
Joint Temporal Patterns By Integrating
Diet and Physical Activity

Jiaqi Guo
School of Electrical and Computer

Engineering, Purdue University
West Lafayette, IN, USA

guo498@purdue.edu

Luotao Lin
Department of Nutrition Science

Purdue University
West Lafayette, IN, USA

Marah M. Aqeel
Department of Nutrition Science

Purdue University
West Lafayette, IN, USA

Saul B. Gelfand
School of Electrical and Computer

Engineering, Purdue University
West Lafayette, IN, USA

Heather A. Eicher-Miller
Department of Nutrition Science

Purdue University
West Lafayette, IN, USA

Anindya Bhadra
Department of Statistics

Purdue University
West Lafayette, IN, USA

Erin Hennessy
Friedman School of Nutrition Science

and Policy, Tufts University
Boston, MA, USA

Elizabeth A. Richards
School of Nursing
Purdue University

West Lafayette, IN, USA

Edward J. Delp
School of Electrical and Computer

Engineering, Purdue University
West Lafayette, IN, USA

Abstract—Both diet and physical activity are associated with
obesity and chronic diseases such as diabetes and metabolic
syndrome. Early efforts in connecting dietary and physical ac-
tivity behaviors to generate patterns rarely considered the use of
time. In this paper, we propose a distance-based cluster analysis
approach to find joint temporal diet and physical activity patterns
among U.S. adults ages 20-65. Dynamic Time Warping (DTW)
generalized to multi-dimensions is combined with commonly
used clustering methods to generate unbiased partitioning of
the National Health and Nutrition Examination Survey 2003-
2006 (NHANES) dataset. The clustering results are evaluated
using visualization of the clusters, the Silhouette Index, and the
associations between clusters and health status indicators based
on multivariate regression models. Our experiments indicate that
the integration of diet, physical activity, and time has the potential
to discover joint temporal patterns with association to health.

Index Terms—cluster analysis, DTW, multi-dimensional time
series, NHANES, diet, physical activity

I. INTRODUCTION

Diet and physical activity are known to be associated with
obesity and chronic diseases [21], [24], [34], [40], [56]. Both
dietary and physical activity behaviors occur in a sequential
manner, following certain rhythms that start and end through-
out the day [60]. There is a growing interest in the temporality
of diet and physical activity (e.g. time of eating and exercise)
and their effects on health. A few studies have explored the
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use of cluster analysis approaches to find patterns of diet
or physical activity independently while integrating the time
of eating or exercise behaviors [14], [15], [22], [23]. These
patterns derived with temporal information were proven to
be associated with obesity and chronic diseases [11], [37],
[53]. These studies demonstrated the advantages of using data-
driven methods for the integration of time in diet/physical
activity pattern analysis. In [30], [44], [58], the authors showed
that dietary and physical activity behaviors could be connected
in complex ways and have a synergistic impact on health.
Some early efforts have been made to investigate the con-
nections between dietary and physical activity behaviors and
generate joint diet and physical activity patterns [54], [58],
[61]. Less is known about the interaction of time and diet and
physical activity and their joint influences on health.

In this paper, we describe the Joint Temporal Diet and
Physical Activity Pattern (JTDPAP). This is defined as the
partitioning of a joint diet and physical activity dataset using
data-driven methods (such as cluster analysis) that integrate
the time of diet and physical activity behaviors. Participants
are separated into mutually exclusive clusters based on similar
dietary and physical activity characteristics. Each cluster rep-
resents a specific joint temporal pattern. We focus on distance-
based cluster analysis for finding joint temporal patterns
among U.S. adults ages 20-65. The goal of our study is to
find joint temporal patterns that have distinguishable diet and
physical activity characteristics (e.g., intensity, duration, and
timing), and could also be meaningfully connected to health.

To date, the National Health and Nutrition Examination
Survey 2003-2006 (NHANES) [5] is one of the only publicly-
available, nationally representative datasets that capture dietary
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intake through 24-hour recall methodology and physical activ-
ity through accelerometry devices. The joint diet and physical
activity dataset used in this paper is constructed from the
NHANES dataset. We use the data from 1836 participants
age 20-65 in the NHANES for our analysis. For the physical
activity, the NHANES used uni-axial accelerometers to mea-
sure minute-level activity intensity in units known as “Physical
Activity Count (PAC)” [5]. We randomly select one valid
weekday for each participant to form the physical activity
dataset in this paper. The physical activity data are one-
dimensional time series of length 1440 samples (60 minutes ×
24 hours). For the diet information, the NHANES collected the
amount and time of energy intakes from two 24-hour dietary
recall. We select one weekday to generate the one-dimensional
diet time series for the participants. Each participant in our
dataset is thus represented by two time series, one for diet
and another one for physical activity. We combine the two
time series from the diet and the physical activity to form the
joint dataset we used in our experiments. Note that the two
time series are not temporally aligned in that the diet intakes
and physical activities occurred at different days and different
times. Our goal is to cluster this joint dataset and evaluate the
clusters’ association to health.

In this paper, we explore a distance-based cluster analysis
approach. Since both diet and physical activity time series
are subject to potential warpings (e.g, having breakfast a few
minutes earlier than usual; jogging for 10 minutes longer), we
follow our previous studies of temporal diet/physical activity
patterns [22]–[24], and choose the Dynamic Time Warping
(DTW) [50] as the distance measure to align the samples
of input time series. Since DTW was originally designed for
comparing one-dimensional time series, we adapt two com-
monly used methods to generalize DTW to multi-dimensions,
namely the independent and dependent multi-dimensional
DTW (denoted as DTWI and DTWD) [52]. In both DTWI

and DTWD, we introduce a parameter α ∈ [0, 1] to control
the emphasis on physical activity and diet. With larger α, the
physical activity difference between two participants would
have larger impact on their DTW distance. When α = 1, both
CDTWI and CDTWD are only using the physical activity
time series. This is described in more detail in Section II-B.

In this paper, three distance-based clustering methods which
are commonly used in physical activity or diet pattern re-
search are explored, namely kernel k-means (KKM) [19],
[47], spectral clustering (SPEC) [41], and kernel hierarchical
agglomerative clustering (KHAC) [31], [45]. To combine the
independent and dependent multi-dimensional DTW distances
with the clustering methods, the Gaussian Dynamic Time
Warping Kernel [12] is used to convert DTWI and DTWD

into kernel functions. The clustering results are evaluated in
a similar way as our previous diet/physical activity studies
[22]–[24]. Three criteria are used in the evaluation process,
including 1) visualization tool to illustrate the characteristics
of dietary and physical activity behaviors of the clusters; 2)
internal criteria (the Silhouette Index [46]) to determine the
number of clusters; 3) external criteria based on multivariate

linear regression (MLR) and multiple comparison to find the
clusters’ association to health status indicators.

Our major contributions in this paper are summarized be-
low:

• We extend our previous research on temporal patterns
through jointly clustering of diet and physical activity.

• Two ways of generalizing DTW to multi-dimensional
time series are described that allow the emphasis on
physical activity or diet.

• We evaluate the clustering results through visualizations
of the clusters, internal criteria, and external criteria.

• Our experiments show that the integration of diet, phys-
ical activity, and time has the potential to find joint
temporal patterns with association to health.

II. RELATED WORK

A. Joint Diet and Physical Activity Pattern

Here we review and summarize previous work on joint diet
and physical activity pattern analysis [14], [15], [18], [37],
[39], [49], [51], [53]. We review the work from three aspects:
type of data used, clustering method, and evaluation criteria.

Boone-Heinonen et al. [14] studied obesity-related diet and
physical activity behaviors in an adolescent population. Both
diet and physical activity data were collected through survey
questionnaires. For diet, 11 composite variables were used to
represent the consumption and types of food/beverage con-
sumed. For physical activity, 25 variables that comprised the
numbers of weekly instances of different types of activities and
the hours of sedentary behavior were collected from the ques-
tionnaires. The combined 36 variables (11 diet and 25 physical
activity) were clustered using SAS FASTCLUS (Software
SAS version 9, Research Triangle Institute, Research Triangle
Park, NC, 2004 [14]), which essentially uses the Euclidean
distance for measuring the distance between 36 variables
and the k-means for the clustering. The final clustering was
based on a series of internal criteria including distinctiveness,
robustness, and strength of behaviors. Cameron et al. [15]
examined the patterns of diet and activity to find how they
related to obesity in children and their mothers. The diet data,
which was collected through questionnaires, consists of two
variables: amount of healthy and unhealthy food consumption.
The Mother’s physical activity data was collected using ques-
tionnaires, while the children were objectively assessed using
uni-axial accelerometers. Both mother and children physical
activity data was later converted into two variables: total
activity time and total sedentary time in a week. The diet and
activity was clustered using hierarchical agglomerative with
Ward’s linkage. The authors reported a result for five clusters
as “most able to define specific groups of both mothers and
children,” but no quantitative criteria was given. Matias et al.
[37] used cluster analysis to estimate joint patterns of diet,
physical activity, and sedentary behavior among adolescents,
and to find their associations with sociodemographic variables.
Diet information was collected through seven questions, and
summarized into two variables: the number of days in a
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week eating a healthy or unhealthy diet. Physical activity and
sedentary behavior are also assessed through questionnaires,
and summarized as the number of days in a week practicing
exercises and the number of hours in a regular day being
sedentary (e.g., watching television or playing video games).
The clusters were derived using the TwoStep Cluster Analysis
in SPSS (version 23 SPSS Inc.; Chicago, IL, USA [1]), and
evaluated by Bayesian Information Criterion (BIC) and the
Silhouette Index [46]. Skalamera et al. [53] used Latent Class
Analysis (LCA) to study the association between educational
attainment and health-related behaviors. Eight health-related
features including binge drinking, regularly participating in
physical activity, eating at fast food restaurant often were
dichotomized. The LCA was used to group the participants
into 3 clusters based on the dichotomized features. Four
internal criteria, including log-likelihood, BIC, sample-size-
adjusted BIC (ABIC), and Lo-Mendell Rubin (LMR) adjusted
likelihood ratio, were used to select the number of clusters
and evaluate the clustering results.

From the above discussion, the previous studies on joint diet
and physical activity pattern have a wide variety in terms of
clustering methods and data [18], [39], [49], [51]. However,
the majority of these studies simplified the complex diet and
physical activity behaviors into features of intensity, frequency,
or duration. The temporal information such as the time of
eating and activity was often omitted.

B. Dynamic Time Warping for Multi-Dimensional Time Series

We choose the Dynamic Time Warping (DTW) [50] as the
distance measure to address the temporal misalignment of the
input time series. The DTW distance was originally designed
for one-dimensional speech signals [50]. In this paper, the
participants are represented by a two-dimensional diet and
physical activity time series. Therefore, we need a way to
generalize DTW for multi-dimensional time series.

As discussed by Shokoohi-Yekta et al. [52], there are
two directions to generalize DTW for multi-dimensional time
series. The first direction is the dependent multi-dimensional
DTW (denoted as DTWD). In DTWD, different dimensions
of the input time series are considered to be dependent (or
tightly coupled as described in [52]), and DTWD finds the
same alignments for all dimensions of the input time series.
Dynamic programming used in DTW is also used to find the
alignments for DTWD [9], [17], [25]. The second direction is
the independent multi-dimensional DTW (denoted as DTWI ).
As the name suggests, DTWI takes each dimension as an
independent one-dimensional time series, and computes the
distance for each single dimension using DTW. The DTWI

distance is a weighted sum of the independent DTW distances.
Compared to DTWD, DTWI finds its own alignments for
each dimension, and thus has more flexibility for time series
whose different dimensions are loosely coupled [13], [38],
[55].

In this paper, both DTWD and DTWI are explored for
the joint diet and physical activity time series. We introduce
a parameter α ∈ [0, 1] in both DTWD and DTWI to

control the emphasis on physical activity and diet. With larger
α, the physical activity difference between two participants
would have more impact on their DTWI /DTWD distance.
When α = 1, both DTWI and DTWD are computed only
using the physical activity time series, and are the same as
one-dimensional DTW distance. Analogously, when α = 0,
DTWI and DTWD are the same as one-dimensional DTW
computed only using the diet time series.

III. PROPOSED APPROACH

A. Definitions and Symbols

Let X = [x1,x2, · · · ,xM ] and Y = [y1,y2, · · · ,yM ] be
two time series of the same length M (M ≥ 1). Let X[k :
l] = [xk,xk+1, · · · ,xl] be the sub time series of X (1 ≤ k ≤
l ≤ M ). Time series X and Y can be either one- or multi-
dimensional. We assume that xi,yj ∈ RD with D ≥ 1. Let
X(d) be the dth dimension of X where 1 ≤ d ≤ D. Then
X(d) is a one-dimensional time series, and the ith sample of
X(d) (x(d)

i ) is the dth element of xi.

B. One-Dimensional Dynamic Time Warping

Dynamic Time Warping [50] was originally designed for
one-dimensional time series such as the marginal diet or
physical activity time series. Here we briefly review the basics
of DTW before generalizing DTW for multi-dimensional
time series. We assume time series X and Y are both one-
dimensional of length M in the following discussion.

To compute the distance between time series X and Y, the
Euclidean distance aligns the samples with the same indices
and computes the sum of the square differences, i.e.,

dEuclidean(X,Y) =

√√√√ M∑
i=1

(xi − yj)2 ;

The Euclidean distance is easily affected by small shifts in
time, which makes it unsuitable for comparing two time
series. In contrast, Dynamic Time Warping provides a way
of temporally aligning two time series such that the distance
measure is not sensitive to temporal misalignment. The DTW
distance between time series X and Y can be defined as

dDTW (X,Y) = min
P

∑
(i,j)∈P

Γ(xi, yj) , (1)

where Γ : R × R → R+ is a local distance function which
compares a pair of samples. P is the warping path which
defines how the samples of X are aligned to the samples
of Y. P is a contiguous set of index pairs and its element
(i, j) indicates that the ith sample of X is aligned to the
jth sample of Y. In previous temporal pattern studies, the
Sakoe-Chiba Band [50] was incorporated in the warping path
of DTW as a global constraint. The Sakoe-Chiba Band limits
the maximum index difference between aligned samples xi

and yj , i.e., it enforces |i − j| ≤ T where T is the Sakoe-
Chiba Bandwidth. An important reason for introducing global
constraints when generating temporal patterns is to prevent
potential pathological warpings (e.g., aligning eating events in
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the morning to eating events in the evening). In this paper,
we denote Constrained DTW with the Sakoe-Chiba Band as
CDTW.

For detailed discussion of DTW and alternative elastic
distances, we refer the reader to the paper by Sakoe et al.
[50] and the paper by Marteau [36]. For the use of DTW for
independent diet/physical activity pattern analysis, we refer the
reader to our previous temporal pattern studies [11], [22]–[24].

C. Generalize DTW to Higher Dimensions

The definition of DTW in Equation 1 is designed for one-
dimensional time series. To apply DTW to the joint diet and
physical activity time series, we need a way to generalize
DTW to higher dimensions. Previous studies which adapted
DTW for multi-dimensional time series [28], [35], [42], [57]
can be summarized into two directions: independent and de-
pendent multi-dimensional DTW (DTWI and DTWD) [52].
In this paper, both DTWI and DTWD are explored for the
joint diet and physical activity time series.

We consider the input time series X and Y to be D-
dimensional (D > 1) of the same length M . The indepen-
dent multi-dimensional DTW (DTWI ) is defined as the sum
of one-dimensional DTW distances computed independently
based on each separate dimension. Mathematically, the DTWI

distance between time series X and Y can be written as:

dDTWI
(X,Y) =

D∑
d=1

dDTW (X(d),Y(d)) ,

where X(d) and Y(d) are the d-th dimension of time series X
and Y respectively. dDTW (X(d),Y(d)) is the one-dimensional
DTW distance between X(d) and Y(d) as defined in Equation
1. Similar to the one-dimensional DTW distance, we could
also introduce the Sakoe-Chiba constraint on each dimension
of DTWI . For the joint diet and physical activity time series
in this paper, the two dimensions are largely different in scales
and units. Also, we wish to study the influences on the clusters
we generate as we change the emphasis on physical activity
and diet. Therefore, we introduce a parameter α to bring the
diet dimension and the physical activity dimension of the joint
time series into similar scales and also to control the emphasis
on physical activity and diet. In this paper, the independent
multi-dimensional DTW with Sakoe-Chiba Band (CDTWI )
for the joint diet and physical activity time series is defined
as:

dCDTWI
(X,Y|α, Tdiet, TPA)

=(1− α) · dCDTW (X(diet),Y(diet)|Tdiet)

+ α · dCDTW (X(PA),Y(PA)|TPA) ;

(2)

where X and Y are two joint diet and physical activity
time series, and X(diet)/Y(diet) and X(PA)/Y(PA) are their
diet dimensions and physical activity dimensions. dCDTW (·)
is the one-dimensional Constrained DTW with the Sakoe-
Chiba Band. Tdiet and TPA are the Sakoe-Chiba Bandwidth
for diet and physical activity dimensions respectively. α is
the parameter that controls the emphasis on physical activity
over diet (0 ≤ α ≤ 1). Larger α indicates that participants’

physical activity difference would have greater influence on
their CDTWI distance. When α = 1, the CDTWI distance
is equivalent to one-dimensional DTW computed only using
the physical activity data. Analogously, the CDTWI distance
is equivalent to one-dimensional DTW computed only using
diet data when α = 0.

Compared to DTWI , the dependent multi-dimensional
DTW with Sako-Chiba Band (denoted as CDTWD) is defined
in a similar way as the one-dimensional DTW in Equation 1:

dCDTWD
(X,Y|α, TD) =min

P

∑
(i,j)∈P

Γα(xi,yj)

subject to |i− j| ≤ TD ;

(3)

Compared to Equation 1, the samples of the joint time series
in Equation 3 are D-dimensional vectors. Therefore, the corre-
sponding local distance function needs to be Γα : RD×RD →
R+. Similar to CDTWI , we also introduce a parameter α in
CDTWD to control the scale of diet and physical activity and
the emphasis on physical activity over diet. In CDTWD, α is
included in the local distance function Γα:

Γα(xi,yj) =(1− α) · (x(diet)
i − y

(diet)
j )2

+α · (x(PA)
i − y

(PA)
j )2 ,

where xi =

[
x
(diet)
i

x
(PA)
i

]
is the ith sample of time series X

(1 ≤ i ≤ M ). x(diet)
i and x

(PA)
i are the energy intake and

Physical Activity Count (PAC) at the ith minute of the day.
For most values of α, the distances computed by CDTWD

and CDTWI are different. When α = 1, they both converge
to one-dimensional CDTW based only on the physical activity
data, when α = 0, they both converge to one-dimensional
CDTW based only on the diet data. Note that all dimensions
in CDTWD share the same Sakoe-Chiba Bandwidth TD,
whereas each dimension in CDTWI has its own bandwidth.

D. Clustering Methods

After computing the multi-dimensional DTW distances us-
ing the joint diet and physical activity time series, the next step
is to separate the participants into mutually exclusive clusters.
In this paper, three distance-based clustering methods which
are commonly used in time series clustering are combined with
the multi-dimensional DTW distances, namely kernel k-means
(KKM) [19], [47], spectral clustering (SPEC) [41], and ken-
erl hierarchical agglomerative clustering (KHAC) [31], [45].
In kernel hierarchical agglomerative clustering, the distance
between two clusters is denoted as the linkage method. We
explore four different ways of defining the linkage, including
Single, Complete, Average, and Ward’s linkage. Our experi-
ments show that only kernel k-means and KHAC with Ward’s
linkage can generate more equal-sized clusters. As for clusters
generated by the other clustering methods, there are usually
one cluster that consists of over 90% of the entire dataset,
leaving few participants in the other clusters. According to
the NHANES Analytic Guidelines [4], a cluster size less than
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30 is considered insufficient for inferential analysis based on
normal approximation. In the sequel, we disregard the results
generated by spectral clustering and KHAC with Single, Com-
plete, and Average linkage, and focus on the most successful
approaches for producing more equal-sized clusters including
kernel k-means and KHAC with Ward’s linkage.

In this paper, the Gaussian Dynamic Time Warping Kernel
[12] is used to convert CDTWD and CDTWI into kernel
functions to combine with the distance-based clustering meth-
ods:

kCDTWI/D
(X,Y) = exp{−γ · dCDTWI/D

(X,Y)} ,

where γ is fixed to be half of the average of all pairwise
distances. Due to the time complexity of multi-dimensional
DTW, it takes a large amount of time to compute the pairwise
distances of all participants using CPU. To address the com-
putational issue, we exploit the parallel structure of graphic
processing units (GPU) to accelerate the computation.

IV. EXPERIMENTS AND EVALUATION

A. Dataset

The National Health and Nutrition Examination Survey
(NHANES) is a cross-sectional survey designed to assess the
nutritional and health status of the U.S. non-institutionalized
civilian population [5]–[7]. The participants of NHANES were
recruited through a complex, multi-stage probability sampling
design. The NHANES is unique in that it is one of the
few publicly-available and nationally representative datasets
which combines physical examinations and interviews for data
collection. The joint diet and physical activity dataset used in
this paper is constructed from the NHANES dataset. In this
paper, we exclude the participants who were pregnant, younger
than 20, older than 65, or missing dietary, physical activity,
anthropometric or laboratory data.

1) Diet Data: The NHANES collected two days of dietary
recalls from the participants using the USDA Automated
Multiple-Pass Method [8]. The participants reported their food
consumption during a 24-hour period for each recall, including
the type and amount of each food, the time of intake, and food
descriptions. All reported food consumption was converted
into energy intake (kcal) according to the USDA Food and
Nutrient Database for Dietary Studies (FNDDS) for 2003-2004
data [2] and 2005-2006 data [3]. In this paper, we focus on the
participants’ weekday energy intakes for dietary assessment,
and participants whose dietary recalls are both from weekend
were excluded. From the two dietary recalls of the remaining
participants, the first one is selected to form the dietary dataset
if it is a weekday, otherwise, the second recall is selected.
The original energy intakes were reported with a time stamp
(minute-level) indicating when the eating occasions started,
but the duration of the eating occasions is not collected by the
NHANES. To approximate real-life eating situations in the
diet time series, we assume that each eating occasion takes 15
minutes based on a previous study [35], and the energy intakes
were smoothed by an average filter of length 15 (minute) to
generate the final diet time series.

2) Physical Activity Data : The physical activity data were
collected by uni-axial accelerometers. The NHANES required
the participants to wear an ActiGraph AM-7164 [5] on the
right hip. The Actigraph AM-7164 measures acceleration in
the vertical direction in units knwon as “Physical Activ-
ity Count (PAC)”. The original accelerometer measurements
(10Hz sampling frequency) were filtered and calibrated by
the devices to achieve linear associations between PACs and
a measured physiologic variable [29]. In the NHANES 2003-
2006 Examination, the PACs (10Hz) were further summed
over each one-minute epoch [5]. To summarize, the physical
activity time series in the NHANES are minute-level PACs
filtered and digitized to reflect activity intensity [27]. All
participants were required to keep the devices on for 7
consecutive days. Due to compliance and other factors, there
are a large number of participants who do not have a full 7-day
record. We focus on the participants’ weekday physical activity
patterns. To maximize the number of participants involved in
this study, we include anyone with at least one weekday of
valid accelerometer data. For those participants with multiple
valid weekday data, one valid weekday is randomly selected
to form the daily physical activity dataset.

3) Joint Diet and Physical Activity Data: The participants
in the joint diet and physical activity dataset are the inter-
section of the diet dataset and the physical activity dataset
described above. There are 1836 targeted participants after
exclusions. We further combine these participants’ diet and
physical activity data into two-dimensional joint time series.
The samples of the joint diet and physical activity time series
are two-dimensional vectors of energy intakes and PACs, i.e.,
the joint diet and physical activity time series has the following
format:

X = [x1,x2, · · · ,xM ] ,

where xi =

[
x
(diet)
i

x
(PA)
i

]
is the ith sample of time series X

(1 ≤ i ≤ M , M = 1440). x
(diet)
i and x

(PA)
i represent the

energy intake and PAC at the ith minute of the day.
The scales of the energy intakes and PACs can be largely

different. Since we have introduced the parameter α as a
multiplier when computing the multi-dimensional DTW dis-
tances, we do not globally standardize the diet and the physical
activity time series (subtracting from global mean and dividing
by global standard deviation) before combining them into
joint time series. This is reasonable in that subtracting all
the time series by the same mean has no influences on
the computed DTW distances, and dividing by the standard
deviation can be achieved by adjusting the value of α. In
some time series studies [13], [17], [25], [55], it is common to
use z-normalization [26] as a data pre-processing step. Math-
ematically, z-normalize a time series X is to subtract from its
mean and divide by its deviation: Z[i] = X[i]−mean(X)

std(X) . From
our experiments, using z-normalization to pre-process the diet
or the physical activity time series weakens the influences of
different amount of energy intake or intensity of physical ac-
tivity. In the sequel, the clusters derived with z-normalization
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have little difference in terms of health. Therefore, we do not
include the clustering results based on z-normalized data in
this paper.

B. Cluster Evaluation

The joint diet and physical activity time series are clus-
tered using methodologies discussed in Section III. For both
CDTWD and CDTWI distances, parameter α controls the
emphasis on physical activity over diet. Parameter TD is
the Sakoe-Chiba Bandwidth which constrains the maximum
time difference between aligned samples in CDTWD. Anal-
ogously, parameter Tdiet and TPA are the Sakoe-Chiba Band-
widths in CDTWI , each of which constrains a single dimen-
sion of diet or physical activity. With different values of α
and the Sakoe-Chiba Bandwidths, the multi-dimensional DTW
distances would have varying emphasis on physical activity
over diet (controlled by α), or temporality over intensity
(controlled by T ). Theoretically, the Sakoe-Chiba Bandwidth
can be any integer value from 0 to 1440, and α can be
any value from 0 to 1. Due to computational limitations,
we only investigate a limited number of values for each
parameter. These parameter values are selected such that the
visualizations corresponding to different parameter values have
noticeable differences. In this paper, we investigate 4 values
for the Sakoe-Chiba Bandwidths ranging from 120 to 480
(minute) in steps of 120, and 21 values for α ranging from
0.000 to 0.040 in steps of 0.002, i.e., there are 84 (21 α × 4
TD) parameter combinations for CDTWD and 336 (21 α × 4
Tdiet × 4 TPA) for CDTWI . The values of α may appear to
be rather small. This does not indicate that the DTW distances
focus only on the diet and neglect the physical activity. As
discussed in Section IV-A, since we do not standardize the
diet and the physical activity data before combining them
into joint time series, α is used to bring the diet and the
physical activity data into similar scale. It can be seen in
Figure 1 that the mean trajectories of the clusters appear to be
different even for small values of α. The multi-dimensional
DTW with different parameter combinations can be seen as
different distance measures, and we combine each distance
measure with all the clustering methods mentioned in Section
III-D. In the following discussion, we will focus on kernel
k-means and KHAC with Ward’s linkage as they are most
successful in producing more equal-sized clusters. To find a
proper number of clusters, we test four values (k ∈ {3, 4, 5, 6})
under each combination of distance measure and clustering
method.

From all the combinations of distance measures and clus-
tering methods we explore, we wish to select the ones that
could generate temporal joint diet and physical activity pat-
terns (TJDPAP) which have distinctive physical activity and
diet characteristics, as well as meaningful links to health.
Following our previous temporal pattern studies [22], [24],
[33], we use three approaches for evaluating the clustering
results in this paper, including the visualizations of the clusters,
the Silhouette Index (internal criteria), and the associations

between clusters and health status indicators determined by
multivariate regression models (external criteria).

1) Cluster Visualization: There are various ways to visual-
ize a cluster of time series such as mean trajectory, heat map,
and DTW Barycenter Averaging [43]. We focus on the mean
trajectories for cluster visualization as they are most intuitive
for showing the traits of the clusters. For a cluster C of joint
diet and physical activity time series Xi, its mean trajectories
corresponding to the diet dimension and the physical activity
dimension are defined as:

mdiet(t) =
1

|C|
∑
i∈C

X
(diet)
i [t]

mPA(t) =
1

|C|
∑
i∈C

X
(PA)
i [t] ,

where |C| is the number of joint time series in cluster C.
X

(diet)
i and X

(PA)
i are the diet dimension and the physical

activity dimension of the joint time series Xi. The time
unit is converted into hour-level for better visualization, i.e.,
X

(diet/PA)
i [t] is the summed PACs or energy intakes over the

tth hour in time series Xi (t ∈ [0 : 23]).
Figure 1 shows the visualizations of the clustering results

corresponding to different values of α, where the clustering
method and distance measure are fixed to kernel k-means and
CDTWD, the Sakoe-Chiba Bandwidth of CDTWD is fixed
to TD = 120. Figure 1 (a) and (b) are the mean trajectories
of the physical activity dimension and the diet dimension
respectively. In Figure 1, the values of α are from 0.000 to
0.012 in steps of 0.002. We did not include the rest of the
values for α because there are no significant changes in the
clustering results after α > 0.012. At each α, the YZ-planes
in Figure 1 (a) and (b) are the physical activity visualization
and the diet visualization of the same clustering result. As the
value of α increases, we focus more on the physical activity
over diet while computing the CDTWD distances, and this
change of focus is reflected in Figure 1: When α is small
(e.g., α = 0), the diet differences between the clusters are most
significant and the mean trajectories of the physical activity are
very similar; when α is large (e.g., α ≥ 0.012), the physical
activity differences become more dominant.

2) Internal Criteria: The internal criteria defines the goal of
achieving higher intra-cluster similarity and lower inter-cluster
similarity [10]. When ground truth is not available, the number
of clusters is commonly determined by the internal criteria
[48], [59]. Following this practice, we use the Silhouette
Index [46] to find the number of clusters. We test four values
k ∈ {3, 4, 5, 6} under each combination of clustering method
and distance measure. From our experiments, the choice of
k = 3 generally achieved higher Silhouette Index in most
situations, indicating a better clustering quality when the
number of clusters equals 3 (due to page limitations, we
did not list the values of the Silhouette Index in this paper).
Therefore, we select the number of clusters to be k = 3 in the
following discussion.
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Fig. 1. The visualizations of the clustering results corresponding to different values of α, where the clustering method and distance measure are fixed to
kernel k-means and CDTWD , the Sakoe-Chiba Bandwidth of CDTWD is fixed to TD = 120. At each α, the YZ-planes in (a) and (b) are the physical
activity visualization and the diet visualization of the same clustering result.

3) External Criteria: The external criteria evaluates the
clustering results based on a priori information. In the
NHANES dataset, each participant has several health status
indicators such as body mass index (BMI) and blood pressure.
Following the practice in the previous temporal pattern studies
[11], [22], [23], [32], we use the health status indicators
to define an external criterion which evaluates the clusters’
association to health. For each health status indicator, we
perform Multivariate Linear Regression (MLR) and multiple
comparison analysis with the cluster labels as explanatory
variable, and two clusters are significantly different regarding

this health status indicator if their adjusted p-value from
multiple comparison is less than the 5% significance level.
Twelve health status indicators are included to define the
external criterion because of their previous associations with
physical activity or diet [16], [20], [56], and the external
criterion is the total number of pairwise cluster comparisons
that are significantly different. With more pairs of clusters
showing significant differences in health status indicators,
there is a stronger association between the clusters and health.
Therefore, larger values of the external criteria indicate better
clustering performance. For detailed information regarding
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the selected health status indicators, we refer readers to the
Anthropometric Assessment and Laboratory Tests section in
[22], [32].

Figure 2 and Figure 3 are the external criteria for the
clustering derived using CDTWI combined with kernel k-
means (KKM) and kernel hierarchical agglomerative cluster-
ing (KHAC) respectively. In Figure 2 and Figure 3, the Y-axis
represents the value of the external criteria, and the points are
the clusters derived from different parameter combinations. To
determine the parameter combinations of a specific clustering,
parameter α can be found from its X-axis, parameter TPA (the
Sakoe-Chiba Bandwidth for physical activity dimension) can
be found by the color, and parameter TDiet (the Sakoe-Chiba
Bandwidth for diet dimension) can be found by the symbol.
Similarly, Figure 4 shows the results derived using CDTWD

combined with kernel k-means and kernel hierarchical agglom-
erative clustering. In Figure 4, the clustering method of a point
(clustering result) can be found by the color, and parameter
TD can be found by the symbol.

From Figure 2, Figure 3, and Figure 4, there are seven
clustering results that achieve the highest external criteria
(8 pairs of significantly different clusters among all health
status indicators): KHAC combined with CDTWI at (TPA =
120, TDiet = 120, α = 0.018), (TPA = 360, TDiet =
480, α = 0.026), (TPA = 480, TDiet = 360, α = 0.006),
and (TPA = 480, TDiet = 480, α = 0.006); KHAC combined
with CDTWD at (TD = 480, α = 0.014) and (TD =
480, α = 0.030); and KKM combined with CDTWI at
(TPA = 360, TDiet = 120, α = 0.014). Compared with
KKM, KHAC is more likely to generate clustering results
which are more related to health. However, KHAC is more
sensitive to small changes in the distance matrix. This can
be shown in Figure 3, and Figure 4 where the curves of the
KHAC have more fluctuations compared with KKM. In terms
of the two distance measures, CDTWI has the flexibility to
combine different constraints on the diet and physical activity
dimension, thus, it has the advantage to generate clustering
results with more varieties and stronger links to health. This
is partially due to the fact that the diet and the physical activity
data are loosely coupled and do not follow the same routine
in a day.

V. CONCLUSION

In this paper, we described a distance-based cluster analysis
approach to find joint temporal diet and physical activity
patterns among U.S. adults. Two multi-dimensional DTW
distances, CDTWI and CDTWD, are combined with kernel
k-means, kernel hierarchical agglomerative clustering with
Ward’s linkage, and several other clustering methods to gen-
erate the joint patterns. The clustering results are evaluated
using visualization of the clusters, the Silhouette Index, and
the associations between clusters and health status indicators
based on multivariate regression models.

From the visualizations of the clusters, the parameters of
multi-dimensional DTW distances give us the flexibility to
control the clustering focus on physical activity over diet

(controlled by parameter α), and on temporality over intensity
(controlled by the Sakoe-Chiba Bandwidths). Diet patterns and
physical activity patterns seem to have weak correlation as the
mean trajectories of physical activity when α = 0 and the
mean trajectories of diet when α = 1 are not distinguishable.
From our experiments, most clustering results that have the
stronger associations to health (largest number of significant
difference pairs) are generated with 0.006 ≤ α ≤ 0.030.
As shown in Figure 1, these values of α indicate that the
multi-dimensional DTW distances have a mixed focus on both
diet and physical activity compared to α = 0 (only diet is
considered) and α = 1 (only physical activity is considered).
This demonstrates that the integration of diet, physical activity,
and time, has the potential to find joint temporal patterns with
stronger associations to health.
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