j1; j2;:::; ju represents the set of parent set configurations, ðGj1 ;Gj2 ; . . . ;GjuÞ; such that G ¼ ðGj1 ;Gj2 ; :::;Gju ;G2f j1; j2;:::; jugÞ is

acyclic.
Similarly to the 2PB sampler, the computation of K*

j1; j2;:::; ju is facilitated by considering a partition of K*
j1; j2;:::; ju into

d separate sets, where d corresponds to the number of distinct DAGs composed of u nodes. As before, a double arrow
pointing from Vji to Vjk represents the existence of a path connecting Vji ; or one of its descendants, to Vjk : For instance, for
u ¼ 3; we have that the partition of K*

j1 j2 j3 in the 3PB sampler is done across 25 DAGs

(A11)

and enumeration of the respective parent sets is given by

path parent sets for Vj1 parent sets for Vj2 parent sets for Vj3

ð1Þ V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
3 V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
3 V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
;

ð2Þ HK*
j1

�
Kc
j2

�
3 V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
3 V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
;

ð3Þ V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
HK*

j2

�
Kc
j1

�
HK*

j3

�
Kc
j2

�
;

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
ð25Þ HK*

j2

�
Kc
j2 \ Kc

j3

�
3 HK*

j2

�
Kc
j3

�
3 V∖HV

�
Kc
j1 [ Kc

j2 [ Kc
j3

�
:

(A12)

Note that for any node that does not have an arrowhead pointing in, the set of parent sets is given by V∖HVðKc
j1 [ Kc

j2 [ Kc
j3Þ;

since the set of parent sets of Vj1 ; Vj2 ; and Vj3 is given by the remaining parent sets of V; after we removed all sets containing
Vj1 ; Vj2 ; Vj3 ; or any of their descendants. For nodes that have one arrowhead pointing to them, the set of parent sets is given
by HK*

jr
ðKc

jkÞ; when Vjk⇒Vjr ; since the existence of a path connecting Vjk to Vjr implies that Vjk ; or one of its descendants, must
be a parent of Vjr : For nodes that have two arrowheads pointing in, we have that the set of parent sets is given by
HK*

jr
ðKc

jk \ Kc
jsÞ, when Vjk⇒Vjr ⇐Vjs ;, since in this case Vjk (or one of its descendants) and Vjs (or one of its descendants) must

both be parents of Vjr :

In general, for the order u parent sets block Gibbs, the set of parent sets of any node that does not have any arrowhead
pointing in is given by

V∖HV

�
[u
k¼1K

c
jk

�
; (A13)

whereas the parent sets of any node Vjr that has one or more arrowheads pointing in are given by

HK*
jr

�
[k2KKc

j2

�
; (A14)

where K represents the set of nodes in the tails of the arrows pointing to Vjr :

Parent sets block Gibbs samplers with biased update—c2PB, c3PB, and c4PB
The connected 2PB sampler (c2PB) is a simple modification of the standard 2PB algorithm. Instead of selecting the pair of
parent sets Gj1 and Gj2 at random and independently, the c2PB sampler first selects an edge ð j1; j2Þ   2 E at random and then
it blocks together the parent sets Gj1 and Gj2 : Similarly, the connected 3PB (c3PB) updates parent sets Gj1 ; Gj2 ; and Gj3 ; where
Vj1 ; Vj2 ; and Vj3 are connected linearly with one-way causal flow, Vj1/Vj2/Vj3 ; in the current DAG. The connected 4PB
(c4PB) is the extension of c3PB to update the parent sets of four nodes connected as Vj1/Vj2/Vj3/Vj4 : Contrary to the PB
samplers, where the parent sets of all nodes are updated at each Gibbs sampling iteration, the cPB samplers update a single
parent set per iteration. Hence, cPB samplers represent heuristic approximations to formal Gibbs samplers (which, neverthe-
less, achieve state-of-the-art empirical performance, as shown in our simulation study).
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Figure S1      Interaction plots for gene‐to‐gene signal and six simulation parameters.   
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Figure S2      Interaction plots for MCMC samplers and six simulation parameters. 
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Figure S3      Performance statistics of MCMC samplers for structure learning. (A) Scaled 
Bayesian information criterion distribution over the MCMC samplers. The average BIC is 
calculated as mean of BIC of sampled networks in each MCMC run. Then, average BICs of each 
sampler is scaled over the MCMC runs for the same data set. (B) Scaled convergence time 
distribution over the nine MCMC samplers. The convergence time is defined as computation 
time required to reach mean BIC of the last 10% of samples in the MCMC run. The convergence 
time is scaled over the MCMC runs for the same data set. 
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Figure  S4      Significance  of  association  between  dataset  clusters  and  the  eight  simulation 
parameters.  Independence  between  the  dataset  clusters  shown  in  Figure  5  and  the  eight 
simulation  parameters  were  assessed  by  Chi‐square  test.  Bar  plots  indicate  significance  of 
parameters  associated  with  dataset  separation  based  on  (A)  the  AUCPR  result  and  (B)  the 
AUCROC result. Asterisks indicate the parameters that are significant at p‐value < 10E‐16. 
 


