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Abstract

A number of a priori warfarin dosing algorithms, derived using linear regression

methods, have been proposed. Although these dosing algorithms may have been

validated using patients derived from the same centre, rarely have they been

validated using a patient cohort recruited from another centre. In order to undertake

external validation, two cohorts were utilised. One cohort formed by patients from a

prospective trial and the second formed by patients in the control arm of the EU-

PACT trial. Of these, 641 patients were identified as having attained stable dosing

and formed the dataset used for validation. Predicted maintenance doses from six

criterion fulfilling regression models were then compared to individual patient stable

warfarin dose. Predictive ability was assessed with reference to several statistics

including the R-square and mean absolute error. The six regression models

explained different amounts of variability in the stable maintenance warfarin dose

requirements of the patients in the two validation cohorts; adjusted R-squared

values ranged from 24.2% to 68.6%. An overview of the summary statistics

demonstrated that no one dosing algorithm could be considered optimal. The larger

validation cohort from the prospective trial produced more consistent statistics

across the six dosing algorithms. The study found that all the regression models

performed worse in the validation cohort when compared to the derivation cohort.

Further, there was little difference between regression models that contained

pharmacogenetic coefficients and algorithms containing just non-pharmacogenetic

coefficients. The inconsistency of results between the validation cohorts suggests

that unaccounted population specific factors cause variability in dosing algorithm

performance. Better methods for dosing that take into account inter- and intra-

individual variability, at the initiation and maintenance phases of warfarin treatment,

are needed.
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Introduction

Warfarin is the most commonly used anticoagulant in the UK, with an estimated

1% of the population currently undergoing warfarin therapy [1]. The aim of

warfarin therapy is to bring the International Normalized Ratio (INR), a measure

of the patients clotting capability, within therapeutic range, and to maintain it

within that range. Although warfarin is an effective anticoagulant, determining the

dose required, after loading and refinement phases of warfarin therapy, to achieve

a stable therapeutic INR (the ‘‘stable maintenance dose’’) is difficult due to the

large inter-individual variability in maintenance dose requirements, and

warfarin’s narrow therapeutic index.

Therapeutic INR range is typically 2 to 3 for most patients on warfarin; outside

this range adverse events are more likely to occur [2]. If the concentration of

warfarin in the body is too low then the drug will not provide the desired

therapeutic effects, leading to a risk of thrombosis. Conversely, if the amount of

warfarin in the body is too high there is an increased risk of the most critical

adverse event associated with warfarin therapy, severe haemorrhage [1]. In a large

study of adverse drug reactions (ADR) causing hospital admissions in Merseyside,

England, warfarin was shown to be the third leading cause, responsible for just

over 10% of all ADR-related hospital admissions [3].

Due to the difficulties in determining the eventual required stable maintenance

dose (MD) for a given patient, many different regression models for MD

prediction have been proposed worldwide. These models vary in terms of the

predictive factors they include, with some including only patient demographics

such as age, weight, height and co-morbidities. Other models include details of

initial INR measurements, loading doses or drugs known to alter the effect of

warfarin. Models comprising only demographic, loading dose or co-medication

details use information that is readily available to the clinician and a few recent

studies have derived such algorithms [4, 5]. More recently, dosing algorithms have

also included genetic factors [6–10], specifically variants in the VKORC1 and

CYP2C9 genes which have been shown to be associated with dosing requirements

[11]. The benefit of including genetic information in dose prediction still remains

unproven [12–14], although the science is conclusive that a patient’s genetics alter

their warfarin dose requirements[1, 11].

With a view to assessing how well previously published models predicted MD

in a dataset outside the derivation dataset, we tested their predictive ability in two

independent patient cohorts. This also allowed the performance of the models to

be compared against each other. Further, it allowed us to evaluate how suitable

the method of linear regression, the most commonly utilized method for deriving

warfarin maintenance dosing algorithms, may be for patients at the maintenance

dosing phase of warfarin therapy.
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Results

Application of Selection Criteria

The selection process on the 21st of July 2014 found six dosing models, which

meet the criteria specified in the Methods section of this manuscript, detailed in

Table 1.

The model presented by Le Gal et al. [5] includes only clinical covariates,

including INR measurements on day 5 and day 8 and the total dose of warfarin

taken during the first week. The second model, proposed by Solomon et al. [4]

includes information on total loading dose, INR at the end of the loading phase,

age and the use of the co-medication amiodarone, a well-known inhibitor of

warfarin metabolism. These two models did not include any information on

genotypes and, as a consequence, may have an advantage in that they are based on

data readily available to the clinician, so can be used without having to attain a

patients genotype information.

Four of the included models utilise genotypes for variants in CYP2C9 and

VKORC1. The models proposed by Anderson et al. [7] and Wadelius et al. [15]

assume that CYP2C9 alleles are non-proportional, thus including a separate

covariate for each possible genotype, whereas the models proposed by Sconce and

Zhu assume an additive effect of the variant allele. The models proposed by

Anderson et al. [7] and Wadelius et al. [15] calculated a total weekly dose of

warfarin; consequently clinicians would have to divide the recommended weekly

dose into seven daily doses as they consider appropriate.

Anderson et al.’s model [7] also included demographic, genotype, and co-

medication covariates. The model was applied in the randomized control trial and

information on the models R-squared in the derivation cohort was not supplied.

The model from Wadelius et al. [15], contained the largest number of covariates

incorporating demographic and co-medication information alongside genotype

covariates.

The model proposed by Sconce et al. [4] included less covariates than most of

the other pharmacogenetic models, with demographic information only on age

and height being included along with information on the genotypes. Similar in

composition, but including weight instead of height, the model derived by Zhu

et al. [6] has already been externally validated once in the recent study by Linder

et al. [16], and was found to explain slightly less variability in the validation

dataset than in the derivation dataset. The reason for the inclusion of two similar

dosing equations was to assess whether the model developed by Sconce et al. [8]

derived at the University of Newcastle, United Kingdom had an advantage over

models derived in other countries in explaining variability in the Liverpool

prospective validation cohort. The strength of these two models in particular was

that they contain a small number of covariates yet explain a large amount of

variability in their respective derivation datasets.
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Dose Prediction Model Performance

The patient demographics, clinical information and pharmacogenetics in the LP

and EUP validation cohorts is given in Table 2. The six selected models were

applied to these two validation cohorts. Predicted versus actual stable MD for

each validated model are shown in Figs. 1 and 2 for the Liverpool prospective

(LP) and EU-PACT (EUP) validation cohorts respectively. Further summary

statistics are presented in Table 3 and provide a deeper insight into the ability of

the models to correctly estimate the required MD.

The dosing model proposed by Le Gal et al. accounted for 39.2% (LP) and

66.6% (EUP) of the variability in stable warfarin MD along with a mean absolute

error (MAE) of 1.20 mg/day (LP) and 0.99 mg/day (EUP), both around the

desirable 1 mg/day [17]. The model predicted negative doses for some of the

validation cohort. The reason why these patients were estimated as requiring a

negative warfarin MD was a high INR or low dosages during the first week of

treatment. The model does not have the ability to deal with these events and

consequently the predicted doses for these patients are not applicable.

The model of Solomon et al. had a MAE statistic of 1.21 mg/day (LP) and

1.00 mg/day (EUP). However, the intercept terms of 2.04 (LP) and 1.86 (EUP)

indicate overestimation occured at low doses.

The Anderson et al. model produced contrasting statistics in the two validation

cohorts. The amount of variability explained was calculated to be 37.3%, the

second highest in the LP validation cohort; yet in the EUP validation cohort this

reduced to lowest amount explained of 29.1%. This contrast was also seen in the

MAE and PAE statistics.

The Zhu et al. model produced estimates that had a mean absolute error of

1.29 mg/day (LP) and the amount of variability explained was calculated to be

Table 2. Demographic, Clinical and Pharmacogenetic Information of Patient in the Validation Cohort.

Variable Liverpool Study Patients EU-PACT Trial Patients

Number of Patients 508 133

Age Mean 68 years (SD 55–81) Mean 67 years (SD 53–81)

Gender Male: 280 (55%); Female: 228 (45%) 79 (59%); 54 (41%)

Weight (kg) 81.99 (SD 63–101) 86.00 (SD 64–108)

Height (cm) 169 (SD 158–179) 170 (SD 160–180)

Therapeutic Dose (mg) 4.19 (SD 2.14–6.24) 4.84 (SD 2.64–7.06)

Amiodarone Co-medication Yes: 46 (9%); No: 462 (91%) Yes: 3 (2%); No: 130 (98%)

CYP2C9 *1 *2 *3 *1 *2 *3

*1 313 98 43 *1 84 26 12

*2 4 9 *2 1 1

*3 3 *3 0

VKORC1 GG GA AA GG GA AA

206 224 77 59 48 16

doi:10.1371/journal.pone.0114896.t002
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Fig. 1. Graphs of predicted dose and actual warfarin dose in the Liverpool prospective study validation cohort.

doi:10.1371/journal.pone.0114896.g001
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38.1% (LP), the third highest of all models validated. However, the MAE of

1.6 mg/day indicates decreased performance in the EUP validation cohort

The Sconce et al. model explained the lowest amount of variability in the study

with 24.2% in LP, though this improved to 41.6% in EUP, but all other statistics

were on similar level in both validation cohorts.

The Wadelius et al. model prediction produced a PAE statistic of 46% (LP) and

36.3% (EUP) indicating that the model had large over or under predictions

proportional to the actual dose. Further, the amount of variability explained was

calculated to be 36.2% (LP) and 40.7% (EUP); the fourth highest of all models

validated in both cohorts.

Discussion

Several warfarin maintenance dosing algorithms have been published, many

including pharmacogenetic information, in the form of linear regression models.

Despite the number of published dose prediction regression models, they have

rarely been integrated into standard clinical practice [12]. This in part, is due to

the fact that most of these algorithms have not been externally validated in an

independent dataset and if they have, then replication has been poor [16, 18, 19].

In this study, we have compared six different MD prediction linear regression

models using two independent cohort of patients to test their predictive ability

outside their original derivation cohorts. This was done by re-fitting each model

in turn to two independent cohorts; a prospective patient dataset recruited in

Liverpool, United Kingdom (LP) and the control arm from the EU-PACT trial

(EUP).

Unsurprisingly, the performance of all six models was worse in the validation

cohort as compared to the derivation cohort [16, 18]. The diminished

performance could be explained by several factors. The two validation cohorts

demographics shown in Table 2 reveal two points of note, firstly, the LP patients

have a lower mean therapeutic dose than those in EU-PACT. This may be due to a

difference in clinical practise between the two cohorts, potentially in the trade-off

decision between maximising efficacy and minimsing adverse events. Secondly,

the VKORC1 wild-type genotype is the most common in LP patients yet in EUP

patients the homozygous dominant is more prevalent. Again, this difference could

be due to different clinical practise provdided, particularly EUP patients without a

VKORC1 variant allele reaching a stable maintenance dose with greater ease.

Examining the difference between our validation cohorts and the derivation

cohorts for the six dosing algorithms investigated in this manuscript, there were

differences that could contribute to differences in algorithm perfromance in

validation. There is a range in the size of derivation cohorts ranging from Zhu

et al.’s derivation cohort of 56 to Wadelius et al.’s derivation cohort of 850. The

expectation would be for algorithms derived utilising smaller derivation cohorts

to be able to explain less variability in a larger or more diverse cohort. This was

not particularly evident in this study as Zhu et al.’s algorithm performed more

Warfarin Linear Regression Maintenance Dosing Algorithms Review
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Fig. 2. Graphs of predicted dose and actual warfarin dose in the EU-PACT trial control arm validation cohort.

doi:10.1371/journal.pone.0114896.g002
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strongly than Wadelius et al.’s algorithm in the larger LP validation cohort. In the

EUP cohort the two algorithm’s performances were relatively indistinguishable.

Differences in derivation cohort covariates can also contribute to altered

algorithm performance in validation cohorts. For example, the Le Gal et al. (2010)

and Solomon et al. (2004) derivation cohorts contain younger patients (mean ages

of 58 and 55). Five out the of the six algorithms compared in this manuscript

contain a coefficient for age. Curiously, the Le Gal et al. derivation cohort had a

higher mean therapeutic dosage requirement to our validation cohorts, despite

age being a factor that increases maintenance dose, shown in Table 1. This

suggests that even though age has an effect on warfarin maintenance dose

requirements, the relationship may not be linear in nature. This is reinforced by

Moreau et al. (2011) [20] were elderly patients are shown to require lower

induction and maintenance doses.

For warfarin dosing in peadiatrics, a number of specialised algorithms have

been produced [21–24], further showing that age has a complex relationship with

warfarin dosing requirements. In the more general population algorithms

investigated in this manuscript, the age to dose relationship may not be as

prevalent, however, further research is recommended to assess the linear

relationship assumed by linear regression methods. Hamberg et al. (2014) [25]

provide an excellent overview of current dosing algorithms available for paediatric

populations, comparatively coefficients attributed to age are higher than those in

this manuscript. Currently, paediatric algorithms use similar covariates to adult

algorithms however future sources of variability found in either subpopulations

are recommeneded to be investigated for translational impact.

The validation cohorts utlised in this manuscript consisted of various

Caucasian populations. There have been a number of recent algorithms derived in

non-Caucasian populations [26–28] and a study of the effect that the VKORC1

polymorphism across 3 racial groups [29] that show dose requirements vary with

ethnicity.

The inconsistent replication observed in manuscript, which has also been

observed previously [9, 18], leads us to hypothesise that regression modelling may

not be the most optimal approach for developing a warfarin MD algorithm.

Linear regression models may not be able to fully draw on the variability that can

be explained by potential factors. Alternatively, potential factors may be

important in different stages of warfarin therapy, but less consequential in the

determination of a dose to prescribe a patient in the maintenance phase of

therapy. This latter suggestion is hypothesised for pharmacogenetic factors in

Horne et al. (2012) [30].

Different genetic biomarkers have been hypothesized to affect warfarin dose

requirements; these include the genes, CYP4F2, CALU and GGCX [31–34]. The

implementation of these new genetic biomarkers into dosing algorithms has been

seen only in non-Caucasian derivation cohorts [26, 28, 31–33]. The validation

cohorts utlised in this manuscript consisted of various Caucasian populations so

we were unable to independently validate non-Caucasian algorithms in this

manuscript. Further research of alternative genes hypothesised to affect warfarin

Warfarin Linear Regression Maintenance Dosing Algorithms Review
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dosing could be beneficial in Caucasian populations. This research should be in

consideration of the current literature that shows the VKORC1 polymorphism

causes differing warfarin dose requirements across 3 racial groups [29], potentially

investigating epistasis effects.

Due consideration should be taken that, unlike randomized control trials, the

method of validation performed in this paper does not allow for dose prediction

models to be assessed by clinical endpoints. At the time of writing, there have been

four randomised trials comparing different dose prediction models to standard

therapy [7, 35–37]. The randomised control trial reported in Anderson et al.

(2012) [36] compared two pharmacogenetic dosing algorithms to standard

warfarin therapy; the results showed that pharmacogenetic-guided dosing was

superior to standard warfarin therapy according to three clinical endpoints

(percentage of out-of-range INRs, time in therapeutic range and adverse event

rates). Pirmohamed et al. (2013) [37] concludes that pharmacogenetic-based

dosing was associated with a higher percentage of time in the therapeutic INR

range than was standard dosing during the initiation of warfarin therapy. Further,

there were significantly fewer incidences of excessive anticoagulation in the

genotype-guided group.

However, the results from the two other randomised control trials comparing

dose prediction models to standard therapy, Anderson et al. (2007) [7] and

Hillman et al. (2005) [35], did not conclude significant differences in any

Table 3. Summary Statistics about the Performance of the Six Dosing Algorithms[4–6, 8, 15, 36].

Cohort 1 - Liverpool Study

Model Absolute Error R-squared (%) Intercept Slope

(Error) (Percentage) Coefficient of Determination Adjusted

sMean ¡ SD Mean ¡ SD

Solomon 1.21¡1.23 36.3¡60.0 34.7 34.3 2.04 0.48

Le Gal 1.20¡1.31 39.3¡73.4 38.5 38.2 1.47 0.60

Anderson 1.18¡1.13 39.7¡68.5 38.6 37.3 2.86 0.39

Zhu 1.29¡1.34 32.2¡45.4 38.1 37.3 1.99 0.31

Sconce 1.32¡1.31 37.4¡60.1 24.9 24.2 2.35 0.33

Wadelius 1.37¡1.19 46.7¡83.2 36.2 36.2 3.01 0.46

Cohort 2 - EU-PACT Control Arm

Model Absolute Error R-squared (%) Intercept Slope

(Error) (Percentage) Coefficient of Determination Adjusted

Mean ¡ SD Mean ¡ SD

Solomon 1.00¡1.02 19.7¡14.9 71.0 68.6 1.86 0.49

Le Gal 0.99¡0.89 24.0¡29.2 67.4 66.6 0.67 0.79

Anderson 1.38¡1.16 32.3¡37.8 34.5 29.1 3.05 0.31

Zhu 1.60¡1.51 29.9¡25.7 40.5 37.2 2.13 0.28

Sconce 1.28¡1.10 33.4¡43 43.8 41.6 2.86 0.48

Wadelius 1.33¡1.11 36.3¡48.8 42.1 40.7 3.12 0.45

doi:10.1371/journal.pone.0114896.t003
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Fig. 3. INR-Time profiles of three patients receiving standard care.

doi:10.1371/journal.pone.0114896.g003
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outcomes. This leads to an uncertainty about the true merit of algorithms when

compared with standard care. Importantly, whilst further trials comparing an

algorithm guided dosing arm to standard therapy are recommeneded, the

comparison is complicated by the subjective interpretation of standard therapy.

With increasing numbers of RCTs being conducted for comparing these specific

arms there may be the opportunity to meta-analyse the results to conclude the

between study variability and, potentially, the causes of this variability.

The randomised control trial, Clarification of Optimal Anitcoagulation through

Genetics (COAG), had an alternative set of arms, patients dosed according to

combined clinical and pharmacogenetic algorithms and patients dosed according

to clinical only algorithms. The results showed that there was no significant

difference between the two patient arms for multiple outcomes. The outcomes

measured in COAG were time in therapeutic range, any INR readings above 4,

major bleeding or thromboembolism, time to first therapeutic INR, the time to

the determination of a maintenance dose and the time to an adverse event. The

conclusions from this study require a different prespective on ascertaining the

merit of warfarin maintenance dosing algorithms; as there were no significant

differences observed between endpoints observed in the respective pharmacoge-

netic and non-pharmacogenetic dosing algorithm arms, a critical view of the

algorithms themselves is possible. Two potential conclusions can be proposed, the

extra sources of variability included in the pharmacogenetic dosing algorithm do

not aid dosing in comparison to the non-pharmacogenetic algorithm or the

algorithm methodology, linear regression, does not maximally implement the

extra sources of variability. These two conclusions are also proposed by this

manuscript, where, similarly, pharmacogenetic algorithms outcomes are relatively

indistinguishable from non-pharmacogenetic algorithms.

A further large, well powered trial, Genetics Informatics Trial (GIFT) is

currently underway to investigate clinical endpoints and respective clinical [38];

this will provide further insight into targeted warfarin maintenance dosing.

The limitations of linear regression methods should be considered when

concluding which methodology to utilise for deriving MD prediction. When

developing MD prediction regression models, the outcome of interest is stable

MD; therefore it is necessary to identify, for each patient included in the dataset

used to derive the model (the derivation dataset), the dose at which stable, in-

range INR has been achieved. However, since INR is sensitive to many factors,

including dietary changes [39] and alcohol intake [9], measurements often

fluctuate out of range even after an initial period of stability has been achieved.

Fig. 3 shows three different patients from the LP cohort all receiving standard care

and, in all but one patient, INR measurements do not continuously stay within

therapeutic range.

Developing a regression model necessitates each patients stable MD to be

determined in accordance with a particular definition of stable dose. Choosing

this definition in itself is difficult as evidenced by the many different definitions

given in the literature (see Table 4 in Jorgensen et al. (2012) [40] and Section S2,

Supplementary Appendix 1 in Klein et al. (2009) [41]), and stable dose of a
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patient under one definition may well be different to the patients stable dose

under another. The derivation cohorts of the six dosing algorithms studied in this

manuscript utilised a similar three visit based definition of steady dose. The

exceptions were Le Gal et al. [5] and Anderson et al. [7]. Le Gal et al. defines

warfarin therapy as the dose that kept INR measurements in range during days

18–28 after therapy intiation. Anderson et al. original derivation cohort stable

dose defintion, found in Carlquist et al. (2006) [42], required the patient to be

within therapeutic INR range for one month.

Depending on the definition used, patients are excluded from analysis on the

basis that their dosing history never meets the criteria specified in the definition.

In the validation cohorts of this study, stable dose was defined as three consecutive

INR measurements within the individual’s target range, at the same daily dose.

Due to frequent fluctuations in and out of range, and corresponding dose

changes, the dosing history of 575 patients did not meet this criterion and

therefore had to be excluded from analysis. Not only is this a significant loss of

information, but more importantly it might lead to important sources of

variability being missed since the least stable patients are excluded from analysis.

Therefore, dose prediction regression models can overlook information needed to

appropriately recommend doses for the least stable patients - exactly the patients

who need individualized dosing. Further, when different stable dose defintions are

utilised in derivation cohorts, the coefficients found significant and their values

may be altered due to differences in the subsequent data. This means that

performance in validation cohorts with different stable dose defintions can be

affected. Potentially this has been observed in this study with the Anderson et al.

algorithm performing inconsistently between validation cohorts. On the other

hand, the Le Gal et al. algorithm shows less signs of reduced performance.

Methods such as those implemented in Hamberg et al. (2010) [43] and

Perlstein et al. (2011) [44] incorporate non-stable patients into the analysis as well

as looking at pharmacokinetic (PK) and pharmacodynamic (PD) parameters.

Further research has been undertaken to explain the variability in PK/PD

parameters for warfarin in various papers [8, 16, 43, 45–47]. PK/PD modelling

along with the study of the variability in PK/PD parameters endeavour to explain

the non-linear relationship between warfarin dose and response [43, 46]. Deriving

information on patients PK/PD parameters allows for more adaptive models

which in turn may improve the individualisation of warfarin therapy for patients.

Adaptive models would ideally provide initial dose recommendations, based on

demographics, genotype and other readily attainable information, not too

dissimilar from regression algorithms, and response could then be fed back into

the model regularly, with the model eventually providing updated MD

predictions.

In summary, validation of dosing algorithms in an independent dataset is

paramount for any warfarin dose prediction regression model and, as we have

demonstrated, the predictive ability of a model diminishes in an independent

dataset as compared to a derivation dataset. Further, the performance of an

algorithm from one cohort to the next is uncertain, as shown by the comparison
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of the results in the LP and EUP validation cohorts. Notably the pharmacogenetic

MD regression models showed less consistency in performance than the non-

pharmacogenetic algorithms.

Further, we have demonstrated that a significant proportion of patients are

excluded from the datasets used to derive linear regression dose prediction models

since the criteria set out in the definition of stable dose precludes them. This can

have a detrimental effect on model performance since it means that information

needed to appropriately recommend doses for the least stable patients may be

overlooked. In light of these issues, we suggest that more advanced methods of

developing dosing algorithms should be explored. In particular, these methods

should not assume a single value of stable dose for a patient, but rather allow dose

requirements to adapt with time, to reflect the sensitivity of INR to variation such

as dietary changes, alcohol intake and co-medications. Validation in multiple

cohorts is very much recommended to ascertain the consistency of a warfarin

maintenance dosing algorithm

Methods and Materials

Ethics Statement

Approval was obtained from the Birmingham South Research Ethics Committee

to recruit patients for a previous study (‘‘the Liverpool prospective study’’ [48]).

Patients consented in writing to participate in the study, which included both the

provision of samples (DNA, serum and plasma), and their analysis, that could

then be linked to their clinical data through a study identification (ID) tag. Using

the Study ID tag, assigned to the patient prior to the collection of clinical data and

samples, maintained anonymity of patient data from the authors of this paper.

The analysis provided at the beginning of the Liverpool study covered all the

analyses performed in this paper. The collective authors can confirm that there

were no additional data collected for the current study, the Liverpool study data

was sufficient for our analysis.

The EU-PACT warfarin trial was a pragmatic, single-blind, randomized,

controlled trial that was designed to determine whether genotype-guided warfarin

dosing was superior to standard dosing. The trial methods have been described

previously [49]. The protocol (available with the full text of the Pirmohamed et al.

(2013) article [37] at NEJM.org) was approved by the local research ethics

committee in Liverpool, United Kingdom, and by the regional ethical review

board in Uppsala, Sweden. Oversight was provided by a data and safety

monitoring board. Data were collected by the investigators and were analyzed by a

statistician, who vouches for the accuracy and completeness of the data reported.

All the Pirmohamed et al. (2013) [37] authors vouch for adherence of the study to

the protocol. LGC (formerly the Laboratory of the Government Chemist)

provided the point-of-care genotyping assay with funding from the European

Union. The collective authors can confirm that there were no additional data
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collected for the current study, the EU-PACT study data was sufficient for our

analysis.

Validation Cohort

Patients were recruited from the Royal Liverpool and Broadgreen University

Hospitals Trust and University Hospital Aintree between November 2004 and

March 2006. Patients were required to be initiating warfarin therapy. Since the

study was of an observational nature, patients received customary clinical care and

dosing was in line with standard protocol within the recruiting hospitals. At the

patients index visit, demographics and baseline INR were recorded, and a blood

sample was taken for genotyping. Three further fixed study visits were scheduled

for 1, 8 and 26 weeks after initiation onto warfarin. All INR values measured and

dose changes made during the follow-up period were recorded. Three patients

fitted with mechanical prosthetic heart values, and therefore had a recommended

INR range of 3–4, were excluded from the current study, leaving a total of 997

patients from the initial one thousand. Full information on the procedure for the

genotyping of patients is presented in the original paper on the study [48].

For the EU-PACT trial [37] patients were recruited in the United Kingdom

(three centers) and Sweden (two centers). Eligible patients had not received

previous treatment and required anticoagulation with warfarin with a target INR

of 2.0 to 3.0. All participants gave written informed consent before taking part in

the EU-PACT trial. Patients were randomly assigned to either the genotype-

guided dosing group or the standard dosing (control) group. For the purpose of

this validation paper, only the control arm of 216 patients was included to avoid

bias of patients in the genotype-guided dosing group. In the control arm, patients

75 years of age or younger received 10 mg of warfarin on day 1, 5 mg on day 2,

and 5 mg on day 3, whereas patients older than 75 years of age received 5 mg per

day on days 1 through 3. The doses on days 4 and 5 and thereafter were

determined according to usual local clinical practice. All patients were followed

for 3 months, with INR measured on days 1, 4, 6, 8, 15, 22, 57, and 85. Some

patients had additional clinic visits and INR measurements, but these were

determined by clinical need.

In this validation study, stable MD was defined as the mean daily dose required

to achieve three consecutive INR measurement within the individuals target range

(2–3 for patients that formed our validation cohort), at the same daily dose. Stable

MD was identified on the assumption that patients fully complied with their

dosing regimens and that the only reason for dose modification was recorded

clinical practice. After applying this definition of stable MD, 508 patients from the

Liverpool prospective study (LP validation cohort) and 133 patients from EU-

PACT control arm (EUP validation cohort) were found to have achieved stability

during follow-up and they formed the subset of patients included in the validation

cohort. A summary of patient demographics, clinical information and

pharmacogenetics in the LP and EUP validation cohorts is given in Table 2.
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Choosing the models to validate

The intention was to obtain a set of dose prediction regression models which were

relatively recent, sufficiently diverse from each other, applicable to our validation

cohort and had high performance in their original derivation dataset. Models were

not considered from publications over ten years old which meant that the

majority incorporated pharmacogenetic information [11]. Variables included in

the models included a unique combination of any of the following types

demographic, clinical, pharmacogenetic, and dose response and co-morbidity

information. Applicability to the validation cohort was mandatory; this meant

models selected would need to consist of covariates measured in the Liverpool

prospective study and the EU-PACT trial. The models initial performance in the

derivation dataset was also highly important, on the basis that algorithms tend to

predict less of the variability in validation datasets [16, 18]. The Liverpool

prospective trial patient data were included in the IWPC derivation cohort

therefore, the two algorithms presented in Klein et al. (2009) [41] were excluded

from the search to remove any bias that could occur from their inclusion.

Statistical analysis

To determine the ability of the six regression models to explain variability in MD

requirements, the warfarin MD predicted by the regression model was plotted

against the actual warfarin MD in the two validation cohorts and then a linear

regression line fitted. The accuracy of the algorithms was judged using the R-

squared statistic (unadjusted and adjusted), mean absolute error (MAE), mean

percentage absolute error, and the slope and intercept of the regression line.

The R-squared statistic is a measure of the amount of variability explained in a

dataset. However, the R-squared statistic is not affected by a constant error in dose

prediction; for example, if we altered any algorithm in this study by adding

100 mg to each dose prediction, the R-squared statistic would remain the same

even though the dose predictions would now be severely over estimated. The

mean absolute error (MAE) statistic measures how close the predictions are to the

actual values across all patients in a dataset, and therefore is important when

considering which model has the best predictive capability. However, the clinically

desired value of this statistic varies. For example, Kimmel [17] recommended a

MAE of 1 mg/day as a change in warfarin dose from a baseline of 5 mg is

sufficient to change the INR by 0.5. The slope and intercept of the R-squared line

are also measures of a models accuracy, a slope of one and an intercept of zero

indicate that there is no proportional error and no constant error respectively. If

the slope coefficient is different from one there will be either over or under

prediction in some, if not all estimated doses. The intercept term gives an insight

into how well the model is predicting at low doses. These statistics should all be

used together to appropriately judge a model as each statistic can appropriately

assess a different aspect of the models predictive ability.

Warfarin Linear Regression Maintenance Dosing Algorithms Review

PLOS ONE | DOI:10.1371/journal.pone.0114896 December 12, 2014 16 / 19



Acknowledgments

The authors wish to thank the authors of the EU-PACT trial manuscript,

especially Girvan Burnside for his kind help with the EU-PACT trial data and the

EU commission for funding the EU-PACT trial.

Similarly we also would like to thank the Department of Health for funding the

Liverpool prospective study. As well as Anita Hanson for her helpful assistance

with the ethics statement for the Liverpool prospective study.

Author Contributions
Analyzed the data: BF. Wrote the paper: BF AJ MP SL.

References

1. Pirmohamed M (2006) Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol
62: 509–511.

2. Ansell J, Hirsh J, Hylek E, Jacobson A, Crowther M, et al. (2008) Pharmacology and management of
the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice
Guidelines (8th Edition). Chest 133: 160S–198S.

3. Pirmohamed M, James S, Meakin S, Green C, Scott AK, et al. (2004) Adverse drug reactions as
cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329: 15–19.

4. Solomon I, Maharshak N, Chechik G, Leibovici L, Lubetsky A, et al. (2004) Applying an artificial
neural network to warfarin maintenance dose prediction. Isr Med Assoc J 6: 732–735.

5. Le Gal G, Carrier M, Tierney S, Majeed H, Rodger M, et al. (2010) Prediction of the warfarin
maintenance dose after completion of the 10 mg initiation nomogram: do we really need genotyping?
J Thromb Haemost 8: 90–94.

6. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, et al. (2007) Estimation of warfarin
maintenance dose based on VKORC1 (21639 G¿A) and CYP2C9 genotypes. Clin Chem 53: 1199–
1205.

7. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, et al. (2007) Randomized trial of
genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation
116: 2563–2570.

8. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, et al. (2005) The impact of CYP2C9 and
VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal
for a new dosing regimen. Blood 106: 2329–2333.

9. Schelleman H, Chen J, Chen Z, Christie J, Newcomb CW, et al. (2008) Dosing algorithms to predict
warfarin maintenance dose in Caucasians and African Americans. Clin Pharmacol Ther 84: 332–339.

10. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, et al. (2008) Use of pharmacogenetic and clinical
factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther 84: 326–331.

11. Wadelius M, Pirmohamed M (2007) Pharmacogenetics of warfarin: current status and future
challenges. Pharmacogenomics J 7: 99–111.

12. Kangelaris KN, Bent S, Nussbaum RL, Garcia DA, Tice JA (2009) Genetic testing before
anticoagulation? A systematic review of pharmacogenetic dosing of warfarin. J Gen Intern Med 24:
656–664.

13. Johnson EG, Horne BD, Carlquist JF, Anderson JL (2011) Genotype-based dosing algorithms for
warfarin therapy: data review and recommendations. Mol Diagn Ther 15: 255–264.

14. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, et al. (2013) A pharmacogenetic
versus a clinical algorithm for warfarin dosing. N Engl J Med 369: 2283–2293.

Warfarin Linear Regression Maintenance Dosing Algorithms Review

PLOS ONE | DOI:10.1371/journal.pone.0114896 December 12, 2014 17 / 19



15. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, et al. (2009) The largest prospective warfarin-
treated cohort supports genetic forecasting. Blood 113: 784–792.

16. Linder MW, Bon Homme M, Reynolds KK, Gage BF, Eby C, et al. (2009) Interactive modeling for
ongoing utility of pharmacogenetic diagnostic testing: application for warfarin therapy. Clin Chem 55:
1861–1868.

17. Kimmel SE (2008) Warfarin therapy: in need of improvement after all these years. Expert Opin
Pharmacother 9: 677–686.

18. Roper N, Storer B, Bona R, Fang M (2010) Validation and comparison of pharmacogenetics-based
warfarin dosing algorithms for application of pharmacogenetic testing. J Mol Diagn 12: 283–291.

19. Marin-Leblanc M, Perreault S, Bahroun I, Lapointe M, Mongrain I, et al. (2012) Validation of warfarin
pharmacogenetic algorithms in clinical practice. Pharmacogenomics 13: 21–29.

20. Moreau C, Pautas E, Gouin-Thibault I, Golmard JL, Mahe I, et al. (2011) Predicting the warfarin
maintenance dose in elderly inpatients at treatment initiation: accuracy of dosing algorithms
incorporating or not VKORC1/CYP2C9 genotypes. J Thromb Haemost 9: 711–718.

21. Hawcutt DB, Ghani AA, Sutton L, Jorgensen A, Zhang E, et al. (2014) Pharmacogenetics of warfarin
in a paediatric population: time in therapeutic range, initial and stable dosing and adverse effects.
Pharmacogenomics J.

22. Shaw K, Amstutz U, Hildebrand C, Rassekh SR, Hosking M, et al. (2014) VKORC1 and CYP2C9
genotypes are predictors of warfarin-related outcomes in children. Pediatr Blood Cancer 61: 1055–1062.

23. Lala M, Burckart GJ, Takao CM, Pravica V, Momper JD, et al. (2013) Genetics-based pediatric
warfarin dosage regimen derived using pharmacometric bridging. J Pediatr Pharmacol Ther 18: 209–
219.

24. Greenway A, Ignjatovic V, Summerhayes R, Newall F, Burgess J, et al. (2009) Point-of-care
monitoring of oral anticoagulation therapy in children. Comparison of the CoaguChek XS system with
venous INR and venous INR using an International Reference Thromboplastin preparation (rTF/95).
Thromb Haemost 102: 159–165.

25. Hamberg AK, Friberg LE, Hanseus K, Ekman-Joelsson BM, Sunnegardh J, et al. (2013) Warfarin
dose prediction in children using pharmacometric bridging–comparison with published pharmacogenetic
dosing algorithms. Eur J Clin Pharmacol 69: 1275–1283.

26. Krishna Kumar D, Shewade DG, Loriot MA, Beaune P, Balachander J, et al. (2014) Effect of
CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating
a new pharmacogenetic algorithm in South Indian population. Eur J Clin Pharmacol 70: 47–56.

27. Perini JA, Struchiner CJ, Silva-Assuncao E, Santana IS, Rangel F, et al. (2008) Pharmacogenetics of
warfarin: development of a dosing algorithm for brazilian patients. Clin Pharmacol Ther 84: 722–728.

28. Chen J, Shao L, Gong L, Luo F, Wang J, et al. (2014) A pharmacogenetics-based warfarin
maintenance dosing algorithm from Northern Chinese patients. PLoS ONE 9: e105250.

29. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, et al. (2010) Warfarin
pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups.
Blood 115: 3827–3834.

30. Horne BD, Lenzini PA, Wadelius M, Jorgensen AL, Kimmel SE, et al. (2012) Pharmacogenetic
warfarin dose refinements remain significantly influenced by genetic factors after one week of therapy.
Thromb Haemost 107: 232–240.

31. Lou Y, Han L, Li Y, Zhang X, Liu Z, et al. (2014) Impact of six genetic polymorphisms on Warfarin
maintenance dose variation in Chinese Han population. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 31: 367–
371.

32. Krajiova L, Petrovi R, Deiova L, Chandoga J, Turani P (2014) Frequency of selected single nucleotide
polymorphisms influencing the warfarin pharmacogenetics in Slovak population. Eur J Haematol.

33. Krishna Kumar D, Shewade DG, Loriot MA, Beaune P, Balachander J, et al. (2014) Effect of
CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating
a new pharmacogenetic algorithm in South Indian population. Eur J Clin Pharmacol 70: 47–56.

34. Scott SA, Patel M, Martis S, Lubitz SA, van der Zee S, et al. (2012) Copy number variation and
warfarin dosing: evaluation of CYP2C9, VKORC1, CYP4F2, GGCX and CALU. Pharmacogenomics 13:
297–307.

Warfarin Linear Regression Maintenance Dosing Algorithms Review

PLOS ONE | DOI:10.1371/journal.pone.0114896 December 12, 2014 18 / 19



35. Hillman MA, Wilke RA, Yale SH, Vidaillet HJ, Caldwell MD, et al. (2005) A prospective, randomized
pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res
3: 137–145.

36. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, et al. (2012) A randomized and
clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for
individualizing warfarin dosing (CoumaGen-II). Circulation 125: 1997–2005.

37. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, et al. (2013) A randomized trial of
genotype-guided dosing of warfarin. N Engl J Med 369: 2294–2303.

38. Do EJ, Lenzini P, Eby CS, Bass AR, McMillin GA, et al. (2012) Genetics informatics trial (GIFT) of
warfarin to prevent deep vein thrombosis (DVT): rationale and study design. Pharmacogenomics J 12:
417–424.

39. Qureshi GD, Reinders TP, Swint JJ, Slate MB (1981) Acquired warfarin resistance and weight-
reducing diet. Arch Intern Med 141: 507–509.

40. Lane S, Al-Zubiedi S, Hatch E, Matthews I, Jorgensen AL, et al. (2012) The population
pharmacokinetics of R- and S-warfarin: effect of genetic and clinical factors. Br J Clin Pharmacol 73:
66–76.

41. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. (2009) Estimation of the warfarin dose
with clinical and pharmacogenetic data. N Engl J Med 360: 753–764.

42. Carlquist JF, Horne BD, Muhlestein JB, Lappe DL, Whiting BM, et al. (2006) Genotypes of the
cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly
determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 22: 191–197.

43. Hamberg AK, Wadelius M, Lindh JD, Dahl ML, Padrini R, et al. (2010) A pharmacometric model
describing the relationship between warfarin dose and INR response with respect to variations in
CYP2C9, VKORC1, and age. Clin Pharmacol Ther 87: 727–734.

44. Perlstein TS, Goldhaber SZ, Nelson K, Joshi V, Morgan TV, et al. (2012) The Creating an Optimal
Warfarin Nomogram (CROWN) Study. Thromb Haemost 107: 59–68.

45. Kulkarni UP, Swar BD, Karnad DR, Davis S, Patwardhan AM, et al. (2008) A pilot study of the
association of pharmacokinetic and pharmacodynamic parameters of warfarin with the dose in patients
on long-term anticoagulation. Br J Clin Pharmacol 65: 787–790.

46. Hamberg AK, Dahl ML, Barban M, Scordo MG, Wadelius M, et al. (2007) A PK-PD model for
predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy.
Clin Pharmacol Ther 81: 529–538.

47. Kamali F, Khan TI, King BP, Frearson R, Kesteven P, et al. (2004) Contribution of age, body size, and
CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther 75: 204–212.

48. Jorgensen AL, Al-Zubiedi S, Zhang JE, Keniry A, Hanson A, et al. (2009) Genetic and environmental
factors determining clinical outcomes and cost of warfarin therapy: a prospective study. Pharmacogenet
Genomics 19: 800–812.

49. van Schie RM, Wadelius MI, Kamali F, Daly AK, Manolopoulos VG, et al. (2009) Genotype-guided
dosing of coumarin derivatives: the European pharmacogenetics of anticoagulant therapy (EU-PACT)
trial design. Pharmacogenomics 10: 1687–1695.

Warfarin Linear Regression Maintenance Dosing Algorithms Review

PLOS ONE | DOI:10.1371/journal.pone.0114896 December 12, 2014 19 / 19


	Section_1
	Section_2
	Section_3
	Section_4
	TABLE_1
	Equation equ1
	Equation equ2
	Equation equ3
	Equation equ4
	Equation equ5
	Equation equ6
	Equation equ7
	Equation equ8
	Equation equ9
	Equation equ10
	Equation equ11
	Equation equ12
	Equation equ13
	Equation equ14
	Equation equ15
	Equation equ16
	Equation equ17
	Equation equ18
	Equation equ19
	Equation equ20
	Equation equ21
	Equation equ22
	Equation equ23
	Equation equ24
	Equation equ25
	Equation equ26
	Equation equ27
	Equation equ28
	Equation equ29
	Equation equ30
	Equation equ31
	Equation equ32
	Equation equ33
	Equation equ34
	Equation equ35
	Equation equ36
	Equation equ37
	Equation equ38
	Equation equ39
	Equation equ40
	Equation equ41
	Equation equ42
	Equation equ43
	Equation equ44
	Equation equ45
	TABLE_2
	Figure 1
	Section_5
	Figure 2
	TABLE_3
	Figure 3
	Section_6
	Section_7
	Section_8
	Section_9
	Section_10
	Section_11
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49

