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Abstract  
 

Brain stimulation holds promise for treating brain disorders, but personalizing therapy 

remains challenging. Effective treatment requires establishing a functional link between 

stimulation parameters and brain response, yet traditional methods like random sampling 

(RS) are inefficient and costly. To overcome this, we developed an active learning (AL) 

framework that identifies optimal relationships between stimulation parameters and brain 

response with fewer experiments. We validated this framework through three 

experiments: (1) in silico modeling with synthetic data from a Parkinson’s disease model, 

(2) in silico modeling with real data from a non-human primate, and (3) in vivo modeling 

with a real-time rat optogenetic stimulation experiment. In each experiment, we compared 

AL models to RS models, using various query strategies and stimulation parameters 

(amplitude, frequency, pulse width). AL models consistently outperformed RS models, 

achieving lower error on unseen test data in silico (p<0.0056, N=1,000) and in vivo 

(p=0.0036, N=20). This approach represents a significant advancement in brain 

stimulation, potentially improving both research and clinical applications by making them 

more efficient and effective. Our findings suggest that AL can substantially reduce the 

cost and time required for developing personalized brain stimulation therapies, paving the 

way for more effective and accessible treatments for brain disorders. 
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Introduction 
 
Brain disorders comprise more than 600 conditions that impact an estimated million 

people worldwide every year1.  These disorders cause impairment in the functionality of 

the central and peripheral nervous systems and lead to chronic physical, cognitive, and 

emotional disability.  Deep brain stimulation (DBS), the focused delivery of electric current 

(usually a square pulse train) to the brain for the purpose of affecting neural or 

physiological processes, has seen increasing clinical use, and as of 2021, DBS had been 

used to treat more than 208,000 patients worldwide with a variety of neurological and 

neuropsychiatric disorders2–6. DBS has numerous benefits. (1) For example, relative to 

other techniques requiring surgical intervention, DBS is minimally invasive, does not 

damage brain tissue, and can be reversed. Moreover, (2) DBS parameters can be quickly 

and iteratively explored to maximize efficacy while minimizing side effects, and (3) DBS 

directly connects with the circuit pathophysiology that underlies overt symptoms 7.  

Despite its clinical application in neurological and neuropsychiatric disorder treatment, the 

efficiency and consistency of DBS are still unsatisfactory, with highly variable results from 

patient to patient, which undermines its scalability and broader use 8. This challenge is 

twofold: (1) stimulation parameters must be evaluated in a systematic way using a data-

driven approach and (2) disease- and patient-specific variables must be incorporated. The 

first step toward enabling more consistent, effective, and individualized DBS therapies is 

identifying diagnostic or therapeutic biomarkers that DBS can target or modulate. For 

example, in Parkinson's disease (PD) in which the primary marker is known, algorithms 

can be developed to tune DBS parameters to achieve optimal outcomes, even though 

patient-specific factors such as ongoing degeneration may confound results. Moreover, 
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the dynamics of different diseases vary significantly—epilepsy differs from PD, which - in 

turn - differs from depression. Therefore, a flexible platform to explore these dynamics 

with appropriate data is essential. Once those target response biomarkers are identified, 

although likely unique for each clinical indication, DBS systems can be used to make 

evidenced-based adjustments of stimulation parameters as needed for individual patients. 

However, finding the best set of stimulation parameters poses a key challenge. To find 

the best set of stimulation parameters for each individual, we need to understand how the 

brain, as a complex system, responds to various parameter sets. In other words, we need 

to learn a model between stimulation parameters and brain response (i.e., target 

response biomarkers) that is specific to a given disease. Modeling this link requires many 

samples, which is very costly and challenging and thus infeasible in the clinical setting. As 

such, an optimal experimental design for the identification of the samples that are most 

informative for uncovering a functional link is needed for both clinical and experimental 

settings 9,10. 

Active learning (AL) is a machine learning method that can be used to address the 

optimal sampling problem. This process can help predictive models achieve higher 

performance with a limited number of samples by querying label (i.e., brain responses to 

particular sets of stimulation parameters) from an oracle (e.g., a human annotator or an 

experimental setup) for subset of informative instances 11,12. In the AL cycle, the learner 

starts with a small number of labeled samples. Next, the learner trains a model (e.g., for 

regression or classification) using the labeled samples, tests the model on the unlabeled 

samples, queries labels based on the informativeness of the unlabeled data, and then 

uses the updated knowledge to retrain a new model. AL evaluates the informativeness of 
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unlabeled samples using a variety of query algorithms.  

In this work, we present a novel AL framework developed to optimize (i.e., minimize the 

number of samples) an experiment modeling the relationship between stimulation 

parameters and brain response. We first developed a procedure for validating the utility of 

AL versus random sampling (RS) through in silico modeling with both synthetic and real 

data. Next, we developed a real-time AL procedure and validated the new approach in a 

real-time in vivo experimental setting. To demonstrate the generalizability of our method, 

we applied our AL framework to multiple datasets from different species. These included 

synthetic data generated from a Parkinson's disease computational model of the basal 

ganglia circuit, real data collected from an epilepsy model in the non-human primate 

hippocampus, and optogenetic stimulation data collected from the rat hippocampus. By 

applying our approach across these diverse datasets and species, we aimed to highlight 

its versatility and potential for broad application in understanding and optimizing DBS 

therapies. 

 

Results 
 
Active learning outperforms random sampling in an in silico modeling experiment 
 

We first developed a simulation procedure for the validation of the AL framework using 

synthetic data that consisted of three main phases (Fig.1a). (1) We separated the data, 

containing stimulation parameters and their associated brain responses, into an unseen 

test dataset and training pool dataset – the set of all training data from which individual 

samples were iteratively drawn to build the model-specific training dataset. (2) We 

randomly selected a few samples from the training pool dataset to initiate a regression 
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model between the stimulation parameters and their associated brain response (Phase 1 

in Fig.1a). (3) We added more samples, one at a time, to the model’s training dataset to 

iteratively improve the model. We used both RS and AL with different query strategies to 

determine which sample to add at each iteration (Phase2 in Fig.1a). At each iteration of 

Phase 2, we evaluated the performance of the resulting model on the unseen test data. 

When evaluating model performance, we used the root mean square error (RMSE) 

between the actual and the predicted brain response (Phase3 in Fig.1a). We repeated the 

entire process 1000 times for both AL and RS approaches, and we calculated the area 

under the curve (AUC) of RMSE, called AUC_RMSE after each iteration (Fig.1b). 

 

To validate the proposed AL framework through the simulation process, we generated 

synthetic data using a biophysical model of the cortex-basal ganglia-thalamus network in 

a 6-OHDA lesioned rat with Parkinson's disease (See Supplementary Fig.1) 13. We 

stimulated the subthalamic nucleus (STN) and swept amplitude, frequency, and pulse 

width while estimating the globus pallidus internus (GPi) beta (13-30 Hz) power for each 

stimulation parameter. This resulted in 200 different samples (see first dataset in 

Methods, Fig.1c, and Supplementary Fig.2). We used 20% (i.e., 40 samples) as unseen 

test data and 80% (i.e., 160 samples) as a training pool dataset. We next trained a ridge 

regression (RR) model between STN stimulation parameters and GPi beta power with 

both AL and RS approaches in which we started with three initial samples and added 

more samples from the training pool dataset until we had 20 training samples. As we 

expected, the model performance, regardless of sampling strategy, improved with the 

addition of more samples to the model training data (Fig.1d left panel). Our results 
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showed that all query strategies in AL had significantly lower mean AUC_RMSE on 

unseen datasets compared to the RS method, as determined by a two-sample t-test 

comparing the AUC_RMSE of each AL method against that of the RS model. (Fig.1d right 

panel, * represents Bonferroni corrected p<0.0056).  

 

We also trained support vector regression (SVR) models with linear and Gaussian kernel 

functions and Gaussian process regression (GPR) models using both RS and AL 

approaches and found that better performance resulted from the AL approach relative to 

RS (Fig.1e, see Supplementary Fig.3, 4, & 5). Fig. 1e shows the difference between the 

AUC_RMSE of the model performance obtained by AL and the AUC_RMSE obtained by 

RS for each regression model. The results shown in Fig. 1e suggest that the AL approach 

can provide a better model than the RS approach. However, the query strategy and 

regression model must be selected carefully. For example, representativeness and 

diversity (RD) combined with query by committee (QBC) provided a better result than RS 

in RR and linear SVR, while it did not show a model performance improvement in 

Gaussian SVR and GPR based on their AUC_RMSE metric (Fig. 1e). 

 

Active learning results reproduced across experiments within a subject 

The previous section proposed the AL framework for designing an optimal experiment to 

get the best model between the simulation parameters and brain response. After 

validating the advantages of the AL vs. RS approach, we next questioned whether the 

results were replicable across multiple sessions of the parameter sweep data within a 

subject. Answering this question was necessary for validating the robustness of the 
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proposed AL framework. To answer this question, we designed a parameter sweep 

experiment, stimulating the hippocampal network of a non-human primate (NHP) while 

recording from the same network using the Summit RC+S (Medtronic, Minneapolis, USA) 

as shown in Fig.2a (see second dataset in Methods) and quantifying the post-stimulation 

theta power. Asynchronous distributed multielectrode stimulation or ADMES, which has 

been shown to reduce seizure frequency in rodent models 14, was used to stimulate the 

NHP hippocampus (Fig.2b)15.  We repeated the same experiment four times and 

recorded 100 samples. Next, we ran the AL vs. RS in silico modeling in each session to 

validate the reproducibility of the results. We had 20 unseen samples and 80 training pool 

samples in this simulation. Finally, we compared the mean AUC_RMSE of RS with those 

of AL with different query strategies while training a regression model between the 

stimulation parameters and post-stimulation theta power.  

 

A summary plot presented in Fig. 2c illustrates the performance comparison of AL-based 

RR models with RS-based RR models across all 1000 iterations on unseen test data for 

four sessions. In this plot, each cell represents the difference in mean AUC_RMSE 

between the AL-based model and the corresponding RS-based model. Colored boxes 

that are highlighted indicate significant results between the AL and RS model 

performance, as determined by Bonferroni comparisons (p < 0.0056). As shown in Fig. 

2c, all AL query strategies enhanced model performance more than the RS approach in 

sessions 1, 2, and 3. However, none of the query strategies surpassed the RS approach 

in session 4 when assessing model performance with mean AUC_RMSE.  
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Fig. 2d presents a similar summary plot for SVR with a linear kernel function. Based on 

the AUC_RMSE metric, the models obtained with seven of the nine query strategies 

outperformed the corresponding RS model on the unseen test data of each session.  Fig. 

2e presents the summary plot for SVR with a Gaussian kernel function. According to the 

AUC_RMSE metric, the model obtained by expected model change maximization 

(EMCM) and QBC outperformed the corresponding RS-based model in all four sessions. 

Additionally, the model from enhanced QBC (EQBC) outperformed the RS-based model 

in three sessions, and the model from enhanced EMCM (EEMCM) outperformed the RS-

based model in two sessions.  

 

Fig. 2f presents the summary plot for GPR models. According to the AUC_RMSE metric, 

the model obtained by QBC and EQBC outperformed the corresponding RS-based model 

in all four sessions. Overall, our observations confirmed the superiority of the AL 

approach over the RS approach, as demonstrated by its replicability across multiple 

sessions within a single subject dataset. This consistency across sessions underscores 

the robustness of our AL framework and its potential generalizability to different 

experimental scenarios, as demonstrated here within the NHP model. 

 

Dynamic modeling makes the active learning sampling efficiency more pronounced 

relative to random sampling  

Another question was whether brain dynamics would alter the performance of our model. 

Unlike many other AL regression applications, in which the model between input and 

output is static and does not change across experiments, the brain is highly dynamic. The 
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brain response to stimulation could differ depending on the pre-stimulation brain state 

(Fig3.a). For example, a recent study showed that direct stimulation enhanced memory 

only when stimulation was applied during brain states linked with poor memory outcomes 

15. Therefore, considering the pre-stimulation brain state while modeling functional links 

between stimulation parameters and post-stimulation brain response may be necessary to 

have a more accurate model. To address this question, we expanded the framework 

introduced in Fig.1a to consider brain dynamics by adding the pre-stimulation brain state 

(called brain state dynamic modeling). We used one session of the NHP dataset in which 

we calculated the pre-stimulation theta power and added that to the model. Similar to the 

previous section, we used 80 samples (80% of the whole dataset) for the training pool 

dataset and 20 samples (20% of the whole dataset) for the unseen test data.  

 

Additionally, in contrast to other systems, the brain system response associated with a 

specific input is stochastic in that its response is not identical across repeated samples. In 

practice, this implies that identical stimulation parameters administered at different points 

in time can yield different brain responses (see Fig.3b). To model this aspect of brain 

dynamics, we developed a new approach and updated our original framework to use 

multiple responses of the same parameter set collected across multiple sessions of the 

parameter sweep experiment (called stochastic response dynamic modeling). Similar to 

the original framework (i.e., Fig.1a), the entire simulation process of the new framework 

contained three phases (see Supplementary Fig.10). First, we separate the entire 

dataset (i.e., stimulation parameter sets and their associated brain response) into the 

unseen validation and training pool dataset. Then in Phase 1, we randomly selected three 
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stimulation parameters and their associated brain responses (one from m available 

responses for each stimulation parameter). In Phase 2, we iteratively improved the model 

by increasing the training data size across N iterations. In more detail, based on the AL or 

RS approach recommendation, we selected one stimulation parameter and its associated 

brain response (one from all m available samples) and updated the model. After updating 

the model, we validated the model on the unseen validation dataset and calculated the 

RMSE between the predicted and actual brain response (Phase 3). We calculated the 

area under the curve or AUC of the RMSE at the end of the process. We ran the entire 

process 1000 times to ensure statistical significance of results. Finally, we compared the 

RS-model's mean AUC_RMSE with the AL-model's performance with all query strategies.  

We used the NHP dataset (second dataset in Methods), which includes four different 

post-stimulation brain responses for each of 100 different stimulation parameter sets (i.e., 

m=4). Again, we used 80 samples of the entire dataset as the training pool and 20 

samples of the unseen test data while training a regression model between the 

stimulation parameters and hippocampal theta power. 

 

Fig. 3c presents a summary plot of the models' performance, specifically showing the 

difference in mean AUC_RMSE between the active learning approach and the 

corresponding RS-based model for RR models with various query strategies in static, 

brain state dynamic modeling, and stochastic response dynamic modeling settings. For 

the RR model in the static setting, it was observed that eight out of nine query strategies 

surpassed the performance of the RS approach. In brain state dynamic modeling, a 

similar trend was observed, with eight of nine query strategies outperforming the model 
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obtained through RS in the unseen test data. Additionally, in the stochastic response 

dynamic modeling setting, the models obtained from seven of nine query strategies 

outperformed the model obtained through RS. Notably, the models obtained through AL 

consistently outperformed those obtained through RS, significantly reducing AUC_RMSE, 

particularly in the brain state dynamic modeling and stochastic response dynamic 

modeling settings. 

 

Fig. 3d presents similar results for SVR with a linear kernel function. As depicted in the 

figure, seven of nine AL approaches in both the static and stochastic response dynamic 

modeling settings and eight of nine AL approaches in the brain state dynamic modeling 

setting outperformed the model obtained through RS on the unseen test dataset. 

However, the extent of AUC_RMSE reduction of AL relative to RS is more pronounced in 

the brain state dynamic modeling setting.  

 

In Fig. 3e, which presents the results for SVR with a Gaussian kernel function, five AL-

based models exhibited higher AUC-RMSE compared to the model obtained through RS 

in the static scenario. However, none of the AL-based models showed higher AUC-RMSE 

than the RS model in the brain state dynamic modeling and stochastic response dynamic 

modeling scenarios. 

 

Additionally, as illustrated in Fig. 3f for GPR, three AL-based models outperformed the 

RS-based model on unseen test data in the static setting, four AL-based models 

outperformed the RS-based model in brain state dynamic modeling, and none of AL-
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based models outperformed the RS-based model in stochastic response dynamic 

modeling. Notably, the AUC-RMSE in AL-based models was lower compared to that in 

RS-based models in brain state dynamic modeling and stochastic response dynamic 

modeling scenarios when compared with the static scenario. In summary, our results 

demonstrate that the AL approach outperforms the RS approach in both static and 

dynamic models. However, we also show evidence that the AL approach is more 

beneficial when incorporating brain dynamics, as opposed to only considering a static 

brain response. 

 

In silico simulation for designing an in vivo real-time AL experiment  

We next asked whether the AL-based model would outperform the RS-based model in a 

real-time in vivo experiment. To answer this question, we used data collected from a 

parameter sweep experiment in a rat optogenetic stimulation paradigm for in silico 

modeling and to select prior information before the in vivo real-time experiment (third 

dataset in Methods). We selected this paradigm due its well-characterized response and 

prior use as a model system for computational brain stimulation methods 16,17. A 

rectangular pulse train of light was delivered to the medial septum of an adult male 

Sprague-Dawley rat through the implanted fiber optic at all combinations of amplitude or 

intensity (between 10 to 50 mW mm−2), pulse-width (between 2 to 10 ms), and pulse 

frequency (between 5 to 42 Hz) for a total of 72 combinations of stimulation parameters. 

Stimulation parameters were applied in a random order for 5 s. The hippocampal LFP 

was recorded during stimulation, and slow gamma power was computed during 

stimulation to provide the target brain response for learning. All samples collected through 
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this process are shown in Fig. 4a.  

 

We used the framework proposed in Fig.1a to compare the RS-model with the AL-models 

(with different query strategies) and to find the best query strategy and regression model 

for later in vivo deployment. To ensure that we had adequate samples to validate the 

model, we allocated 20 samples for validation in each iteration, while the remaining 52 

samples were used to create the training pool dataset. We started with three initial 

samples (equal to the number of parameters), iteratively queried more samples (one at a 

time) and added those samples to the training dataset through both AL (with different 

query strategies) and RS. We estimated RMSE on the unseen datasets at each iteration. 

We repeated the simulation 1000 times and estimated the mean AUC for RMSE. By 

adding more samples in Phase2 (Fig.1a), we obtained a better model with less RMSE on 

the unseen test data (Fig.4b). The summary plot of all regression models and query 

approaches used on this dataset reveals the following insights: 1) AL-based models, 

except the one obtained through RD, outperformed RS-based models in RR and SVR 

with a linear kernel, as indicated by lower mean AUC_RMSE. 2) Among all query 

strategies, EMCM, QBC, EQBC, and EEMCM demonstrated lower mean AUC_RMSE in 

GPR models. 3) RR with QBC achieved the lowest mean AUC_RMSE among all 

regression models and query strategies. Based on these findings, we selected the RR 

model with QBC for the in vivo experiment. 

 

Active learning improves sample-efficiency relative to random sampling in vivo 

After identifying the optimal regression model and query strategy, we conducted a real-
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time in vivo experiment to model the relationship between stimulation parameters and 

slow-gamma power using both RS and AL approaches (see Fig. 5a and Methods). We 

observed that the model derived from the QBC approach (represented by green circles) 

exhibited significantly lower mean AUC_RMSE compared to the model based on the RS 

approach (represented by blue circles) across 25 unseen test data points in each of 20 

experimental sessions (p=0.0036, N=20), as illustrated in Fig. 5b. This outcome aligns 

with our in silico modeling results, where an improvement in AUC_RMSE was noted when 

the regression model was obtained through AL. 

 

Discussion 
 

Modern control techniques are based on a good understanding of the system (i.e., a 

model between input and output) to be controlled 18. This model can be based on physical 

laws. However, modeling a system as complex as the brain and its dynamics is very 

difficult. System identification refers to the mathematical modeling process of extracting 

information about a system from measured input-output data 19. For brain system 

identification, it is necessary to perturb input signals (i.e., the stimulation parameters) and 

observe the system output (i.e., the brain response). However, existing brain system 

identification approaches used in clinical settings apply unoptimized random sampling that 

is inefficient and costly. 

Active learning, which is referred to as experimental design in statistics, is a subfield of 

machine learning and statistics that provides a smart solution for designing an experiment 

in which human decision-making is suboptimal for the task 10. The main rationale 

underpinning active learning is that data collection is costly, so query points should be 
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selected such that the performance of the model being identified is optimized. More 

specifically, active learning is a paradigm in which machine learning models direct the 

learning process by providing dynamic suggestions/queries for the next-best experiment.  

 

Here, we developed an in silico simulation procedure and ran a stimulation parameter 

sweep using the model of the cortex-basal ganglia-thalamus network in an 6-OHDA 

lesioned rat with Parkinson’s disease 20. We generated synthetic data in which we swept 

STN stimulation parameters (i.e., stimulation amplitude, frequency, and pulse width) while 

estimating GPi beta power as a key biomarker of Parkinson’s diseases. We used this 

dataset to validate our AL framework by comparing the model obtained through RS and 

AL algorithms with nine different query strategies (see Fig.1e). In this simulation, we 

showed that the models trained through the AL process outperform the RS-based model 

for both linear and nonlinear regression models. However, not all query strategies-built 

models that outperformed the RS-based model. This indicates that careful in silico 

modeling is needed to select the best regression model parameters and query strategy 

prior to conducting an in vivo experiment. This finding is similar to that of a previous study 

elucidating the regulatory relationships among genes and proteins in yeast that asserted 

that prior knowledge is needed before starting an experiment 21.  

 

Previous studies have used Bayesian optimization (BaO) to optimize DBS experimental 

procedures. However, there are fundamental differences between AL and BaO in DBS. 

First, the objective of BaO is to select the best stimulation parameter and collect the most 

informative observation to maximize or minimize the brain biomarker response, while 
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minimizing the number of trials. For example, a recent study adapted BaO to suppress 

subthalamic nucleus (STN) beta power in a computational model of PD 22. In contrast, the 

AL objective is to find the optimal regression model between DBS parameters and brain 

response with a minimum number of trials. Once we have the most accurate model, we 

can predict the brain response to any untested DBS parameters throughout the defined 

input space (rather than only one optimal input). As such, this model can potentially be 

used to minimize or maximize the brain response by finding the best DBS parameters. 

Second, BaO is limited to use with Gaussian process regression (GPR), while AL is 

compatible with any kind of regression model. As we have shown, GPR might not be the 

best model for predicting the brain response from the DBS parameters. Therefore, even if 

AL had no other advantages over BaO, it would still have the potential to outperform the 

BaO approach simply by enabling the use of better regression models. A future study is 

needed to compare BaO and AL in minimizing or maximizing a brain response biomarker 

in the context of DBS.  

 

After developing our AL approach, we next tried to answer two important questions prior 

to in vivo experimentation. The first question was whether AL outperforms RS across 

multiple sessions within a subject. To answer this question, we designed a parameter 

sweep experiment in which we collected four sessions of NHP data using the Summit 

RC+S device. Next, we compared AL to RS, with a different regression model, in each 

session separately. We found that AL outperformed the RS model in all sessions. 

However, within query strategies, results were not always consistent. For example, in the 

RR model, the RD approach outperformed the RS approach in sessions 1,2 and 3 but not 
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session 4 (Fig.2c).  

We also explored how considering the brain dynamics changes AL and RS test results. 

We updated the proposed AL framework and added the pre-stimulation brain state, called 

brain state dynamic modeling (Fig.3a). We also proposed a new approach to consider 

brain dynamics based on multiple data sessions, which we called stochastic response 

dynamic modeling (Fig.3b). In stochastic response dynamic modeling, we randomly 

selected the brain response out of four sessions of the NHP dataset for a given 

stimulation parameter set. The main finding of comparing static with brain state dynamic 

modeling and stochastic response dynamic modeling is that adding dynamics to the 

model further demonstrates the utility of the AL approach over the RS one. For instance, 

in the RR model using the static, brain state dynamic modeling, and stochastic response 

dynamic modeling approaches, at least seven AL query strategies outperformed the RS 

approach. Notably, in the brain state dynamic modeling and stochastic response dynamic 

modeling approaches, the improvement in model performance by AL was significantly 

greater, as evidenced by a more substantial reduction in AUC_RMSE. This trend was 

also observed in other regression models. 

 

We also demonstrated how in silico modeling informed the design of an in vivo 

experiment. We first collected a parameter sweep dataset using optogenetic stimulation of 

the medial septum in an anesthetized rat. Then, using the simulation process proposed in 

Fig.1a, we compared the performance of the regression models, including RR, SVR with 

linear and Gaussian kernel functions, and GPR obtained from RS with those from AL one 

with different query strategies. This simulation process found that the RR model obtained 
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from the QBC query strategies showed the best performance relative to other regression 

models and query strategies. Choosing the best regression model type that broadly 

captures the appropriate structure of the experimental data is vital for AL, as using the 

wrong regression model might mislead the real-time experiment 11.  

 

Next, we used this prior knowledge and ran an in vivo experiment with the same setup we 

used for the in silico modeling. We ran 20 sessions of the experiment using the procedure 

shown in Fig.5a. To the best of our knowledge, this is the first real-time implementation of 

the AL framework in a brain stimulation experiment, demonstrating its utility over RS in 

neuromodulation. After completing 20 sessions of the proposed experimental procedure, 

we compared the RS and AL with QBC approach through a post hoc analysis. We found 

that the model obtained by the AL approach outperformed the RS model based on RMSE 

metrics (Fig.5b). 

 

Although our results showed that the AL approach outperformed the RS one overall by 

having less mean AUC_RMSE, we did find that the RS approach outperformed AL in 

some sessions. The AL approach might have misled the experiment by querying the 

wrong data. Collecting noisy data might be a possible explanation for how AL misled the 

experiment. While we tried to minimize motion artifacts and behavioral state-dependent 

confounds with anesthesia, there may have been some noisy data at one iteration of the 

experiment that mislead the remainder of the AL data collection for some sessions. It is 

worth mentioning that querying noisy data would not be a problem in a conventional AL 

framework when working with a human oracle because we assume that human oracles 
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never provide wrong information in the AL process 23. Additionally, to reduce 

computational intensity, we did not use cross-validation to optimize the regression model 

between the optogenetic parameters and slow-gamma power during the experiment. As 

such, the model used to query the next stimulation parameters is unoptimized, which 

could mislead the experiment. 

 

There are a few limitations associated with our proposed framework. First, we only 

focused on traditional machine learning-based regression models. Future studies are 

needed to explore the performance of deep learning models obtained from random 

sampling and active learning24. Second, we only focused on single-output regression 

models, and future studies might explore multiple-output regression models25. Also, we 

validated the second dynamical modeling approach using only four sessions of the 

parameter sweep experiment, and further study is needed to explore the proposed 

framework with a greater number of sessions. We assume that having more sessions 

would further demonstrate the benefits of the AL approach over the RS one. In this study, 

we only focused on the reproducibility of AL versus RS test results for within-subject data, 

and future study is needed to explore the reproducibility of results across subjects. The 

data provided through the restoring active memory (RAM) project 26, in which the same 

parameter sweep experiment was done across multiple patients, could be a good 

resource to evaluate whether AL-based models would outperform RS-based models 

across patient data.  

 

There are also a few limitations associated with our in vivo studies. First, we chose the 
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regression model and query strategies based on data from only one parameter sweep. 

While we showed that the result of query strategies might be replicated across multiple 

sessions of the same parameters sweep experiment, a future study is needed to find the 

best regression model and query strategies based on data from multiple experiments. 

Noisy data collection could mislead the AL experiment, and if we consider noisy data to 

be outliers, other query strategies based on representativeness and diversity (RD) could 

potentially provide a solution. There is a line of work in the AL community that explicitly 

focuses on dealing with noisy labels  27–29.  Future studies are needed to compare other 

AL approaches that could alleviate the effect of noisy labels in our experimental setup. 

Also, we ran the real-time experiment on only one animal. A future study is needed to 

evaluate the reproducibility of the real-time experiment across subjects. 

 

In summary, we proposed an AL framework and developed a simulation procedure to 

validate its utility over the RS approach. We validated the reproducibility of the method 

across multiple sessions with the same subject and demonstrated the increased efficacy 

of the AL approach when accounting for brain dynamics in our dynamical models. 

Additionally, we showed how the in silico modeling can provide the prior information 

needed for a real-time in vivo experiment. Finally, we ran a real-time in vivo experiment of 

the AL and RS approach and showed that AL is more sample-efficient than RS.  
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Methods 
 
Datasets 

The current study comprises three datasets. The first dataset, referred to as the Synthetic 

Parkinson's Disease (PD) model, involves synthetic data generated to validate the active 

learning (AL) framework. This validation utilized a biophysical model of the cortex-basal 

ganglia-thalamus network in a 6-OHDA lesioned rat, simulating Parkinson's disease, as 

proposed in the referenced work (https://github.com/ModelDBRepository/206232)13. The 

network includes the cortex, striatum, and subthalamic Huxley-type neurons (refer to 

Supplementary Material for details). To simulate both healthy control (HC) and PD 

models, we adjusted the M-type potassium current for both the direct and indirect medium 

spiny neurons (MSNs) by setting the maximal conductance at 2.6 mS/cm² and 1.5 

mS/cm², respectively. We varied the subthalamic nucleus DBS amplitude, frequency, and 

pulse width, while estimating the beta power (13-30 Hz) in the globus pallidus internus 

(GPi) for each DBS parameter. This process generated 200 distinct samples (Fig.1c and 

Supplementary Fig. 1).  

 

We obtained the second dataset from one non-human primate (NHP), a male Macaca 

fascicularis (CRP, Port Louis, Mauritius) weighing 12 kg. We referred this data as NHP 

data. During a preliminary period, the animal was progressively trained to remain on a 

primate chair in preparation for experimental sessions. The surgical procedure was 

carried out under general anesthesia after a fasting period of 10 hours. Initially, an 

intramuscular injection of 0.4 mg ketamine (Imalgene, Merial laboratory, France) was 

administered for induction, followed by a maintenance dose of 0.2 mg per hour. 
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Additionally, 0.2 ml of 2% xylazine (Rompun, Bayer Healthcare AG, Germany) was given 

at induction, with a subsequent maintenance dose of 0.1 ml per hour. To further alleviate 

discomfort, local scalp anesthesia was provided through a subcutaneous injection of 

lidocaine chlorhydrate. Throughout the preoperative period, prophylactic measures were 

taken, including the administration of antibiotics, analgesics, and anti-inflammatory drugs 

to ensure the well-being of the subject. 

 

The surgery was conducted using a stereotactic frame (David Kopf Instruments, Tujunga, 

USA) and was monitored through intraoperative tele-radiographic control. To localize the 

hippocampus, bi-commissural landmarks were obtained via ventriculography, which 

involved the injection of a 2 ml water-soluble iodine contrast medium (Bracco Imaging, 

France). For hippocampal stimulation, two quadri-electrode leads were implanted within 

the hippocampus. The lower contact of the Summit RC+S lead (E0) was positioned at a 

depth of 30 mm from the dura, with the lead length being 40 mm, electrode length 1.27 

mm, and outer diameter of the electrode 1.5 mm, spaced 0.5 mm apart (DIXI, France). All 

components were secured to the skull with fixing screws and encapsulated in a dental 

acrylic cap. Preparation for the placement of the neurostimulator (Summit RC+S, 

Medtronic, Minneapolis, USA) involved creating a subcutaneous space in the back of the 

animal after making a skin incision. This device was capable of both stimulating targets 

and recording local field potentials (LFPs). Lead extensions (model 37087, 40 cm, 

Medtronic, Minneapolis, USA) were routed through the subcutaneous space in the back 

and neck and connected to the implanted electrode and stimulator. Post-surgery, the 

monkey was allowed to recover and was closely monitored. Food and water were 
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provided ad libitum. All procedures were conducted in accordance with the European 

Communities Council Directive of 2010 (2010/63/UE) and the guidelines of the French 

National Committee (2013/113). The authorization (#00132.01) for conducting the 

experiments was granted by the Committee on the Ethics of Animal Experiments (#04). 

All experimenters were properly trained and certified for animal experimentation, ensuring 

that every effort was made to minimize animal suffering while maximizing the data 

obtained. 

 

In our study, we utilized the Summit implantable neurostimulator (INS)30,31 for recording 

from and stimulating the hippocampus (Fig.2a). To control the recording configuration, 

data streaming, and stimulation, we connected the INS to the research host computer 

(RHC) using the application programming interface (API) provided by the University of 

California, San Francisco (UCSF) (https://github.com/openmind-consortium/App-aDBS-

ResearchFacingApp). We implemented an asynchronous distributed multielectrode 

stimulation (ADMES) approach in the Summit RC+S system to stimulate the NHP 

hippocampus. ADMES is a novel brain stimulation technique that has demonstrated 

effectiveness in reducing pathological synchronous activities and seizure frequency in a 

mesial temporal lobe epilepsy (MTLE) rodent model14. Fig.2b illustrates a conceptual 

diagram of ADMES and its implementation in the Summit RC+S system. For the ADMES 

configuration, we utilized programming Group A of the Summit RC+S and leveraged the 

intrinsic delay across four programs in this group to create an asynchronous stimulation 

pattern. The post-stimulation signals were band-pass filtered between 0.5 and 80 Hz and 

sampled at a rate of 500 Hz. In this parameter sweep experiment, we varied the 
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stimulation amplitude, frequency, and pulse width. We tested five amplitudes (100 µA, 

200 µA, 300 µA, 400 µA, and 500 µA), ten frequencies (7 Hz, 12 Hz, 31 Hz, 50 Hz, 65 Hz, 

72 Hz, 100 Hz, 130 Hz, 145 Hz, and 180 Hz), and two pulse widths (200 µs and 400 µs), 

resulting in 100 different combinations of the three stimulation parameters. Safe amplitude 

and frequency levels were established through an active discharge experiment. Each 

stimulation lasted 10 seconds, followed by a 15-second recording of the post-stimulation 

signal. The entire experiment took approximately 2500 seconds, or 42 minutes. We 

repeated this experiment three times on the same subject on the same day. During the 

experimental sessions, the NHP was positioned on a primate chair (Crist Instruments, 

USA) allowing free movement of limbs and oral feeding during the experiments. Penicillin 

salt (penicillin G sodium 3032, Sigma-Aldrich) was diluted with sterile water for injection 

(1000 IU / µL). Using sterile technique, a range from 3000 to 15000 IU of penicillin was 

injected at a rate of 2 to 3 µL / min with a Hamilton syringe and pump through a cannula, 

within the right HPC, at a depth of 28 mm from the dura. Each experiment corresponded 

to a single penicillin injection which was performed in the morning allowing monitoring 

throughout the day. A clinical epileptologist observed no seizure activity or after 

discharges during the parameter sweep experiment or in a thorough post-experiment 

review of all recorded LFP channels. Our previous study provided the details of this 

dataset 32. 

 

For the third dataset (optogenetic data), we used one adult male Sprague-Dawley rat (2–

3-month-old; 250–300 g) from Charles River Laboratories (Wilmington, MA, USA). The 

animal was maintained within a 12/12 light/dark cycle vivarium while accessing unlimited 
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food and water. Emory University’s Institute for Animal Care and Use Committee 

approved all procedures used in this study. 

 

Two-step surgical procedures under anesthesia (1.5%–4% inhaled isoflurane) were 

performed as described in 33. In the first step, we injected the viral vector (AAV5-

hSynapsin-Channelrhodopsin2-eYFP) into the medial septum just to the right of the 

midline at a 20◦ angle to the dorsal-ventral axis (0.40 mm anterior, 2.12 mm lateral at the 

20◦ angles, 5.80 mm ventral to pia along the rotating axis). Using a pulled-glass pipette 

attached to a stereotactically mounted injector (Nanoject, Drummond Scientific Co., 

Broomall, PA, USA), we injected a volume of 1.8 µl containing 1012 particles ml−1 with a 

rate of 0.35 µl min−1. After the injection and drawing of the pipette, the scalp was stapled 

closed, and Meloxicam was administered as an analgesic (3–5 mg kg−1). 

 

The second surgery step was conducted after two weeks, allowing time for recovery and 

optogenetic channel expression after the first one. We implanted a 16-channel 

multielectrode array (MEA; Tucker Davis Technologies (TDT), Alachua, FL., USA) in 

hippocampal CA3 and CA1(centered at 3.50 mm posterior and 2.80 mm lateral to 

bregma). The ferrule was then inserted at a 20-degree angle to the dorsal-ventral axis into 

the reopened initial injection craniectomy, approximately 5.8 mm from the pia along the 

rotating axis. For 10 seconds, a 17 Hz, 10 ms, 50 mW mm2 stimulation was used to 

identify the correct ferrule depth. Finally, dental acrylic was used to seal the craniectomy 

and keep the electrode and ferrule in place. Also, the electrode ground, reference wires, 

and structural support were fixed to the skull with five 2 mm stainless steel screws. 
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After the subject recovered from the second surgery, we conducted the parameter sweep 

experiment on the anesthetized animal. We started by placing the animal under 3.0% 

isoflurane gas by volume (carried by O2) and then waited for the animal’s breathing to 

stabilize at 1 breath per second. We adjusted the anesthesia when their breathing started 

to go too high or too low beyond 1/sec. The typical range for anesthesia was 1.5-3%. 

After stabilizing the depth of anesthesia, we delivered the light to the medial septum 

through the implanted fiber optic at all combinations of amplitude (between 10 to 50 mW 

mm−2), pulse-width (between 2 to 10 ms), and frequency (between 5 to 42 Hz) for a total 

of 72 combinations of stimulation parameters. Stimulation parameters were applied in a 

random order for 5 s. The LFP signals were recorded from the hippocampus throughout 

the experiment using an RZ2 BioAmp Processor and a PZ2 pre-amplifier TDT (Alachua, 

FL, USA). Signals were recorded at a sampling rate of 24414 Hz and then downsampled 

to 2000 Hz for further processing and to limit the computational load during real-time 

experiments. 

 

Preprocessing and spectral power estimation 

When preprocessing the NHP and optogenetics data, we removed the very noisy signal, 

by a visual inspection, before filtering the signals with a low pass filter between 0-80Hz 

and a notch filter at 50 Hz for NHP and 60 Hz for the optogenetics dataset. In the NHP 

and optogenetics datasets, we calculated spectral power using the Thomson multi-taper 

method from the Chronux toolbox (http://chronux.org/), implemented in MATLAB 

(Mathworks, Natick, MA). The parameters for spectral analysis were the following: moving 
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window = 5 s with 0.1 s overlap, time-bandwidth product (TW) = 3, number of tapers (K) = 

5. For the NHP dataset, we estimated the post-stimulation theta power (5-8 Hz). While we 

could have used power from other frequency bands to test our framework, we focused on 

the theta band (5-8Hz) due to its correlation with seizures in MTLE, as reported in 

previous studies 34,35. For the optogenetics data, we estimated the during-stimulation (5 

seconds) gamma power (31-55 Hz). 

 

In-silico modeling 

Fig.1a provides an overview of the in silico simulation process employed in our study to 

validate the AL framework. The process began with a parameter sweep experiment, 

where we varied the stimulation parameters within a safe range and estimated the brain 

response from the post-stimulation signal for electrical stimulation or during the 

stimulation signal for optogenetic stimulation. After obtaining the input matrix containing 

the stimulation parameters and their corresponding brain responses, we divided it into two 

sets: an unseen test dataset and a training dataset, which we refer to as the training pool 

dataset. The in silico modeling consisted of three phases: the Initial Sampling Phase, the 

Model Improvement Phase, and the Validation Phase. In the Initial Sampling Phase, we 

randomly selected a few samples (equal to the number of stimulation parameters) from 

the training pool  dataset to form an initial training set and trained an initial model. In the 

Model Improvement Phase, we iteratively enhanced the model by adding one sample at a 

time to the training data from the training pool dataset. We employed both AL and RS 

approaches to refine the model in this phase and repeated this process N times. Within 

each iteration of the Model Improvement Phase, we validated the model on the unseen 
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dataset, effectively running the Validation Phase within each iteration of the Model 

Improvement Phase. In each iteration of the Model Improvement Phase, we calculated 

the root mean square error (RMSE) between the actual and predicted brain responses on 

the unseen test dataset. 

 

���� � ��

�
∑ �	� 
 	�� ���
���                                                   (1) 

where 	� and 	��were the true and the predicted label (i.e., brain response). We continued 

the procedure until i = N. The output of this process was a curve similar to what is shown 

in Fig.1b. The first and second curves represented the RMSE on the unseen test data in 

each iteration, respectively. At the end of the process, we calculated the area under the 

curve (AUC) for each RMSE curve. To obtain statistics, we ran the entire process 1000 

times and compared the result of RS and AL with different query strategies. The query 

strategies included QBC, EMCM, greedy sampling (GS), RD, QBC+RD, EMCM+RD, 

GS+RD, enhanced QBC (EQBC), and enhanced EMCM (EEMCM). Additionally, we used 

ridge regression (RR), SVR (with both linear and Gaussian kernel functions), and 

Gaussian process regression (GPR) models to evaluate the utility of RS and AL with 

different query strategies.After calculating the AUC_RMSE for each model, we compared 

the AUC_RMSE of the nine AL models with that of RS using a two-sample t-test with the 

Bonferroni correction, setting the significance level at 0.05/9= 0.0056 due to the nine 

comparisons. 
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Regression model 

Depending on the linearity or non-linearity of the effect of stimulation, we could use either 

linear or nonlinear regression models. When assuming a linear relationship between the 

stimulation parameters and brain response and using linear regression, we needed to 

minimize the loss function in 

��	� , �� � min
��, �  ∑ �	� 
 �� 
 �	�����

���                                           (2) 

where � denoted the regression coefficients, �� contained the stimulation parameters, and 

	�was the brain response.  In this study, we used ridge regression and support vector 

regression (SVR) with a linear kernel function as linear regression models to find the 

functional link between the stimulation parameters and the brain response. The ridge 

estimator solved the equation below: 

min
��, � � �

��
∑ �	� 
 �� 
 ��	��� � ��������
���                                              (3) 

SVR tried to minimize  

min
�, ��  

�

�
���� � � ∑ |��|�

���                                                                          (4) 

with the constraint 

|	� 
 ������| � � � |��|                                                                            (5) 

The SVR dual formulation was  

min
�, ��  ∑ ���

��� 
 ∑ ∑ ���
��� �
	�	
���

��� �� , �
�       0  ��  � !"# $%% &                       (6) 

subject to  

                                       ∑ ��	��
��� � 0                                                     (7) 

in which ��. � was the kernel function. In the linear SVR, we used the linear kernel function 
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as shown below: 

                                   ��(, (�� � (	(�                                                         (8) 

The nonlinear regression was an extended version of the linear one that used a much 

larger and general function class. This method estimated the function !��; �� as an 

additive expansion based on the basis function *��; +��: 
                              !�(; �� �  ∑ ��*��; +���

���                                           (9) 

in which +� was the mean of split location and the terminal node for each splitting 

variable, �� was the coefficient estimated by minimizing the loss function, which was 

�,	, !�(; ��- � �	 
 !�(; ����. In our study, as the nonlinear regression models between 

the DBS parameters and brain response, we used support vector regression with a radial 

basis function (RBF) kernel function in Equation (10). 

                                ��(, (�� � exp �
 ����
�

���
�                                                 (10)                    

where exp �. � was the exponential function, �. � is the Euclidean norm for vectors, and 1 

was the kernel parameter determining the geometrical structure of the mapped samples in 

the kernel space. Additionally, we used Gaussian process regression (GPR) as another 

nonlinear regression model.  

The GPR was written as:   

                                          f�3�  ~ GP�μ�3�, k�3, 3���                                                   (11) 

where μ�9� was the mean function, ��9, 9�� was the covariance function of the GP, and 

9, 9� were the input training data used to create the model. In GPR, we assumed that the 

training brain response followed a zero-mean prior Gaussian distribution. 
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Query strategy  

After building an initial model based on a few random stimulation parameters and their 

associated brain response, we used a query strategy to select the stimulation parameter 

most likely to improve the regression model. The query strategy was designed to meet 

three criteria: informativeness, representativeness, and diversity. Informativeness meant 

that the query strategy should select the stimulation parameters with the richest 

information (i.e., those parameters that improve the model more than the others). 

Previous studies showed that query by committee (QBC) and expected model change 

maximization (EMCM), which are based on uncertainty sampling, can query the samples 

with the richest information 36. The number of stimulation parameters in the vicinity of the 

selected stimulation parameter for the next query evaluated the representativeness of the 

selected parameter. By evaluating a selected parameter's representativeness, we 

ensured that the selected parameters were not outliers. For example, the red circle “A” in 

Supplementary Fig.6 does not meet the representativeness criterion since it is more 

likely to be an outlier.  Diversity meant that the selected parameter sets should be 

distributed across the entire parameter space. By considering the selected parameter's 

diversity, we ensured that the selected parameter was not from a small local region of the 

parameter space. For example, the red circle “B” in Supplementary Fig.6 is the next best 

sample that would need to be collected if we were to meet the diversity criterion. A 

previous study introduced the representativeness and diversity (RD) method to meet both 

representativeness and diversity requirements in the query strategy. Our study uses 

query methods that meet all three criteria mentioned above 37.  
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Query by committee 

Query by committee (QBC) is a popular active learning query strategy in both 

classification 38 and regression 39,40. In contrast to uncertainty sampling, which uses a 

single model, QBC builds a committee of models (learners) from existing labeled training 

data, which in our case consists of stimulation parameter sets and their respective brain 

responses. QBC then selects the unlabeled data (i.e., unadministered stimulation 

parameters) that the committee most disagrees, i.e., sample by showing most deviation 

from mean, should be sampled in the next step. In this approach, we first bootstrapped 

the S0 labeled sample into p copies, called C1 to Cp in Supplementary Fig.7, where each 

copy contained S0 samples with duplication, and then for each copy, we made a 

regression model, called M1 to Mp in Supplementary Fig.7  41. Therefore, in total, we had 

P regression models. Next, for the N-S0 unlabeled sample, we computed the variance of 

P predictions using the equation below:  

1� � �

�
∑ �	�� 
 	���            , : � �� � 1, … , =�
���                                             (12) 

where 	> was the average of predicted values of an unlabeled sample from p models (i.e., 

	��) as shown in the equation below: 

	> � �

�
∑ 	���
���                                                                                                    (13) 

The sample with the highest  1�  was selected for the next query.      

          

Expected model change maximization 

Expected model change maximization (EMCM) is another popular method for querying 

samples for both regression 42 and classification 43. First, from the M0 labeled samples, we 

built a regression model and computed the output of the model for unlabeled data (i.e., 
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(�) which we called 	?�. Similar to the QBC approach, we used the bootstrap method to 

construct P regression models from the labeled samples, and then we predicted the nth 

unlabeled sample (i.e., 	��) from each P model. Then we calculated the confidence of the 

prediction using the equation below: 

@�9�� � �

�
∑ A�	�� 
 	?��B�A�
��� , : � �� � 1, … . =                                         (14) 

When querying the label in the next step, we selected the sample with the maximum 

@�9��. Supplementary Fig.8 illustrates the EMCM strategy.  

 

Greedy Sampling 

In the GS method, we selected unlabeled samples (i.e., unadministered stimulation 

parameters) based on their distance from previously labeled samples (i.e., administered 

stimulation parameters) 44. For each unlabeled sample (i.e., (�) in the N-S0 set, we 

calculated the distance between that sample and all of the samples in the previously 

labeled samples set (i.e., ��).   

C�� � ��� 
 ��, D � 1, … , �� ; : � �� � 1, … =                                           (15) 

Next, we selected the unlabeled sample with the maximum distance from the labeled 

samples.  

CE
� � max C��   : � �� � 1, … =                                                                               (16) 

 

Integrating representativeness and diversity (RD) with QBC, EMCM, and GS  

The main drawback of the methods discussed above was that they did not consider the 

sampling representativeness and diversity. The RD approach added both 

representativeness and diversity to the approaches we discussed in the previous section. 
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By adding these two criteria to QBC, EMCM, and GS, we hoped to improve the outcome 

by reducing the estimated error and increasing the correlation between the actual and 

predicted brain response on the unseen stimulation parameters, i.e., those parameters 

that had not been previously collected. To illustrate how this method worked, let's assume 

that we had d labeled samples in our entire dataset (with the size of N). Therefore, we 

had N - d unlabeled samples. In the naïve RD algorithm, we first performed k-means 

clustering on the entire dataset, where k=d+1. Since we had only d labeled samples, at 

least one cluster did not contain any labeled samples. However, in practice, some clusters 

might have had more than one labeled sample; therefore, we should have had more than 

one cluster without any labeled samples. 

Next, to meet the diversity requirement, we needed to select the largest cluster that 

contained no labeled samples for the next query. To meet the representativeness 

requirement, the selected sample needed to be the sample closest to the center of the 

cluster. In the integrated version of RD with QBC, EMCM, and GS, after selecting the 

largest cluster without a labeled sample, we selected the next sample for labeling based 

on QBC, EMCM, and GS on all samples in the selected cluster. An illustration of this 

method is shown in Supplementary Fig.9 where we wanted to model a link between the 

stimulation parameter (x axis) and the target brain response biomarker (y axis). We had 

two know samples (the black circles), and the unknown samples were shown by gray 

circles. Since d=2 (the known samples), we separated the entire parameter space into 

three clusters, where we would have at least one cluster without any known (black) 

samples. This cluster was shown in a red ellipse in Supplementary Fig.9. 
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Enhanced QBC and EMCM 

The initial, randomly selected samples can sometimes be outliers, and their selection can 

reduce regression model performance. Conventional QBC and EMCM approaches do not 

involve any mechanisms that prevent the selection of outliers. As such, to prevent the 

effects of outlier selection, we used the EQBC and EEMCM methods that were proposed 

in 18.  

 

Brain state dynamic modeling  

The modeling of the effects of different stimulation parameters on target 

neurophysiological brain response biomarkers can be formulated as a dynamic or static 

mapping. In the dynamic formulation, predicting the effect of stimulation is a function of 

time and the current neural state (Fig.3a). In traditional static models, time is ignored and 

thus possibly confounds the effects of the variables being studied. In dynamic models, 

time is fundamental to both the basic structure of the data and the understanding of how a 

process unfolds. The mathematical description of the dynamic model of the brain can be 

expressed by a set of n coupled first-order ordinary differential equations called state 

equations.  

9G � !��9, B, H�                                                                                        (17) 

In this set of equations, x=[x1,x2,…,xn] is the state vector, u=[u1, u2, …,ur] is the input 

vector, here are the stimulation parameters and f(.) is a vector function, here is the 

regression model. Equation below shows a linear representation of this model. 

             9G � I9 � JB                                                                                            (18) 

             K � L9 
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In this equation, 9 M  N� is the state vector, 9G M  N� is the state derivative, and  K M  N� is 

the output vector. I M  N���  is the state transition matrix, J M  N��� is the input and 

L M  N���  is the output matrix 45. As mentioned earlier, the incorporation of the brain state 

prior to stimulation in the dynamic model was the only difference between the dynamic 

and static models. With this new perspective, we updated our in silico modeling process 

by adding the state of the brain before stimulation. 

 

Stochastic response dynamic modeling  

Unlike other systems, the brain's response to a specific input is somewhat stochastic, 

meaning that its response is not always consistent across multiple system identification 

tests. In practical terms, this means that identical stimulation parameters applied at 

different times can result in varying brain responses (Fig.3b). To capture the dynamics of 

the brain, we updated our original framework to incorporate multiple responses of the 

same parameter set collected across multiple sessions of the parameter sweep 

experiment (Supplementary Fig.10). This revised process, similar to the original 

framework shown in Fig.1a, consists of three phases. Initially, we divided the entire 

dataset (i.e., sets of stimulation parameters and their associated brain responses) into an 

unseen validation set and a training pool dataset. In Phase 1, we randomly selected three 

stimulation parameters and one associated brain response for each parameter (from the 

D available responses). In Phase 2, we iteratively expanded the training dataset through 

= iterations. Specifically, based on recommendations from either the AL or RS approach, 

we selected one stimulation parameter and its associated brain response (from all D 

available samples) to update the model. After each model update, we validated the model 
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on the 20% unseen validation dataset and calculated the RMSE between the predicted 

and actual brain responses (Phase 3). We then computed the AUC for the RMSE curve at 

the end of the process. We repeated the entire process 1000 times to gather statistical 

data. Finally, we compared the mean AUC_RMSE of the RS model with those of the AL 

models using all query strategies. 

 

In vivo experiment 

After finding the best query strategy via in silico modeling, we compared AL and RS 

through an in vivo test (Fig.5a). Before starting the experimental session, we put the 

entire parameter set, including stimulation intensity, frequency, and pulse width, into the 

unseen test dataset (25 samples) and the training pool  dataset (1025 samples). Then, we 

selected three sets of stimulation parameters in the first phase, applied optogenetic 

stimulation to the medial septum of the anesthetized rat, recorded the CA1 signal during 

stimulation, and estimated the slow-gamma power (30 to 55Hz). Using the best 

regression model obtained through the in silico modeling, we trained a regression model 

between the stimulation parameters and slow-gamma power using these three sets of 

parameters.  In Phase 2, we iteratively added N = 72 training samples one at a time in an 

analysis using RS and again in an analysis using AL. In Phase 3, we collected the brain 

response and estimated the slow-gamma power for the unseen test dataset. Each 

session took two hours. We repeated the entire two-hour experiment twenty times to 

generate statistics, in which we randomly alternated the order of RS and AL in Phase 2. 

Also, we used the same unseen test stimulation parameters in all twenty experiments. In 

the post-experiment analysis, we estimated the RS and AL model performance by 
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calculating the RMSE on the unseen test data in each iteration of Phase 2, and we next 

estimated the mean AUC_RMSE of each experiment for both AL and RS models. We 

used the paired t-test because the same unseen test stimulation parameters were applied 

in each experiment, making the observations from the AL and RS models naturally paired 

and allowing for a more accurate comparison of their performance. 
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Fig.1. Active learning in silico modeling.  a) Overview of the proposed stimulation 

protocol for validating the active learning (AL) framework. The procedure consists of three 

phases. In Phase 1, called initial sampling, a model is built between the response 

biomarker and stimulation parameters using a small subset of samples from the training 

dataset. In Phase 2, called model improvement, the model is iteratively updated by 

querying new samples, with a total of N samples collected. After each update, the model's 

performance is evaluated on an unseen test dataset by estimating the Root Mean Square 

Error (RMSE) in Phase 3, referred as validation. b) At the end of the process, the area 

under the curve for RMSE, denoted as AUC_RMSE, is estimated. This entire process is 

repeated 1,000 times. Finally, the AUC_RMSE of the AL approach is compared with the 

AUC_RMSE obtained by Random Sampling (RS), and AL-based models that outperform 

the RS-based models by showing lower AUC_RMSE are identified after applying 

Bonferroni correction in two-sided two sample t-test of comparing AL and RS models 

performance (p<0.0056, N=1,000). c) The synthetic data generated for cortical-basal 
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ganglia-thalamus network for PD model. d) Ridge regression (RR) from RS vs. AL with 

different query strategies on the cortex-basal ganglia-thalamus network PD model. Left 

panel: a representative trajectory of RMSE with the different number of samples queried 

through RS and AL with nine query strategies. Right panel: Mean RMSE_AUC of running 

1,000 times with different AL query strategies and RS sampling. * represents those AL 

strategies having significantly lower mean AUC_RMSE than RS after Bonferroni 

correction in two-sided two sample t-test of comparing AL and RS models performance 

(p<0.0056, N=1,000).  e) A summary plot comparing AL-based model versus RS-based 

model performance on unseen test dataset for different regression models and query 

strategies in two-sided two sample t-test of comparing AL and RS models performance 

(p<0.0056, N=1,000). This plot illustrates the difference in AUC_RMSE between models 

obtained using AL and those obtained using RS for each regression model. In this figure, 

colored cells highlight results that remained significant after applying Bonferroni 

correction. 

 

Fig.2. Reproducibility of active learning within subject. a) Summit implantable 

neurostimulator (INS) can have bidirectional communication with the researcher’s host 

computer (RHC) and research lab programmer (RLP) via the clinician telemetry module 

(CTM). With the RLP, we can set the safety level of stimulation parameters, and with the 

RHC, we can control the INS configuration for real-time recording and stimulation. Two 

leads contain eight stimulation and recording sites implanted in the hippocampus of a 

non-human primate. b) Conceptual schematic of the asynchronous distributed 

multielectrode stimulation (ADMES). c) A summary plot comparing performance of AL-
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based models versus RS-based models on an unseen test dataset for a ridge regression 

(RR) model with different query strategies in which we repeated the simulation process for 

each model 1,000 times. This panel illustrates the difference in AUC_RMSE between 

models obtained using AL with various query strategies and those obtained using RS. In 

this figure, colored cells highlight results that remained significant after applying the 

Bonferroni correction in two-sided two sample t-test of comparing AL and RS models 

performance (p<0.0056, N=1,000). The model obtained from all query strategies except 

EEMCM showed better AUC_RMSE compared with the RS-based model in all sessions 

except session 4. d) A summary plot comparing the performance of AL-based models 

versus RS-based models on an unseen test dataset for a support vector regression model 

with linear kernel function model with different query strategies. The plot illustrates the 

difference in AUC_RMSE between models obtained using AL with various query 

strategies and those obtained using RS. In this figure, colored cells highlight results that 

remained significant after applying the Bonferroni correction in two-sided two sample t-

test of comparing AL and RS models performance (p<0.0056, N=1,000). We observed an 

improvement in the regression model performance using AL in all sessions when we used 

AUC_RMSE as a metric. e) A summary plot comparing the performance of AL-based 

models versus RS-based models on an unseen test dataset for a support vector 

regression model with Gaussian kernel function model with different query strategies. This 

plot illustrates the difference in AUC_RMSE between models obtained using AL with 

various query strategies and those obtained using RS. In this figure, colored cells 

highlight results that remained significant after applying the Bonferroni correction in two-

sided two sample t-test of comparing AL and RS models performance (p<0.0056, 
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N=1,000). We observed an improvement in the regression model AUC_RMSE using 

EMCM and QBC in all sessions. f) A summary plot comparing the performance of AL-

based models versus RS-based models on an unseen test dataset for Gaussian process 

regression (GPR) with different query strategies. This plot illustrates the difference in 

AUC_RMSE between models obtained using AL with various query strategies and those 

obtained using RS. In this figure, colored cells highlight results that remained significant 

after applying the Bonferroni correction in two-sided two sample t-test of comparing AL 

and RS models performance (p<0.0056, N=1,000). We observed an improvement in the 

regression model AUC_RMSE using QBC and EQBC in all sessions.  

 

Fig.3. Dynamic modelling. a) Brain state dynamic modeling: example trajectory through 

state space in a dynamic model. Incorporating the state of the brain prior to the 

stimulation in the dynamic model is the only difference between the dynamic and static 

models. b) Stochastic response dynamic modeling: In contrast to other systems, the brain 

is dynamic in that the system response associated with an input set is different across 

multiple system identification tests. That means the brain response is different when we 

administrate the same stimulation parameters. c) A summary plot comparing the 

performance of AL-based models versus RS-based models on an unseen test dataset for 

a ridge regression model with different query strategies in static, brain state dynamic 

modeling, and stochastic response dynamic modeling. This graph illustrates the 

difference in AUC_RMSE between models obtained using AL with various query 

strategies and those obtained using RS in which we repeated the simulation process for 

each model 1000 times. In this figure, colored cells highlight results that remained 
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significant after applying the Bonferroni correction (p<0.0056, N=1,000). In the static 

setting for the RR model, eight of nine query strategies outperformed the RS approach. A 

similar trend was observed in brain state dynamic modeling, with eight out of nine 

strategies surpassing RS performance in the unseen test data. In stochastic response 

dynamic modeling, seven out of nine strategies outperformed RS. The AL models 

consistently outperformed the RS models, with a greater suppression of AUC_RMSE in 

brain state dynamic modeling and stochastic response dynamic modeling settings. d) A 

summary plot comparing the performance of AL-based models versus RS-based models 

on an unseen test dataset for a support vector regression model with linear kernel 

function model with different query strategies in static, brain state dynamic modeling, and 

stochastic response dynamic modeling in which we repeated the simulation process for 

each model 1000 times. Seven out of nine AL approaches in both the static and 

stochastic response dynamic modeling settings, and eight out of nine in the brain state 

dynamic modeling setting, outperformed the RS model on the unseen test dataset. The 

improvement is more pronounced in the brain state dynamic modeling setting. e) A 

summary plot comparing the performance of AL-based models versus RS-based models 

on an unseen test dataset for a support vector regression model with Gaussian kernel 

function model with different query strategies in static, brain state dynamic modeling, and 

stochastic response dynamic modeling. In the static scenario, five AL-based models 

exhibited higher AUC-RMSE than the RS model. However, in both the brain state 

dynamic modeling and stochastic response dynamic modeling scenarios, none of the AL-

based models showed higher AUC-RMSE than the RS model. f) A summary plot 

comparing the performance of AL-based models versus RS-based models on an unseen 
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test dataset for Gaussian process regression (GPR) with different query strategies in 

static, brain state dynamic modeling, and stochastic response dynamic modeling in which 

we repeated the simulation process for each model 1000 times. In the static scenario, five 

AL-based models exhibited higher AUC-RMSE compared to the RS model. However, in 

brain state dynamic modeling none of the AL-based models showed higher AUC-RMSE 

than the RS model.  

 

Fig.4. In silico modeling result before in vivo experiment.  a) Normalized gamma 

power for different stimulation parameters. b) Summary plot of models’ performance on 

the medial septum optogenetic parameter sweep data. This graph illustrates the 

difference in AUC_RMSE between models obtained using AL with various query 

strategies and those obtained using RS in which we repeated the simulation process for 

each model 1000 times. In this figure, colored cells highlight results that remained 

significant after applying the Bonferroni correction in two-sided two sample t-test of 

comparing AL and RS models performance (p<0.0056, N=1,000). The ridge regression 

model with query by committee (QBC) achieved the lowest mean AUC_RMSE among all 

regression models and query strategies. Consequently, we selected this model for the in 

vivo experiment. 

Fig.5. An overview of proposed in vivo active learning framework. a) The experiment 

contains three phases. Phase1 referred as initial sampling: We assigned the entire 

parameters set (1080 samples) to the unseen test (25 samples) and training pool (1055 

samples) sets.  The 25 unseen test samples were not used in training phase. Next, we 

selected 3 samples from the training pool and simulated medial septum, recorded local 
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field potential from CA1 during the stimulation, and estimated slow gamma power. Then, 

we trained an initial regression model (between the stimulation parameters and the slow-

gamma power) based on three collected samples. Phase2 referred as model 

improvement: We iteratively increased training samples size (one at a time). We added 72 

samples through both active learning and random sampling process. Phase3 referred as 

validation set sampling: We stimulated the medial septum with the stimulation parameters 

of the test dataset and recorded from CA1. We collected 25 samples in this phase. b) AL 

vs RS in a real-time in vivo medial septum optogenetic experiment by comparing the 

mean AUC_RMSE of the models on the unseen dataset. We found the ridge regression 

(RR) model with query by committee or QBC (green circles) outperformed the model from 

random sampling or RS (blue circles) on 25 unseen test datasets across 20 experimental 

sessions (p=0.0036, N=20).   
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