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Abstract Coordination of cell proliferation and migration is fundamental for life, and its dysreg-
ulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, 
and vice versa, remains largely unknown. We address these questions by combining in silico model-
ling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, 
forming chains with a leader cell directing the movement of trailing followers. We show that the 
acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch 
activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is 
required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in 
G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and 
remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction 
of Notch signalling and cell cycle progression.

Editor's evaluation
Using a combination of in vivo and in silico approaches, the authors have demonstrated how cell-
fate decisions are orchestrated at the level of leader vs. follower cells in collective cell migration 
of trunk neural crest cells. They highlight the role of Notch signaling and cell cycle progression, 
showing how these traits differ between the leader and follower cells. The findings are of wide 
interest, as collective cell migration is a fundamental process critical for embryonic development as 
well as invasion of various cancers.

Introduction
The harmonious coupling of cell proliferation with migration is fundamental for the normal growth 
and homeostasis of multicellular organisms. A prominent consequence of the dysregulation of these 
processes is cancer. Uncontrolled cell proliferation leads to primary tumours, and the acquisition of 
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migratory capacities leads to the formation of secondary tumours, the most common cause of cancer 
deaths. Metastatic cells can migrate collectively, which endows them with more aggressive behaviours 
(Nagai et al., 2020). Collective cell migration refers to the movement of a group of cells that main-
tain contact and read guidance cues cooperatively (Rorth, 2009). This mechanism has been studied 
in several contexts, such as wound healing, angiogenesis, and neural crest (NC) migration. However, 
how cell proliferation impacts collective cell migration, and vice versa, remains largely unknown. The 
molecular signals that may couple these two fundamental processes remain equally unclear.

The NC is a mesenchymal cell population that arises early in development and migrates throughout 
the body, giving rise to a variety of cell types (neurons, glia, pigment cells, etc.). The NC’s stereotypical 
migratory behaviour (Gammill and Roffers-Agarwal, 2010) and similarity to metastatic cells (Maguire 
et al., 2015) make this cell type an ideal model to study the mechanisms of collective cell migration in 
vivo. Our previous work has shown that zebrafish trunk neural crest (TNC) migrate collectively forming 
single-file chains (Richardson et al., 2016). One cell at the front of the chain, the leader, is the only cell 
capable of instructing directionality to the group, while follower cells trail the leader. This division of 
roles into leaders and followers has been observed in other collectively migrating systems (Theveneau 
and Linker, 2017). Moreover, histopathological studies from cancer samples and cell lines show clear 
morphological and molecular differences between the invasive front, leaders, and the lagging cells, 
followers (Pandya et al., 2017). One outstanding question from these studies is what are the signals 
that determine leader versus follower migratory identities?

Notch signalling is a cell-cell communication pathway that directly translates receptor activa-
tion at the membrane into gene expression changes. Notch receptors are activated by membrane-
bound ligands of the Delta/Serrate/Lag2 family. Upon ligand binding, Notch receptors are cleaved 
by γ-secretases releasing their intracellular domain (NICD). Subsequently, NICD translocates to the 
nucleus, binds the CBF1/Su(H)/Lag-1 complex, and initiates transcription (Bray, 2016). Among the 
direct Notch targets are members of the Hes gene family, which encode transcriptional repressors 
able to antagonise the expression of specific cell fate determinants and Notch ligands, generating a 
negative feedback loop in which cells with high Notch receptor activity downregulate the expression 
of Notch ligands, and cannot activate the pathway in their neighbours. Hence, adjacent cells inter-
acting through the Notch pathway typically end up with either low or high levels of Notch activity 
and adopt distinct fates, a mechanism known as lateral inhibition (Lewis, 1998). Interestingly, Notch 
signalling has also been implicated in cell migration (Giniger, 1998; Leslie et al., 2007; Timmerman 
et al., 2004) and promotes invasive behaviours during cancer progression (Reichrath and Reichrath, 
2012). Furthermore, lateral inhibition is implicated in the allocation of migratory identities during 
angiogenesis (Phng and Gerhardt, 2009), trachea formation in Drosophila (Caussinus et al., 2008), 
and in cell culture (Riahi et al., 2015). Whether Notch signalling plays a similar role in the context 
of mesenchymal cell migration is unknown. Notch signalling is required for NC induction (Cornell 
and Eisen, 2005), and its components and activity remain present in migrating NC (Liu et al., 2015; 
Rios et al., 2011). Nevertheless, the role of Notch during NC migration remains unclear. Cardiac NC 
are reported to develop normally under lack of Notch signalling (High et al., 2007). However, using 
different genetic tools, it has been shown that both gain and loss of Notch function led to the lack of 
NC derivatives (Mead and Yutzey, 2012). Moreover, in Xenopus the loss of Notch effectors leads to 
aberrant NC migration (Vega‐López et al., 2015).

The Notch pathway has not only been implicated in cell fate allocation, but it is also important 
for cell proliferation. Depending on the context, Notch can inhibit or promote cell cycle progression 
(Campos et al., 2002; Carlson et al., 2008; Devgan et al., 2005; Fang et al., 2017; Georgia et al., 
2006; Mammucari et  al., 2005; Nguyen et  al., 2006; Nicoli et  al., 2012; Noseda et  al., 2004; 
Ohnuma et al., 1999; Park et al., 2005; Patel et al., 2016; Rangarajan et al., 2001; Riccio et al., 
2008; Zalc et al., 2014). Indeed, Notch target genes include important cell cycle regulators such as 
CyclinD1, p21 and MYC (Campa et al., 2008; Guo et al., 2009; Joshi et al., 2009; Palomero et al., 
2006; Ronchini and Capobianco, 2001).

Using a combination of in vivo and in silico approaches, we have established that differences in 
Notch activity between premigratory TNC select the leader cell. Cells with high levels of Notch signal-
ling adopt a leader identity, while cells that lack Notch activity become followers. Our data show 
that a single progenitor cell in the premigratory area divides asymmetrically, giving rise to a large 
prospective leader and smaller follower cell. We propose that this original small asymmetry generates 
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differences in Notch activity between TNC that are thereafter enhanced by cell-cell communication 
through Notch lateral inhibition. Differences in Notch activity in turn drive distinct cell cycle progres-
sion patterns and regulate the expression of phox2bb. Leader cells undergo the G1/S transition faster 
and remain in S-phase for longer than follower cells. Moreover, continuous progression through the 
cell cycle is required for TNC migration. Taken together, our results support a model in which the inter-
action between Notch and the cell cycle defines leader and follower migratory behaviours.

Results
Notch signalling is required for TNC migration
NC cells are induced at the border of the neural plate early during development. The prospective 
NC expresses Notch components, and Notch activity is required for NC induction (Cornell and 
Eisen, 2005). Our analysis reveals that Notch components remain expressed in NC after induction, 
suggesting that Notch signalling may also be involved in later aspects of NC development (Figure 1—
figure supplement 1). Moreover, analysis of the Notch activity reporter line 12xNRE:egpf (Moro 
et al., 2013) shows that Notch signalling levels vary widely between premigratory TNC (Figure 1), 
suggesting that Notch may play a role after TNC induction. To explore the role of Notch in TNC devel-
opment, we first aimed to define the stage at which NC induction becomes independent of Notch 
signalling. To this end, we treated embryos with the γ-secretase inhibitor DAPT (Richter et al., 2017) 
and assessed expression of NC marker. Our results showed that Notch inhibition impairs TNC induc-
tion up to 11 hours post-fertilization (hpf; Figure 2) and confirmed previous reports that induction of 
the cranial and vagal NC populations is independent of Notch signalling (Cornell and Eisen, 2000). 
Next, we analysed the effect of Notch inhibition at 12 hpf on the development of TNC derivatives. We 
found a reduction in all TNC derivatives (neurons, glia, and pigment cells; Figure 3A–F) upon Notch 
inhibition, suggesting that Notch activity is important in a process subsequent to induction, yet prior 
to differentiation. We next explored whether TNC migration is affected by Notch inhibition. Analysis 
of crestin expression showed a reduction in the number of TNC cell chains formed and in their ventral 
advance upon DAPT treatment (Figure 3G–J), which likely explains the lack of TNC derivatives at 
later stages. We then asked whether these results are due to a delay or a halt of migration. To this 
end, embryos were treated with DAPT from 12 hpf for 6–12 hr and processed for crestin expres-
sion. Decreased numbers of migratory chains were observed at all timepoints, but as embryos devel-
oped new chains were formed, indicating that the blockade of Notch signalling delays TNC migration 
(Figure 3K). Comparable results were obtained by inhibiting Notch genetically in embryos where 
the dominant-negative form of Suppressor of Hairless is under the control of a heat shock element 
(Latimer et al., 2005; hs:dnSu(H); Figure 3L). We reasoned that if Notch inhibition delays the onset of 
TNC migration, its overactivation might lead to TNC migrating earlier, leading to an increased number 
of chains. To test this, we induced NICD expression in all tissues by heat shock of hs:Gal4;UAS:NICD 
embryos (Scheer and Campos-Ortega, 1999). To our surprise, Notch gain of function (GOF) and loss 
of function (LOF) resulted in almost identical phenotypes, both showing a similar reduction of TNC 
chain numbers (Figure 3L). Taken together, these results show that precise regulation of Notch signal-
ling levels is required for TNC migration.

In vivo Notch activity allocates TNC migratory identity
Interestingly, Notch signalling is required during collective migration to define distinct identities (Phng 
and Gerhardt, 2009; Caussinus et  al., 2008; Riahi et  al., 2015). To test whether Notch plays a 
similar role in TNC migration, we performed live-imaging analysis of TNC migration under lack (inhi-
bition and LOF) or overactivation (GOF) of Notch signalling (Figure 4, Figure 4—videos 1 and 2). 
Our previous work defined a leader as the cell that retains the front position of the chain throughout 
migration, advancing faster and in a more directional manner than followers (Richardson et al., 2016). 
Under Notch inhibition (treatment with γ-secretase inhibitor Compound E; Richter et al., 2017), TNC 
remain motile with a single cell initiating the movement of the chain, but in contrast to control treat-
ment (DMSO) the leader cell is unable to retain the front position and is overtaken by one or several 
followers (Figure 4A and C, Figure 5A and B, Figure 4—video 1). The overtaking follower cell, in 
turn, is not always able to retain the front position and can be overtaken by cells further behind in the 
chain. This loss of group coherence corresponds with a reduction in ventral advance, with most leader 
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Figure 1. Trunk neural crest (TNC) present different levels of Notch activity. (A, E) Images of two different Notch 
reporter 12xNRE:egfp embryos (18 hpf) stained for sox10 (magenta) and GFP (green) RNAs, and nuclei stained 
with DAPI (blue). (B) Enlargement of the anterior area in (A). (C) Enlargement of the more posterior area in (A). 

Figure 1 continued on next page
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cells unable to move beyond the neural tube/notochord boundary (NT/not; Figure 4C, Figure 5A and 
C). This behaviour leads to an accumulation of cells at the NT/not, where some cells repolarise moving 
anterior or posteriorly and crossing the somite boundary and, in some cases, joining adjacent chains. 
Analysis of single-cell tracking showed that under Notch inhibition leader cells also have decreased 
speed and directionality (Figure 5D and E). Similar results were observed when Notch inhibition was 
achieved genetically by driving overexpression of dnSu(H) through heat shock in the entire embryo 
(not shown; hs:dnSu(H) line). Together, these results strongly suggest that upon lack of Notch signal-
ling the TNC population is formed solely by follower cells that are unable to coordinate the movement 
of the group. Nevertheless, Notch signalling is important for the development of tissues surrounding 
TNC that act as a substrate for migration, raising the possibility that Notch signalling does not act cell-
autonomously in TNC and instead the phenotypes observed are simply the consequence of somite 
and/or neural tube malformations. However, this appears unlikely as somite development (formation, 
patterning, and differentiation) and neuron formation are not affected by Notch inhibition at the axial 
level analysed (Figure 4—figure supplement 1). Next, we directly tested whether Notch signalling is 
autonomously required in TNC by inhibiting Notch activity exclusively in NC at the time of migration. 
To this end, we generated a new UAS:dnSu(H) line and crossed it with Sox10:Kalt4 fish (Alhashem 
et al., 2021). In the resultant embryos, all NC express Gal4 fused to the oestrogen receptor binding 
region (Gal4-ER) and are fluorescently labelled by nuclear-RFP. Under normal conditions, Gal4-ER is 
maintained inactive in the cytoplasm, whilst upon addition of tamoxifen, Gal4-ER is translocated to the 
nucleus activating transcription from the UAS:dnSu(H) transgene (Figure 4—figure supplement 2). 
We found that autonomous inhibition of Notch signalling in NC phenocopies the chemical inhibition. 
Leader cells are unable to retain the front position, being overtaken by followers, and ventral advance 
is reduced with cells accumulating at the NT/not boundary (Figure 4D, Figure 5A–C, Figure 4—
video 2). Moreover, leader cells adopt followers’ migratory parameters, showing decreased speed 
and directionality (Figure 5D and E), confirming that Notch activity is autonomously required in TNC 
for identity allocation, and suggest that in the absence of Notch signalling a homogenous group 
of followers is established. In view of these results, we hypothesised that a homogeneous group 
of leaders would be formed upon Notch overactivation. Using a similar strategy, Notch overactiva-
tion was induced in the whole embryo (not shown, hs:Gal4;UAS:NICD; Scheer and Campos-Ortega, 
1999), or exclusively in NC (Sox10:Kalt4;UAS:NICD), and migration was analysed by live imaging. 
Similar results were obtained in both experimental conditions: group coherence is lost, leader cells are 
overtaken by followers, and ventral advance is impaired (Figure 4F, Figure 5A–C, Figure 4—video 
2). Interestingly, in Notch GOF conditions follower cells adopt leaders’ characteristics, moving with 
increased speed, but all cells in the chain follow less directional trajectories, which hinders the ventral 
advance of the group (Figure 5D and E), indicating that all cells in the chain migrate as leaders. 
Next, we tested whether the behavioural changes observed upon Notch alterations were mirrored by 
molecular changes by using the leader marker phox2bb. In control conditions, phox2bb transcripts 
are highly enriched in the leader cells from early stages of migration (Figure 6A, B, and G; Alhashem 
et al., 2022a). Consistent with expectations, upon Notch overactivation phox2bb is expressed by all 
the cells in the chain (Figure 6C, D, and G), while its expression is absent when Notch is inhibited 
(Figure 6E–G). These data show that Notch activity controls phox2bb expression and allocates TNC 
migratory identity.

In summary, our in vivo and molecular data show that Notch signalling is required autonomously in 
TNC for migratory identity allocation. TNC with high levels of Notch express phox2bb and become 
leaders, while cells with low Notch activity migrate as followers. Alterations of Notch signalling lead 
to a homogeneous TNC group with a single migratory identity that is unable to undergo collective 
migration. Taken together, these data suggest Notch lateral inhibition as the mechanism responsible 
for TNC migratory identity acquisition.

(D) Enlargement of the anterior most posterior area in (A). (F) Enlargement of the outlined area in (E). Anterior to 
the left, dorsal top. White lines show approximate cell boundaries.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Expression of Notch signalling components during trunk neural crest (TNC) migration.

Figure 1 continued
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Figure 2. Trunk neural crest (TNC) induction is independent of Notch signalling after 12 hpf. (A) crestin in situ hybridisation in wildtype (WT) embryo 
at 18 hpf. (B, C) crestin in situ hybridisation in DAPT-treated embryos: (B) reduced or (C) absent TNC. (D) Quantification of the crestin expression 
phenotypes upon DAPT treatment (phenotypes: WT, black; reduced, orange; absent, red; 30% epiboly n = 38, 75% epiboly n = 32, 11 hpf n = 35, 12 
hpf n = 39). (E–J) In situ hybridisation for neural crest (NC) markers in representative control (DMSO) and DAPT-treated embryos from 12 to 16 hpf. (E, 

Figure 2 continued on next page
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In silico modelling predicts that more than one leader is required for 
TNC migration
Our in vivo analysis shows that upon both Notch inhibition and overactivation TNC are unable to 
undergo collective migration due to lack of group coherence. On the other hand, our molecular anal-
ysis shows that upon Notch inhibition an all-followers group is established, while Notch overactivation 
leads to the formation of an all-leaders group. To gain a better understanding of these paradoxical 
results, we took an in silico approach, developing a discrete element model of TNC migration. Cells 
were simulated as 2D particles moving into a constrained space and endowed with intrinsic motility. 
Four variables control cell movement in the model: contact inhibition of locomotion (CIL) and co-attrac-
tion (co-A) define movement directionality and group cohesion, while volume exclusion regulates cell 
overlap, intuitively understood as cell size, while a noise element (zeta) was added to the cell’s trajec-
tory (Figure 7A). A multi-objective scoring system, based on in vivo measurements, was developed to 
evaluate how close simulations with different underlying mechanisms matched chain behaviours. The 
scores were (1) chain cohesion, a maximum distance of 57 μm is allowed between adjacent cells; (2) 
single file migration for at least 80% of the simulation; (3) followers undergo rearrangements, while (4) 
leaders retain the front position, and (5) the chain should advance to the end of the migratory path 
(Figure 7B). Using this analysis and a parsimonious modelling approach, we attempted to match in 
vivo TNC migration with the simplest form of the model, only adding complexity incrementally in an 
effort to find the minimal set of predicted mechanisms required. We first simulated chains composed 
of homogeneous cells and systematically covaried all parameters. We found no parameter combi-
nation able to match all scores, confirming our previous findings that cell heterogeneity is required 
for TNC migration (Figure 7C; Richardson et al., 2016). Evidence from other systems (Astin et al., 
2010; Bentley et al., 2014; Parkinson and Edwards, 1978; Theveneau and Mayor, 2013) led us 
to hypothesise that differences in the CIL response between cells may be at play. Thus, we simu-
lated chains in which only cells of different identities present CIL (Diff CIL; Figure 7A). These simula-
tions match several scores, but chains are unable to reach the end of the migratory path (Figure 7C, 
Figure  4—video 3). Next, we varied Diff CIL intensity, co-A, and cell size (volume exclusion) for 
leader cells. Interestingly, the model is only able to recapitulate control conditions when the difference 
between leaders and follower is maximal for all variables. Nevertheless, it is unable to recapitulate 
Notch GOF and LOF phenotypes (Figure 7C). Our previous results show that differences in Notch 
signalling establish migratory identities, suggesting that lateral inhibition may be the mechanism at 
play. To explore whether different outcomes of lateral inhibition may allow the model to simulate 
Notch altered conditions (GOF and LOF), different ratios of leader/follower cells were simulated. We 
first tested a 1:1 ratio, surprisingly this chain architecture over-migrates, moving beyond the end of 
the pathway (Figure 7C, Figure 4—video 3). Interestingly, we found that several parameter combi-
nations from the 1:2 and 1:3 leader/follower ratios were able to recapitulate in vivo control condition, 
as well as the loss of group coherence and ventral advance observed in Notch GOF (all leader simu-
lation) and LOF (all follower simulation; Figure 4B, E, and G, Figure 5, Figure 4—video 3). In these 
simulations, the six parameter combinations that match all in vivo scores had followers at the low 
setting, while leaders’ CIL intensity took medium or high values, cell size took medium or low values, 
and co-attraction took all levels. Nevertheless, all these parameter combinations endow the leader 
with enhanced migratory behaviour.

Next, we used a linear discriminant analysis (LDA) to study which of the model parameters bear 
most weight in the definition of leader and follower identity. LDA is a dimensionality reduction method 
that projects the data onto a lower dimensional space minimizing the variation within classes (e.g. 
between leaders) and maximizing the variation between classes (leaders versus followers), allowing 
the hierarchical ordering of the factors that best explain the class separation. First, we used the in vivo 
data to determine whether leaders and followers were properly separated by LDA. A visual inspection 
of the data makes clear that LDA works well to classify migratory identities (Figure 7D). Moreover, the 
LDA shows that ventral distance is the most important variable separating leaders from followers, with 

F) crestin (DMSO n = 32, DAPT n = 38), (G, H) foxd3 (DMSO n = 16, DAPT n = 35), and (I, J) sox10 (DMSO n = 27, DAPT n = 29). Anterior to the left, 
dorsal top.

Figure 2 continued
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Figure 3. Notch signalling is required for trunk neural crest (TNC) migration and derivatives formation. (A, B) 
Glial marker mbp in situ hybridisation upon (A) control (DMSO; n = 15) and (B) DAPT (n = 20) treatment from 
12 hpf. (C, D) Neuronal marker bdh in situ hybridisation upon (C) control (DMSO; n = 25) and (D) DAPT (n = 18) 
treatment from 12 hpf. (E, F) Pigmentation upon (E) control (DMSO; n = 40) and (F) DAPT (n = 52) treatment from 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.73550
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speed and directionality playing a less dominant role (Figure 7E). Next, we used this method to assess 
the importance of each of the model parameters. CIL intensity appears to be the parameter that most 
differ between leader and follower cells, while heterogeneity in the other parameters is not essential 
(Figure 7F). Taken together, the in silico data confirms our previous conclusion that TNC chains are a 
heterogeneous group. Remarkably, it also predicts CIL intensity to be the most important distinction 
between leaders and followers. Finally, the model anticipates that TNC chains are formed of leaders 
and followers in a 1:2 or 1:3 ratio.

Leader cells arise from the asymmetric division of a progenitor cell
Cell size is a prominent characteristic distinguishing leader from follower cells. Leaders are almost 
twice as big as followers during migration and this difference is evident before migration initiation 
(Richardson et al., 2016), suggesting that size disparity arises at birth or shortly thereafter. Interest-
ingly, differential cell size emerged as an important parameter in our in silico analysis, contributing to 
more realistic leader/follower coordination behaviours. To understand the origin of these size differ-
ences, we investigated whether leader and follower cells share a common progenitor, and at which 
point differences in size become apparent. To this end, we imaged FoxD3:mCherry;H2aFVA:H2a-GFP 
embryos. The FoxD3:mCherry reporter (Hochgreb-Hägele and Bronner, 2013; Lukoseviciute et al., 
2018) labels NC from early stages and allows us to define TNC identity at later stages by their migra-
tory position. Moreover, the nuclear marker H2aFVA:H2a-GFP (Pauls et al., 2001) was used to track 
single cells and their divisions. Tracking analysis shows that the asymmetric division of a single progen-
itor cell in each body segment gives rise to a larger cell that becomes a leader (102 ± 20 µm2), and 
a smaller sibling that migrates as follower (72 ± 9 µm2; Figure 8A and B, Figure 8—video 1). In 
contrast, all other progenitors divide symmetrically, giving rise to two follower cells (87 ± 27 µm2; 
Figure 8C and D). We also noticed that the leader progenitors’ divisions are spatially restricted to the 
anterior quarter of the premigratory area in each segment, while the followers’ progenitor divisions 
take place across the premigratory area (Figure 8E).

We then reasoned that leader cells, being bigger, may undergo the next division in a shorter time 
span than follower cells, and in consequence, mitotic figures would be observed at different, but 
consistent, positions in their trajectory. Indeed, we found two different patterns of divisions in respect 
to migration: (1) cells that first Divide and then Migrate (D→M) or (2) cells that first Migrate and then 
Divide (M→D; Figure 8F and G, Figure 8—video 2). Interestingly, we found that the patterns of 
cell division correlate with cell identity. Most leader cells divide during migration (M→D: 86%), while 
the bulk of follower cells divide before migration initiation (D→M: 90%, Figure 8H). These patterns 
result in leader and follower cells dividing at distinct positions, 74% of leaders divide at the NT/not 
boundary (65.3 ± 9.6 µm), while 85% of followers divide mostly within the premigratory area or in the 
dorsal-most region of the somite (42 ± 12.4 µm; Figure 8I). Together, these results show that leader 
cells arise from the asymmetric division of a progenitor. Thereafter, leader and follower cells show 
distinct locations and patterns of division, suggesting that leaders and followers progress asynchro-
nously through the cell cycle, which may influence their migratory behaviour.

Cell cycle progression is required for TNC migration
To test the role of cell cycle progression in TNC migration directly, we used inhibitory drugs. The 
S-phase inhibitor aphidicolin blocks over 94.7% ± 4.5% of mitotic figures after 3 hr of treatment, while 
the G2/M inhibitor genistein prevents 90% ± 10% of divisions within 6 hr, but neither treatment affects 

12 hpf. (G, H) Neural crest marker crestin in situ hybridisation upon (G) control (DMSO) and (H) DAPT treatment 
from 12 to 18 hpf. (I, J) crestin in situ hybridisation upon (I) control (DMSO) and (J) DAPT treatment from 12 to 
24 hpf. (K) Quantification of migratory chain formation upon control (DMSO) and DAPT treatment from 12 to 18 
hpf (DMSO n = 98; DAPT n = 126), 20 hpf (DMSO n = 111; DAPT n = 109), and 24 hpf (DMSO n = 42; DAPT n 
= 61). (L) Quantification of migratory chain formation in control (HS:Gal4; n = 516), Notch loss of function (LOF) 
(HS:dnSu(H); n = 220), and gain of function (GOF) conditions (HS:Gal4xUAS:NICD; n = 142) heat shocked at 11 
hpf and analysed at 18 hpf. Mann–Whitney U-test, control vs. LOF ****p<0.0001, control vs. GOF **p=0.0020. 
Anterior to the left, dorsal top, except in (C, D) anterior left, ventral view. Arrowheads indicate gene expression. All 
treatments performed from 12 hpf.

Figure 3 continued

https://doi.org/10.7554/eLife.73550
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Figure 4. Notch activity allocates trunk neural crest (TNC) migratory identity. (A) Selected frames from in vivo 
imaging of Sox10:Kalt4 control (DMSO treated) embryos. (B) Selected frames from control simulation with 1:3 
leader/follower ratio. (C) Selected frames from in vivo imaging under Notch-inhibited condition, Sox10:Kalt4 
embryos treated with CompE. (D) Selected frames from in vivo imaging of Notch loss of function (LOF) condition, 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.73550
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NC induction (Figure 9—figure supplement 1). Inhibition of cell cycle progression by either of the 
treatments resulted in reduced numbers of migratory chains and decreased ventral advance (control 
19 ± 2, genistein 10 ± 3, aphidicolin 6 ± 2 chains; Figure 9A–H). This result was not due to the loss of 
cell motility as premigratory TNC cells actively extend protrusions and move along the anteroposte-
rior axis but are unable to migrate ventrally (Figure 9—video 1). Importantly, these effects were not 
a consequence of cell death or the permanent impairment of motility as TNC reinitiate migration and 
form new chains upon drug withdrawal (Figure 9G and H), showing that active cell cycle progression 
is required for migration. Next, we directly analysed TNC cell cycle progression in vivo. To this end, we 
imaged Sox10:FUCCI embryos (Rajan and Gallik, 2018), in which TNC nuclei are RFP-labelled during 
G1 and GFP-labelled during S and G2. Tracking analysis shows differential cell cycle progression, with 
most leader cells initiating migration in S-phase (79%), while followers start movement during G1 
(77%; Figure 9I and J, Figure 9—video 2). These results show that cell cycle progression is required 
for migration and that leader and follower cells initiate movement at different points of the cell cycle, 
suggesting an intimate connection between cell growth and movement.

Leader and follower cells progress through the cell cycle at different 
rates
Next, we studied TNC cell cycle progression in detail. First, we asked whether leaders and followers 
differ in the total length of their cell cycle. Measurements of the time span between two consecutive 
mitoses showed no significant differences in the total length of the cell cycle between leaders and 
followers (13.6 ± 1.2 and 13.3 ± 1.4 hr, respectively; Figure 10B). Next, we examined the length of 
each phase of the cell cycle by imaging the characteristic nuclear labelling pattern of the PCNA-GFP 
fusion protein (Leung et  al., 2011). Sox10:Kalt4 embryos, in which all NC can be recognised by 
nuclear RFP expression, were injected with PCNA-GFP mRNA and live imaging was performed. 
PCNA-GFP shows uniform nuclear GFP labelling during G1, intense fluorescent nuclear puncta charac-
terise the S-phase, these puncta dissipate during G2 restoring homogeneous nuclear fluorescence, at 
the onset of mitosis PCNA is degraded and TNC are recognised solely by nuclear RFP (Figure 10A, 
Figure 10—video 1). In these embryos, leader cells initiate migration during S-phase and followers 
in G1, confirming our FUCCI results and establishing that PCNA overexpression does not introduce 
artefacts to cell cycle progression (Figure 10—figure supplement 1). Using this tool, we measured 
the length of the cell cycle phases in TNC. We found striking differences in the time spent in G1- and 
S-phase between leader and follower cells. Leaders present a short G1 (3.2 ± 0.6 hr) but remain for 
twice as long in S-phase (8.7 ± 1.3 hr). Followers, on the other hand, present the opposite distribution, 
remaining for twice as long in G1 (7.4 ± 2.7 hr) than in S-phase (4.6 ± 2.8 hr; Figure 10C and D). No 
significant differences were observed in the length of G2 (leaders 1.6 ± 0.4 hr; followers 1.5 ± 0.3 hr) or 
M (leaders 0.6 ± 0.1 hr; followers 0.5 ± 0.1 hr). These data show that leader and follower cells present 
marked differences in the length of G1- and S-phase, suggesting that cell cycle progression may regu-
late their migratory behaviour.

Sox10:Kalt4; UAS:dnSu(H) embryos. (E) Selected frames from all followers simulation. (F) Selected frames from 
in vivo imaging of Notch gain of function (GOF) condition Sox10:Kalt4; UAS:NICD embryos. (G) Selected frames 
from all leaders simulation. Magenta tracks and green arrowheads indicate leaders; green arrows and cyan tracks 
follower cells. Asterisks indicate cells crossing somite borders. White line marks dorsal midline. Anterior to the left, 
dorsal up. Time in minutes.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Somites and neural tissue formation are not altered by Notch inhibition.

Figure supplement 2. UAS:dnSu(H) transgenic line.

Figure 4—video 1. Notch inhibition disrupts trunk neural crest (TNC) migratory identity allocation.

https://elifesciences.org/articles/73550/figures#fig4video1

Figure 4—video 2. Notch gain and loss of function disrupts trunk neural crest (TNC) migratory identity allocation.

https://elifesciences.org/articles/73550/figures#fig4video2

Figure 4—video 3. In silico simulation of trunk neural crest (TNC) chain migration.

https://elifesciences.org/articles/73550/figures#fig4video3

Figure 4 continued

https://doi.org/10.7554/eLife.73550
https://elifesciences.org/articles/73550/figures#fig4video1
https://elifesciences.org/articles/73550/figures#fig4video2
https://elifesciences.org/articles/73550/figures#fig4video3
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Figure 5. Trunk neural crest (TNC) migration measurements in vivo and in silico. (A) Final position of each cell in model simulations and in vivo 
experiments under different conditions. In silico results depicted in confined pathway, in vivo data graphed in model embryo, somites contour 
and dorsal midline (dark grey lines), edge of the premigratory area (dashed lines), and NT/not boundary (light grey lines). Anterior left, dorsal up. 
(B) Quantification of leader overtaking events in vivo and in silico. Leader overtaken by a single follower is overtaken = 1; leader overtaken by more than 
one follower cell is overtaken >1. (C) Quantification of the ventral advance of cells in vivo and in silico. (D) Quantification of cell speed in vivo and in 
silico. (E) Quantification of cell directionality in vivo and in silico. Leader cells in magenta, followers in cyan. Magenta and cyan dashed lines indicate the 
average values for leaders and followers respectively. Full statistical analysis in Supplementary file 1.

https://doi.org/10.7554/eLife.73550
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Figure 6. Notch signalling controls phox2bb expression defining leader cells. (A, B) Images of phox2bb expression in control embryos (Sox10:Kalt4). 
(C, D) Images of phox2bb expression under Notch gain of function (GOF) conditions (Sox10:Kalt4; UAS:NICD embryos). (E, F) Images of phox2bb 
expression in Notch inhibition conditions (Compound E). Magenta and cyan arrowheads indicate leaders and followers respectively. (G) Quantification 
of phox2bb expression in control (n = 13), Notch GOF (n = 14), and Notch inhibition conditions (n = 11). Welch’s t-test, Kalt4 control vs. GOF 
****p<0.0001, DMSO control vs. inhibition ****p<0.0001.

https://doi.org/10.7554/eLife.73550
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Figure 7. In silico modelling of trunk neural crest (TNC) migration. (A) Schematics of model parameters. Diff CIL: only leader/follower collisions induce 
repulsion and change of directionality. Intensity CIL: the leader’s response upon collision is stronger than the follower’s response. Co-A: co-attraction 
pulls together cells at a distance. Cell size: volume exclusion. (B) Schematics of simulations multi-objective scores. (C) Depiction of parameter space 
analysis showing the number of parameters sets that fulfilled each score when different variables were tested. One leader refers to chains with a single 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.73550
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Notch signalling regulates TNC cell cycle progression
Our data show that Notch signalling allocates leader and follower identities, cell cycle progression 
is necessary for TNC migration, and leader and follower cells progress through the cell cycle at 
different rates. Does Notch signalling regulate cell cycle progression, thus differentiating leader from 
follower cells? To investigate this question, we measured the total length of the cell cycle and the 
length of each phase under control and Notch-inhibited conditions. Neither the total cell cycle length 
(Figure 11A) nor the number of TNC (Figure 9—figure supplement 1) were affected by alterations of 
Notch signalling. Remarkably, we found significant differences in the length of G1- and S-phase upon 
Notch inhibition. Leader cells lose their characteristic cell cycle progression pattern and behave as 
followers, with a long G1 and a short S-phase (Figure 11B). Furthermore, Notch inhibition abolishes 
the size difference between migratory leader and follower cells, with all cells presenting the average 
follower’s area (Figure 11C and D). These data show that Notch activity defines TNC migratory iden-
tity by regulating cell cycle progression, cells with low Notch activity remain for longer in G1 behaving 
as followers. Interestingly, we noticed that Notch inhibition also changes the cell cycle behaviour of 
the followers’ population. While the followers’ average length of cell cycle phases is not altered, the 
dispersion of this population is significantly reduced, with standard deviations cut almost by half (from 
2.7 hr to 1.42 hr for G1 and from 2.8 hr to 1.38 hr for S; Figure 11B). This prompted us to analyse the 
frequency distribution of cell cycle phases length. In control conditions, leader cells show a normal 
distribution with a single peak for G1- and S-phase, as expected for a homogeneous population. 
Followers, on the other hand, present a bimodal distribution, with the smaller peak coinciding with 
that of leader cells, and accounting for 26% of followers in G1- and 31% in S-phase (Figure 11E and F). 
Strikingly, these results fulfil the predictions of our in silico model that best recapitulates TNC migra-
tion when chains are composed of leaders and followers in a 1:2 or 1:3 ratio. Furthermore, upon Notch 
inhibition the bimodal distribution of the follower population is lost, with all cells grouped at the major 
mean (Figure 11G and H). Consistent with these data, closer analysis (at higher magnification) of 
normal phox2bb expression shows increased expression in followers at position 3 in addition to that 
in leaders (Figure 11I–N). Taken all together, our data demonstrate that the levels of Notch activity 
in TNC allocate migratory identity by controlling cell cycle progression and that migratory chains are 
formed of one leader cell for every three followers.

Discussion
Collective migration plays an important role in embryogenesis, wound healing, and cancer. The acqui-
sition of specific migratory identities has proven fundamental to angiogenesis, trachea development 
in Drosophila, and cancer metastasis. TNC migrate collectively, forming chains with a leader cell at 
the front of the group that direct the migration, while follower cells form the body of the chain 
that trails the leaders. TNC leader and follower identities are established before migration initiation 
and remain fixed thereafter (Richardson et al., 2016). Herein, we have addressed the mechanism 
that establishes leader and follower identities and can propose the following model (Figure 12): (A) 
premigratory TNC progenitors arise at the dorsal part of the neural tube. The leader’s progenitor 
divides asymmetrically, giving rise to a large prospective leader cell and a small sibling that migrates 
as a follower. Other progenitors divide symmetrically, giving rise to follower cells. (B) Interactions via 
Notch signalling results in the prospective leader cell accumulating higher levels of Notch activity, 
which induces phox2bb expression. (C) The combination of high Notch activity and a larger cell size 
prompts the prospective leader cell to rapidly undergo the G1/S transition, entering S-phase and 
initiating migration earlier than its follower siblings, which are smaller and initiate migration whilst in 
G1. (D) Premigratory cells that have not been in contact with the prospective leader cell or that have 
lost contact with it due to its ventral advance maintain communication with surrounding premigratory 
TNC through Notch and undergo a new round of leader cell selection. This working model of TNC 
migration is supported by both our experimental data and our in silico modelling, and provides a 
useful conceptual framework for future studies to build upon.

leader cell. 1:1, 1:2, and 1:3 refer to leader/follower ratios. (D) 3D plot of linear discriminant analysis (LDA). (E) LDA coefficients of in vivo data. A random 
dataset was used as control. (F) LDA coefficients of in silico data. A random dataset was used as control.

Figure 7 continued

https://doi.org/10.7554/eLife.73550
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Figure 8. Leaders arise from the asymmetric division of a progenitor cell and present characteristic division patterns. (A) Selected frames from in vivo 
imaging of leaders’ progenitor division in FoxD3:mCherry;H2aFVA:H2a-GFP embryos. (B) Area of leaders’ progenitor daughter cells (n = 9 cells, seven 
embryos; Mann–Whitney U-test, p=0.0056). (C) Selected frames from in vivo imaging of followers’ progenitor division in FoxD3:mCherry;H2aFVA:H2a-
GFP embryos. (D) Area of followers’ progenitor daughter cells (n = 10, four embryos; Mann–Whitney U-test, p>0.9999). (E) Position of progenitors’ 
divisions on model embryo (leaders n = 9, seven embryos; followers n = 10, four embryos). PM, premigratory area; NT/not, neural tube/notochord 
boundary. (F) Selected frames showing the D>M division pattern from 16 to 28 hpf in vivo imaging of a Sox10:mG embryo. Blue, before division; yellow 
and red, after division. Arrow indicates division position. (G) Selected frames showing the M>D division pattern from 16 to 28 hpf in vivo imaging of a 

Figure 8 continued on next page

https://doi.org/10.7554/eLife.73550
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Notch signalling is a seemingly simple pathway that directly transduces receptor activation 
into changes in gene expression. Nevertheless, its outcomes in terms of cellular patterning are 
very diverse, from the generation of gene expression boundaries to temporal oscillations, or 
from the induction of similar fates in neighbouring cells to forcing adjacent cells into alterna-
tive fates. The latter function, known as lateral inhibition, is characterised by an intercellular 
negative feedback loop regulating the expression of Notch ligands. The activation of the Notch 
receptor in a ‘signal-receiving’ cell leads to the downregulation of Notch ligands expression, 
making it less able to act as a ‘signal-sending’ cell. The signature 2D patterning outcome of 
lateral inhibition is a mosaic of signal-sending cells with low Notch activity, surrounded by 
signal-receiving cells with high Notch levels. This is the case during the selection of sensory 
organ precursor cells in the epidermis of Drosophila (Lewis, 1998) or the formation of the 
mosaic of hair cells and supporting cells in the sensory organs of the inner ear (Daudet and 
Żak, 2020). In general, however, lateral inhibition operates among cells subjected to extensive 
rearrangements and its patterning outcome is not a salt-and-pepper mosaic of cells (Bocci 
et  al., 2020). For example, during angiogenesis, cells with low Notch signalling become tip 
or leaders, while cells with high Notch activity differentiate as stalk or followers (Phng and 
Gerhardt, 2009). In this context, leaders are interspersed with various numbers of followers. 
Several models have been proposed to explain how signal-sending (leader/tip) cells can exert 
a long-lasting or long-range inhibition on signal-receiving (follower/stalk) cells. These take into 
account the modulation of Notch signalling that arise from heterogeneity in Notch receptor 
levels, tension, Notch-regulators, and interaction with other pathways (Bentley and Chakra-
vartula, 2017; Hadjivasiliou et al., 2019; Koon et al., 2018; Kur et al., 2016; Venkatraman 
et al., 2016). Our data show that TNC deviate from the classical mosaic pattern, forming chains 
with one leader every two or three followers. Further studies will be required to define whether 
the aforementioned mechanisms are responsible for this architecture.

In the case of the TNC, however, the most striking divergence from the classic lateral inhi-
bition model (or indeed angiogenesis) is the fact that the leader cell identity is associated with 
higher intrinsic Notch activity. In other words, there are more signal-sending cells than signal-
receiving cells. This apparent inversion in the ratio of the cell types produced is surprising. 
Explanation of this conundrum may arise from the fact that Notch lateral inhibition, dynamics 
and outcomes, can be modulated by ‘cis-inhibition’, a process whereby Notch ligands cell-
autonomously interfere with the activation of Notch receptors (Bray, 2016; del Álamo et al., 
2011). Computational models show that an increase in the strength of cis-inhibition can result in 
the inversion of the salt-and-pepper pattern (signal-sending to signal-receiving cells ratio), with 
the production of one cell with high Notch activity for every three cells with low Notch levels 
(Formosa-Jordan and Ibañes, 2014), a scenario that is congruent with the leader/follower 
ratio we observe in TNC. The detailed dynamics of lateral inhibition and whether cis-inhibition 
is at work in TNC remain to be investigated and will require direct visualisation at the single-cell 
level of Notch activity in live embryos.

Our data show that active progression through the cell cycle is required for TNC migration. 
This is consistent with studies in chicken embryos, showing that progression through G1/S is 
required for TNC delamination, and that NC continue cycling as they migrate (Burstyn-Cohen 

Sox10:mG embryo. Labelling as in (F). (H) Quantification of leaders’ (n = 21, seven embryos) and follower’s division patterns (n = 43, seven embryos). 
Red, M>D; black, D>M. (I) Quantification of division positions (n = 13 leaders, n = 19 followers, seven embryos; Mann–Whitney U-test, p=0.0002). Time 
in minutes. Leaders in magenta, followers in cyan. Anterior left, dorsal top.

The online version of this article includes the following video for figure 8:

Figure 8—video 1. Leader cells arise from the asymmetric division of a progenitor cell.

https://elifesciences.org/articles/73550/figures#fig8video1

Figure 8—video 2. Leader and follower cells present distinct division patterns.

https://elifesciences.org/articles/73550/figures#fig8video2

Figure 8 continued
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and Kalcheim, 2002; Théveneau et al., 2007). Our data extend these findings by showing that 
leader and follower cells progress through the cell cycle at different rates. Leader cells, which 
are larger and more motile, initiate migration in S-phase and spend twice as long in this phase 
as followers. It is possible that these differences arise from the fact that leaders are larger than 

Figure 9. Cell cycle progression is required for trunk neural crest (TNC) migration. (A, C, E) crestin in situ hybridisation upon (A) DMSO, (C) genistein, 
or (E) aphidicolin treatment from 12 to 24 hpf. (B, D, F) Enlargement of areas indicated by boxes in (A, C, E). Dotted line marks NT/not boundary, 
arrowheads migratory chains, and vertical line the chain length. (G, H) Frequency distribution of migratory chains upon control (DMSO; n = 66), (G) 
genistein (12 hr pulse, n = 56; 6 hr pulse, n = 67), or (H) aphidicolin (12 hr, n = 64; 3 hr, n = 79). (I) Cell cycle phase at migration initiation for leaders (n 
= 38, four embryos) and followers (n = 43, four embryos). (J) Selected framed from in vivo imaging of Sox10:FUCCI. Time in minutes. Solid line marks 
dorsal midline, dotted line marks the premigratory area. Magenta arrowheads indicate leader and its daughters. Cyan arrowheads indicate followers.

The online version of this article includes the following video and figure supplement(s) for figure 9:

Figure supplement 1. Cell cycle inhibitor drugs working conditions.

Figure 9—video 1. Cell cycle progression is required for trunk neural crest (TNC) migration.

https://elifesciences.org/articles/73550/figures#fig9video1

Figure 9—video 2. Leader and follower cells initiate migration at different phases of the cell cycle.

https://elifesciences.org/articles/73550/figures#fig9video2

https://doi.org/10.7554/eLife.73550
https://elifesciences.org/articles/73550/figures#fig9video1
https://elifesciences.org/articles/73550/figures#fig9video2
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followers. It has been shown that the timing of G1/S transition depends on cell size and the 
dilution of the nuclear retinoblastoma protein (Zatulovskiy and Skotheim, 2020). Due to the 
larger volume of their cytoplasm, leader cells could be primed for a rapid G1/S phase transi-
tion. The initiation of S-phase may in turn enhance leaders’ migratory characteristics through 
the interaction of cyclins and cyclin/CDK inhibitors (CDKI) with small GTPases. Cyclins B and D 
have been shown to phosphorylate cytoskeleton regulators, resulting in increased cell migra-
tion and tumour invasion (Blethrow et al., 2008; Chen et al., 2020; Chi et al., 2008; Hirota 
et  al., 2000; Li et  al., 2006; Manes et  al., 2003; Song et  al., 2008; Zhong et  al., 2010). 
Furthermore, Rac1 activity, which is required for migration, oscillates during the cell cycle being 
highest at S-phase when cells are most invasive (Kagawa et al., 2013; Walmod et al., 2004). 
CDKIs, on the other hand, interact with RhoA- and ROCK-enhancing motility (Bendris et al., 
2015; Creff and Besson, 2020; Yoon et al., 2012). Interestingly, enhanced motility increases 
actin branching, which in turn can accelerate the G1/S transition (Molinie et al., 2019). These 
factors could therefore generate a positive feedback loop in which slightly larger leader cells 

Figure 10. Leader and follower cells progress through the cell cycle at different rates. (A) Selected frames from in vivo imaging of Sox10:Kalt4 
embryos from 16 to 28 hpf injected with PCNA-GFP mRNA. White arrow points to cycling cell. Time in minutes. (B) Quantification of the cell cycle total 
duration in leaders (n = 20, seven embryos) and followers (n = 19, seven embryos; unpaired t-test, p=0.5240). (C) Quantification of the cell cycle phases 
duration in leaders (G1 n = 45, S n = 44, G2 n = 33 and M n = 32, 11 embryos) and followers (G1 n = 50, S n = 48, G2 n = 33 and M n = 34, 11 embryos). 
Brown–Forsythe and Welch’s ANOVA tests, G1 p<0.0001, S p<0.0001, G2 p=0.9997, M p=0.9231. (D) Schematic representation of the cell cycle phases 
durations.

The online version of this article includes the following video and figure supplement(s) for figure 10:

Figure supplement 1. Leader and follower cells initiate migration at distinct cell cycle phases.

Figure 10—video 1. PCNA-GFP reveals the cell cycle dynamics in trunk neural crest (TNC).

https://elifesciences.org/articles/73550/figures#fig10video1

https://doi.org/10.7554/eLife.73550
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Figure 11. Notch signalling regulates trunk neural crest (TNC) cell cycle progression. (A) Quantification of the cell cycle total duration under control 
(DMSO, numbers as in Figure 10B) and Notch inhibition conditions (CompE, leaders n = 17, followers n = 22, eight embryos; one-way ANOVA, 
p=0.1939). (B) Quantification of the cell cycle phases duration under DMSO (numbers as in Figure 10C) and Notch inhibition conditions CompE, 
leaders G1 n = 29, S n = 28, G2 n = 25, and M n = 25, seven embryos; followers G1 n = 32, S n = 32, G2 n = 30, and M n = 30, seven embryos; Brown–

Figure 11 continued on next page
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are prone to undergo the G1/S transition, in turn the activation of S-phase cyclins and CDKIs 
may enhance motility, reinforcing S-phase initiation.

Our data also show that TNC cell cycle progression is under the control of Notch signalling. 
Upon Notch inhibition, all TNC present cell cycle phase lengths typical of follower cells. Notch 
has been shown to regulate cell cycle in a context-dependent manner. Depending on the cell 
type, Notch can regulate cell cycle through the transcriptional induction of cyclins A and D, and 
the inhibition of CDKIs (Campa et al., 2008; Dabral et al., 2016; Ridgway et al., 2006; Rizzo 
et  al., 2008; Rowan et  al., 2008). Conversely, cell cycle progression can impact on Notch 
signalling. Notch activity is enhanced at the G1/S transition, while cells become refractory to 
Notch during G2/M (Ambros, 1999; Carrieri et al., 2019; Hunter et al., 2016; Nusser-Stein 
et al., 2012). Hence, the combination of large volumes and higher Notch activity levels could 
act synergistically to promote leaders’ G1/S transition.

In this study, we have uncovered new functional interactions between Notch signalling, cell 
cycle dynamics, and the migratory behaviour of leader and follower cells in the TNC. These 
complex and intricate interactions, which remain to be fully characterised at a molecular level, 
could apply to other cell types exhibiting collective migration. For example, studies in cancer 
cell lines have shown that activation or inhibition of Notch signalling hinders migration, similar 
to what we observe in TNC (Konen et al., 2017), while the maintenance of collective migra-
tion depends on the regulation of cell proliferation during angiogenesis (Costa et al., 2016). 
In view of our work, it is important to revisit the assumption that migratory phenotypes are 

Figure 12. Working model of trunk neural crest (TNC) migratory identity allocation through Notch-cell cycle interaction. (A) Leader TNC progenitors 
divide asymmetrically giving rise to a prospective leader cell that is larger than the prospective followers that arise from symmetric divisions. 
(B) Interactions between TNC through Notch lateral inhibition establish higher levels of Notch activity in the bigger cell, triggering the initiation of S-
phase and increased levels of phox2bb expression. (C) Leader cell initiated the chain movement while in S-phase trailed by followers in G1. (D) Loss of 
the leader contact with premigratory TNC allows for a new round of Notch interaction that establishes a second leader cell.

Forsythe and Welch’s ANOVA tests, all phases G1, S, G2, and M p>0.9999 between leaders and followers. (C) Quantification of cell area ratio (leaders/
followers) under DMSO and Notch-inhibited conditions (n as in D; Brown–Forsythe and Welch’s ANOVA tests, DMSO control vs. CompE p= 0.0157). 
(D) Quantification of cell area under DMSO (leaders n = 26, followers n = 22, six embryos) and CompE conditions (leaders n = 44, followers n = 41, seven 
embryos). Brown–Forsythe and Welch’s ANOVA tests, DMSO leaders vs. followers p<0.0001, CompE leaders vs. followers p>0.9999. (E, F) Frequency 
distribution of G1- and S-phases durations in control conditions (DMSO; leaders: G1 n = 45, S n = 44, 11 embryos; followers: G1 n = 50, S n = 48, 11 
embryos). (G, H) Frequency distribution of G1- and S-phases durations in Notch inhibition conditions (CompE; leaders: G1 n = 29, S n = 28, seven 
embryos; followers: G1 n = 32, S n = 32, seven embryos). (I–N) Images of phox2bb expression in 24 hpf Sox10:GFP embryo. (K–N) Enlargements of 
follower 3 and leader cells in (I, J). Orange dotted lines mark leader and third follower cell outline; white dotted lines mark followers' outline.

Figure 11 continued

https://doi.org/10.7554/eLife.73550
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in conflict with cell cycle progression (Kohrman and Matus, 2017) and consider the possible 
implication for cancer therapies.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Genetic reagent (Danio 
rerio)

Sox10:mG; Tg(–4.9sox10: Hsa.HIST1H2BJ-
mCherry-2A-GLYPI-EGFP) Richardson et al., 2016

ZDB-TGCONSTRCT-
171205-3

Genetic reagent (D. 
rerio)

Sox10:Fucci; Tg(–4.9sox10:mAGFP-gmnn-2A-
mCherry-cdt1) Rajan and Gallik, 2018

ZDB-TGCONSTRCT-
190118-1

Genetic reagent (D. 
rerio) hs:dnSu(H); vu21Tg (hsp70l:XdnSu(H)-myc) Latimer et al., 2005 ZDB-ALT-050519-2

Genetic reagent (D. 
rerio) hs:Gal4; kca4Tg Tg(hsp70l:Gal4)1.5kca4 (1)

Scheer and Campos-Ortega, 
1999 ZDB-ALT-020918-6

Genetic reagent (D. 
rerio)

UAS:NICD; Tg(UAS:myc-Notch1a-intra)
kca3Tg

Scheer and Campos-Ortega, 
1999 ZDB-ALT-020918-8

Genetic reagent (D. 
rerio) Tg(UAS:dnSu(H)) This paper

Transgenic line details 
are in materials and 
methods 

Genetic reagent (D. 
rerio)

Sox10:Kalt4; Tg(–4.9sox10: Hsa.HIST1H2BJ-
mCherry-2A-Kalt4ER) Alhashem et al., 2021

Genetic reagent (D. 
rerio) Tg(h2afva:GFP)kca13 Pauls et al., 2001 ZDB-ALT-071217-3

Genetic reagent (D. 
rerio) Gt(FoxD3:mCherry)ct110aR

Hochgreb-Hägele and 
Bronner, 2013; Lukoseviciute 
et al., 2018 ZDB-FISH-150901-9571

Antibody
Anti-myosin heavy chain
(mouse monoclonal)

Developmental Studies 
Hybridoma Bank F59 IF (1:200)

Antibody Anti-synaptotagmin 2 (mouse monoclonal)
Developmental Studies 
Hybridoma Bank Znp1 IF (1:50)

Antibody Anti-acetylated tubulin (mouse monoclonal) Sigma-Aldrich
Clone 6-11B-1;
Cat# MABT868 IF (1:1000)

Antibody Anti-digoxigenin-AP (sheep polyclonal) Sigma-Aldrich Cat# 11093274910 IF (1:2000)

Antibody Anti-GFP (chicken polyclonal) Merck Millipore Cat# 06-896 IF (1:750)

Antibody Anti-RFP (rabbit polyclonal) MBL Cat# PM005 IF (1:750)

Antibody Myc-Tag (mouse monoclonal) Cell Signaling Clone 9B11; Cat# 2276S IF (1:1000)

Antibody Anti-GFP (chicken polyclonal) Thermo Fisher Cat# A10262 IF (1:750)

Recombinant DNA 
reagent PCNA-GFP Addgene Cat# 105942 Leung et al., 2011

Sequence-based 
reagent

UAS:NICD F
UAS:NICD R This paper Genotyping primer

CATCGCGTCTCAGCCTCAC
​CGGA​ATCG​TTTA​TTGG​TGTCG
500 bp band

Sequence-based 
reagent

UAS:dnSu(H) F
UAS:dnSu(H) R This paper Genotyping primer

​GCGGTGTGTGTACTTCAGTC
​TCTCCCCAAACTTCCCTGTC
409 bp band

Sequence-based 
reagent hs:dnSu(H) F hs:dnSu(H) R This paper Genotyping primer

​CGGG​CATT​TACT​TTAT​GTTGC
​TGCA​TTTC​TTGC​TCAC​TGTTTC
1 kb band

Commercial assay or kit RNAscope Multiplex Fluorescent kit Bio-Techne Cat# 320850

Commercial assay or kit
mMESSAGE mMACHINE SP6 Transcription 
Kit Thermo Fisher Cat# AM1340

https://doi.org/10.7554/eLife.73550
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Chemical compound, 
drug In-Fusion HD Cloning Plus Takara Cat# 638910

Chemical compound, 
drug ProLong Gold Antifade Mountant Thermo Fisher Cat# P10144

Chemical compound, 
drug Hydroxyurea Sigma-Aldrich Cat# H8627 20 μM

Chemical compound, 
drug Aphidicolin Sigma-Aldrich Cat# A0781 300 μM

Chemical compound, 
drug Genistein Calbiochem Cat# 345834 100 μM

Chemical compound, 
drug Teniposide Sigma-Aldrich Cat# SML0609 No effect on cell cycle in zebrafish

Chemical compound, 
drug DAPT Sigma-Aldrich Cat# D5942-25MG 100 μM

Chemical compound, 
drug Compound E Abcam Cat# ab142164 50 μM

Software, algorithm Tamoxifen Sigma-Aldrich Cat# H7904 2.5 μM

Software, algorithm GraphPad Prism 9 GraphPad Software

Software, algorithm Fiji ImageJ Schindelin et al., 2012

 Continued

Resource availability
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, Claudia Linker (​claudia.​linker@​kcl.​ac.​uk).

Materials availability
Newly generated materials from this study are available by request from the lead contact, Claudia 
Linker (​claudia.​linker@​kcl.​ac.​uk), except for computational tools to be requested from Katie Bentley (​
katie.​bentley@​crick.​ac.​uk).

Data and code availability
The model code is accessible at https://github.com/Bentley-Cellular-Adaptive-Behaviour-Lab/Neural-
CrestCpp, (copy archived at swh:1:rev:cdf63f3786390fb7905092717456cc69f5657ddc; Alhashem, 
2022b). The code used to perform the LDA is accessible in the supplementary files. All numerical data 
used in the figures are accessible in the supplementary data source file.

Zebrafish lines and injections
Zebrafish were maintained in accordance with UK Home Office regulations UK Animals (Scientific 
Procedures) Act 1986, amended in 2013 under project licence P70880F4C. Embryos were obtained 
from the following strains: wild type, AB strain; Sox10:mG, Tg(–4.9sox10: Hsa.HIST1H2BJ-mCherry-
2A-GLYPI-EGFP); Sox10:Fucci, Tg(–4.9sox10:mAGFP-gmnn-2A-mCherry-cdt1); hs:dnSu(H), vu21Tg 
(hsp70l:XdnSu(H)-myc); hs:Gal4, kca4Tg Tg(hsp70l:Gal4)1.5kca4 (1); UAS:NICD, Tg(UAS:myc-
Notch1a-intra)kca3; Sox10:Kalt4, Tg(–4.9sox10: Hsa.HIST1H2BJ-mCherry-2A-Kalt4ER); UAS:dn-
Su(H), Tg(UAS:dnSu(H)-myc); Tg(h2afva:GFP)kca13; 12XNRE:egfp. Embryos were selected based on 
anatomical/developmental good health and the expression of fluorescent reporters when appropriate, 
split randomly between experimental groups and maintained at 28.5°C in E3 medium. Genotyping 
was performed by PCR of single embryos after imaging when required (UAS:NICD; UAS:dnSu(H); 
hs:dnSu(H)). Injections were carried at 1–4-cell stage with 30 pg of PCNA-GFP mRNA in a volume of 
1 nl. mRNA was synthesised from pCS2 + PCNA GFP plasmid, kindly provided by C. Norden (IGC, 
Portugal), linearised with NotI and transcribed with the SP6 mMessage Machine Kit (Thermo Fisher 
Scientific, Cat# AM1340).

https://doi.org/10.7554/eLife.73550
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Live imaging and tracking
Imaging and analysis were carried out as in Alhashem et al., 2021. In short, embryos were mounted 
in 1% agarose/E3 medium plus 40 µM Tricaine. Segments 6–12 were imaged in lateral views every 5′ 
from 16 hpf for 16–18 hr in an upright PerkinElmer Ultraview Vox system using a ×40 water immersion 
objective. 70 μm z-stacks with 2 μm z-steps were obtained. Image stacks were corrected using Correct 
3D Drift Fiji and single-cell tracking performed with View5D Fiji plugin. Tracks were displayed using 
the MTrackJ and Manual Tracking Fiji plugins. Cell area measurements were done in Fiji using the free-
hand selection tool to draw around cell membranes in 3D stacks using the orientation that best recapit-
ulated the cell morphology (as in Richardson et al., 2016). Cell speed measurements were calculated 
from 3D tracks using the following formula: ((SQRT((X1-X2)^2+(Y1-Y2)^2+(Z1-Z2)^2))/T)*60, where 
X, Y, and Z are the physical coordinates and T is the time step between time-lapse frames. Ventral 
distances were measured in a straight line from dorsal edge of the embryo to the cell position at 
the end of the movie. Cell directionality measurements were calculated using a previously published 
Excel macro (Gorelik and Gautreau, 2014). Total duration of the cell cycle was measured between 
two mitotic events. Cell cycle phase duration were measured using the characteristic nuclear pattern 
of PCNA-GFP, in movies where only TNC (expressing RFP and GFP) are shown using this custom Fiji 
macro:

macro "Segment Nuclei [s]" { 
title = getTitle(); 
run("Split Channels"); 
selectWindow("C1-" + title); //select window with C1 in its name, nuclei 
should be C1 
getDimensions(width, height, channelCount, slices, frames); 
run("Subtract Background...", "rolling = 200 sliding stack"); 
setAutoThreshold("Default dark"); 
run("Threshold..."); 
setThreshold(5, 255); //change as appropriate for your cells 
setOption("BlackBackground", false); 
run("Convert to Mask", "method = Default background = Dark"); 
run("Close"); 
run("Fill Holes", "stack"); 
run("Despeckle", "stack"); 
run("Dilate", "stack"); 
run("Dilate", "stack"); 
//now go over every frame and slice 
for(frame = 1; frame ≤ frames; frame++){ 
for(slice = 1; slice ≤ slices; slice++){ 
 selectWindow("C1-" + title); 
 setSlice(slice); 
 Stack.setFrame(frame); 
 run("Create Selection"); 
selectWindow("C2-" + title); 
 setSlice(slice); 
 Stack.setFrame(frame); 
 run("Restore Selection"); 
   setBackgroundColor(0, 0, 0); 
   run("Clear Outside", "slice");

In situ hybridisation, immunostaining, and sectioning
The whole-mount in situ hybridisation protocol was adapted from https://wiki.zfin.org/display/prot/​
Whole-Mount+In+Situ+Hybridization. In short, embryos were fixed overnight (O/N) in 4% para-
formaldehyde (PFA), dehydrated in 100% methanol, then rehydrated, digested with proteinase K 
for different times depending on the stage and pre-hybridised for 2 hr at 65°C. Riboprobes were 

https://doi.org/10.7554/eLife.73550
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added, and embryos incubated at 65°C O/N. Probes were removed and embryos washed and equil-
ibrated to PBS. Embryos were incubated in blocking solution for 2 hr and in anti-dig antibody O/N 
(Sigma-Aldrich, Cat# 11093274910), washed 5 × 30′ and NBT/BCIP colour reaction performed. Ribo-
probes for notch1a, dlb (deltaB), dld (deltaD), her4, cb1045 were kindly provided by J. Lewis (CRUK); 
crestin, mbp, bdh, myoD by S. Wilson (UCL, UK). After the in situ colour development, embryos were 
processed for sections, washed 5 × 10′ with PBS, embedded in OCT, frozen by dipping the blocks in 
dry ice-cold 70% ETOH, and sectioned to 12–15 μm using a cryostat. Sections were thawed at room 
temperature (RT), incubated with blocking solution for 30′ (10% goat serum, 2% BSA, 0.5% Triton, 
10 mM sodium azide in PBS) and in anti-GFP antibody ON at 4°C (Merck Millipore, Cat# 06-896). 
Sections were washed with PBST 5 × 5′ (0.5% Triton-PBS) and incubated with secondary antibody 
for 2 hr at RT, mounted in ProLong Gold Antifade Mountant (Molecular Probes, Cat# P10144) and 
imaged. Whole-mount antibody staining was performed in embryos fixed for 2 hr in 4% PFA, washed 
4 × 10′, incubated in blocking solution for 2 hr and in primary antibodies O/N at 4°C (anti-myc, Cell 
Signaling, Cat# 2276S; F59 and Znp1, Developmental Studies Hybridoma Bank; acetylated tubulin, 
Sigma-Aldrich, Cat# MABT868). Embryos were washed 5 × 30′, incubated in secondary antibodies 
O/N at 4°C, washed 6 × 30′, and mounted in 1% agarose for imaging. Imaging of sectioned and 
whole-mount antibody-stained samples was performed in PerkinElmer Ultraview Vox system.

RNAScope (RNAscope Fluorescent Multiplex Reagent Kit, Cat# 320850) experiments were 
performed as in Alhashem et al., 2022a. In short, embryos were fixed with 4% PFA O/N at 4°C and 
dehydrated in 100% methanol and stored at –20°C until processing. All methanol was removed, and 
embryos were air dried at RT for 30′, permeabilised with Proteinase Plus for 10′ at RT (provided in 
kit), washed with PBS-Tween 0.01%, and incubated with probes for egfp and sox10 or phox2bb at 
1:100 dilution at 60°C O/N. Probes were recovered, embryos washed three times with SSCT 0.2× 
for 15′. We followed manufacturer’s instructions for amplification steps AMP 1–3 and HRP C1–C4. 
Opal dyes 520, 570, and 650 (Akoya Biosciences, Cat# FP1487001KT, Cat# FP1488001KT, and Cat# 
FP1496001KT) were added at 1:3000 dilution followed by HRP blocker. Washes in between steps 
were performed with SSCT 0.2× for 10′ twice. Primary a-GFP-chicken (1:750) and a-RFP-rabbit (1:750; 
TFS, Cat# A10262, and MBL, Cat# PM005) antibodies diluted in blocking solution (PBS-Tween 0.1%, 
goat serum 5%, DMSO 1%) were added and incubated O/N at 4°C. Samples were washed three times 
in PBS-Tween 0.1% for 1 hr and then incubated in secondary antibodies, a-chicken-Alexa Fluor488 and 
a-rabbit-Alexa Fluor546 (TFS, Cat# A11039 and Cat# A11010) both in a 1:1000 dilution in blocking 
solution, for 3 hr at RT. Samples were washed six times with PBS-Tween 0.1% for 30′. For counter-
staining, DAPI was added (1:1000) in the third wash (Roche, Cat# 10236276001, 2 mg/ml). Embryos 
were cleared in 50% glycerol/PBS an mounted in glass-bottom Petri dishes and imaged using Zeiss 
Laser Scanner Confocal Microscope 880 (405, 488, 514, 561, and 633 lasers).

Drug treatments and gene expression induction
Embryos were treated by adding cell cycle inhibitors to the media from 11 hpf and incubated for 
3–12  hr at 28.5°C. 20  μM hydroxyurea (Sigma-Aldrich, Cat# H8627), 300  μM aphidicolin (Sigma-
Aldrich, Cat# A0781), 100 μM genistein (Calbiochem, Cat# 345834), teniposide (Sigma-Aldrich, Cat# 
SML0609), or 1% DMSO as control (Sigma-Aldrich, Cat# D8418). Notch signalling was inhibited at 11 
hpf by adding 100 μM DAPT (Sigma-Aldrich, Cat# D5942-25MG) or 50 μM of Compound E (Abcam, 
Cat# ab142164). The latter reagent was used to perform live imaging, which is difficult to do with 
DAPT as it generates an interfering precipitate. 1% DMSO was added as control. Gene expression 
was induced by addition of 2.5 μM of tamoxifen (Sigma-Aldrich, Cat#H7904) to the media at 11 hpf of 
Sox10:Kalt4 embryos, or by heat shock at 11 hpf in hs:Gal4 and hs:dnSu(H) embryos by changing the 
media to 39°C E3, followed by 1 hr incubation at this temperature, thereafter embryos were grown at 
28.5°C to the desired stage.

Generation of UAS:dnSu(H) transgenic line
Using the Infusion cloning system (Takara), the following construct was inserted into the Ac/Ds vector 
(Chong-Morrison et  al., 2018): 5xUAS sequence (Tol2Kit, http://tol2kit.genetics.utah.edu/index.​
php/Main_Page) flanked at the 3′ and 5′ ends by rabbit β-globin intron sequence. At the 3′ end, 
GFP followed by SV40polyA sequence was cloned to generate the Ac/Ds dUAS:GFP vector. The 
cmlc2:egfp transgenesis marker (Tol2Kit) was cloned after GFP in the contralateral strand to prevent 
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interaction between the UAS and the cmnl sequences. The Xenopus dnSu(H)-myc sequence (Latimer 
et  al., 2005) was cloned into the Ac/Ds dUAS:GFP vector at the 5′ end of the 5xUAS sequence, 
followed by the SV40polyA sequence (Figure 4—figure supplement 2). Transgenesis was obtained 
by injecting Sox10:Kalt4 embryos with 1 nl containing 50 pg of DNA plus 30 pg of Ac transposase 
mRNA at 1-cell stage. Embryos carrying the transgene were selected by heart GFP expression at 24 
hpf. Upon Gal4ER activation by tamoxifen, dnSu(H)-myc protein was readily detected with anti-Myc 
antibody (Figure 4—figure supplement 2). GFP fluorescence driven by UAS was never observed.

Statistical analysis
All graphs and statistical analysis were carried out in GraphPad Prism 9. All numbers in the texts are 
mean ± standard deviation. Every sample was tested for normality using the d’Agostino–Pearson, 
followed by Shapiro–Wilk tests. Samples that passed both tests were compared using either unpaired 
two-tailed t-test or one-way ANOVA. Those without a normal distribution were compared through a 
Mann–Whitney U-test, Kruskal–Wallis test, or Brown–Forsythe and Welch’s ANOVA tests. For all anal-
yses, p-values < 0.05 were deemed statistically significant, with ****p<0.0001, ***p<0.001, **p<0.01, 
and *p<0.05. Full statistical analysis of data in Figure 5 is presented in Supplementary file 1.

Computational model
The computational model used in this study is described in Appendix 1.

Standard LDA was carried out using the sklearn package in Python (see supplementary code files).
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Appendix 1
Computer modelling methods
A minimal discrete element model of TNC migration was developed in which each cell is modelled 
as an infinitesimal particle moving in 2D space. A network of neighbours within the particle system 
is identified by a Delaunay triangulation (Appendix 1—figure 1).
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Thus defined, the system exhibits Brownian dynamics as described by the over-damped Langevin 
equation (Equation 2), such that the velocity of each particle is proportional to the resultant force 
applied to it (‍▽∨‍), plus a stochastic component (ζ).
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Components of the resultant force on each cell arise from cell-cell interactions, cell-boundary 
interactions, and cell-autonomous motion.

Tissue environment (boundary)
Cells move into permissive space between the neural tube/notochord and the somites. Boundary 
locations are specified before any simulation. The boundary is implemented as a region of space that 
applies strong repulsion to nearby cells (Appendix 1—figure 1). Any cell that moves within a cell 
radius of the boundary experiences a force given by the gradient of the same Morse potential used 
in cell-cell interactions, such that the repulsion of any cell from the boundary depends upon the cell 
volume exclusion and increases exponentially as the cell approaches the boundary (Appendix 1—
figure 1).

The size and shape of the boundary represent a space for the pre-migratory cells at the top, a 
space in the middle where the notochord and neural tube meet (midline) and a vertical space where 
the chain can proceed downwards. The dimensions of the environment boundary were calibrated to 
in vivo measurements (Appendix 1—figure 1, showing micron-scale dimensions on the boundary).

The system is setup in a ‘T’ shape, which is interrupted in the middle by a space of horizontal 
mobility, because in vivo cells regularly move into this space. The wider region at the top represents 
the premigratory zone (PMZ) at the top of each migratory chain. Cells are able to filter in from the 
sides to mimic the continuous clustering of cells above migration chains.

Cell properties/behaviours
Contact inhibition and autonomous motion
Cells exhibit autonomous motion in a direction determined by their internal polarisation. This 
polarisation is influenced by interaction with the cell’s neighbours, such that the cell will try to move 
into empty space. We introduce contact inhibition into the model as a term in the Langevin equation 
(Equation 2), with magnitude determined by a user-defined parameter. The direction of autonomous 
magnitude for a given cell is found by identifying all adjacent nearest neighbours surrounding the 
cell, calculating the angle subtended by each adjacent pair, and bisecting the largest such angle 
(Appendix 1—figure 1). The magnitude of this autonomous velocity component is proportional to 
the user-defined parameter (aMag) and the square of the maximum subtended angle, representing 
the combined effect of greater polarisation and more free space to move into. Any cell that moves 
beyond a threshold distance from its nearest neighbour will stop autonomous motion, modelling the 
loss of polarisation when losing contact with neighbouring cells.

Cell volume exclusion
Cells exhibit volume exclusion (two cells repel from one another if they get closer than an equilibrium 
distance). This simply models how two cells cannot occupy the same space at the same time. The 
extent to which volume exclusion is exhibited can be thought of as the level of cell stiffness. Low 
k means cells are squishier. This is modelled using the k term in the Morse potential calculation 
(Equation 1).

https://doi.org/10.7554/eLife.73550
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Co-attraction (co-A)
When cells drift more than the equilibrium distance apart, they are drawn back towards their 
neighbours with a force calculated by the Morse potential curve (Equation 1).

Migratory identity
Leader and follower migratory identities were allocated to cells according to the order in which these 
enter the chain. That is, the first cell becomes leader then the next X many cells become follower 
cells before the cell after that becomes leader. A sensitivity analysis on leader cells frequency was 
performed by spacing parameter S.

Simulation procedure
The simulation follows the process steps listed below Appendix 1—figure 2 and was simulated on 
CAMP – the Francis Crick Institute’s Linux-based high-performance computing system. Parameter 
combination/experimental condition pairs were run 100 times in parallel across 10 nodes.

1.	 Initialise cells within PMZ
2.	 Loop until maximum time has been reached:

2.1 Perform Delaunay triangulation on cells
2.2 Identify neighbours
2.3 Calculate forces between nearest neighbours
2.4 Apply boundary forces to all cells
2.5 Calculate autonomous motion velocties as determined by contact inhibition
2.6 Calculate noise
2.7 Update system
2.8 Apply experimental conditions for the next time step

Model pseudocode overview.
A predefined number of cells is initialised in the premigratory zone (PMZ). Thereafter, the system 
enters a loop for every time step up to tmax. In this loop, forces are linearly summed to obtain 
each cell’s velocity vector for that time step: (1) a Delaunay triangulation is performed on cells. (2) 
Each cell’s nearest neighbours are identified. (3) Local forces between cells are calculated according 
to the Morse potential (Appendix 1—figure 1). (4) Boundary forces are applied to each cell. (5) 
Autonomous motion and contact inhibition are calculated for each cell. (6) Gaussian noise is added 
to each cell’s velocity vector. (7) The system’s clock is updated, as well as each cell’s position. (8) 
Experimental conditions are applied for the next time step (e.g. giving certain cells leader qualities).

Appendix 1—figure 1. Description of model mechanisms and configuration. (A) Diagram of 10 cells modelled as 
infinitesimal particles, with Delaunay triangulation showing nearest neighbours and circles showing typical cell radii 
around each particle. (B) Morse potential for low-volume exclusion k (orange), high cell volume exclusion (blue), 
high-energy depth De (solid line), and low-energy depth (dashed line). The portion of the curve that relates to 
Appendix 1—figure 1 continued on next page
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repulsion is distinguished from the portion that relates to attraction by the vertical green line. (C) Demonstrating 
calculation of force component from a boundary. When the centre point of a cell moves within a cell radius of the 
boundary, the cell experiences a force perpendicular to and away from the boundary with magnitude determined 
by a Morse potential and with offset from equilibrium distance. (D) Demonstrating calculation of cell polarisation. 
Adjacent nearest neighbours of a cell subtend angles θ1, θ2, and θ3 around the cell centre. The direction of 
polarisation, and hence autonomous motion, bisects θ3, the largest such angle. Forces on each cell arise from 
interactions between neighbouring particles. These interactions are defined by a Morse potential (Morse, 1929), 
a function of the separation between particles, and parameterised by an equilibrium separation (re), approximate 
spring constant (k), and energy depth (De) (Equation 1, Figure 1B). These parameters model the typical radius of 
a cell, its volume exclusion, and chemoattractive magnitude (‘co-attraction’). (E) Dimensions of the model. White 
space represents empty space where cells can move freely, black space is space where cells cannot move due to 
boundaries. Horizontal movement is restricted while moving down the chain except for in the middle zone (for 
values associated with these parameters, see Appendix 1—table 1).

Appendix 1—figure 2. Calibration on final position of the furthest travelling cell in µm. The optimal distance is 
120 µm which is shown by the pink square. Ventral distance increases with increases in cell volume exclusion and 
co-attraction, which is most apparent in the rightmost heatmap.

Parameterisation
Time was calibrated as follows: in vivo control cells tend to migrate to approximately 120 µm from 
dorsal midline on average (Figure  5C). The total time of migration is on average 11.64  hr long 
(~700  min). In 2000 time steps, the control case (with differential CIL, heterogenous migratory 
identities and S = ‘1:3’) also migrates to approximately 120  µm. We gathered data every 20 time 
steps, which means in our simulation movies there are 100 frames (i.e. 1 frame = 7 min).

Where possible, parameters were calibrated to values measured in vivo (Appendix  1—table 
1). Model-specific parameters unable to be linked directly to in vivo values were set to values that 
produced realistic bounds of behaviour.

Appendix 1—table 1. Simulation parameters, description, range, and source.

Name Description Range
Optimised 
setting Units Source

PMZ width Horizontal space of the premigratory zone. 57.0 57.0 μm Measurement

PMZ height Vertical space in the premigratory zone. 28.5 28.5 μm Measurement

CE width Horizontal width in the migratory chain. 22.8 22.8 μm Model specific

MZ ratio
Vertical space around the midpoint relative to the 
height of the PMZ. 0.5 0.5 Units Model specific

Cell radius

Interaction radius of cell radius was inferred assuming 
cells were perfect spheres, based on volumetric 
measurements
(Richardson et al., 2016). 7.4 7.4 mm Measurement

Nc Number of cells. 18 18 Number Measurement

ζ

Magnitude of stochastic component. Term of the 
Langevin equation, which controls random cell 
movement magnitude. 0.035 0.035 Units Model specific

‍γ ‍ Overdamped Langevin equation drag factor. 1 1 Units Model specific

Appendix 1—figure 1 continued
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Name Description Range
Optimised 
setting Units Source

S
Leader spacing – number of follower cells between 
leader cells in migration. {0, 1, 2, 3, ∞} 3 Number Calibrated

Follower k

Spring constant near equilibrium (parameter of Morse 
potential) for follower type cells. This can be thought of 
as the cell volume exclusion of the cells. High k means 
that cells are stiffer.

Low: [0.01]
Medium: [0.02]
High:
[0.03] 0.01 Units Calibrated

Leader k As above but for leader-type cells.

Low: [0.01]
Medium: [0.02]
High:
[0.03] 0.02 Units Calibrated

Follower De

Depth of potential well (parameter of Morse potential). 
Greater De means greater range of co-attraction. 
This can be thought of as the amount of chemotactic 
attraction signal released by each cell.

Low:
[3e-05]
Medium: [6e-05]
High:
[9e-05] 3e-05 Units Calibrated

Leader
De As above but for leader-type cells.

Low:
[3e-05]
Medium: [6e-05]
High:
[9e-05] 6e-05 Units Calibrated

Follower aMag

Magnitude of autonomous cell velocity. In the model’s 
implementation of contact inhibition, cells move into 
the widest open space. This parameter modulates the 
velocity with which they move into this space.

Low:
[1.1e-07]
Medium: [1.56e-06]
High:
[3e-06] 1.1e-07 Units Calibrated

Leader aMag As above but for leader-type cells.

Low:
[1.1e-07]
Medium: [1.56e-06]
High:
[3e-06] 3e-06 Units Calibrated

Interaction 
threshold

Multiples of cell radii beyond which neighbours no 
longer cause polarisation by contact inhibition. 1 1 Units Model specific

T max Total run time in arbitrary units. 2000 2000 Units Model specific

dt Time interval between iterations. 0.1 0.1 Units Model specific

Output 
interval Time interval between data outputs. 10 10 Units Model specific

Sensitivity analysis
In the grid search calibration approach, we fixed follower cells’ properties to be at their low 
levels. Next, we looked at how changes to leader cell physical properties affected ventral distance 
(Appendix  1—figure 2). This shows a strong effect in leader aMag, whereby low leader aMag 
resulted in cells not migrating much beyond 100 µm no matter the level of co-attraction or cell 
volume exclusion. aMag had to be varied across a wider range to see a clear effect. Through this, 
aMag has a dominating effect on ventral distance: higher aMag is associated with higher ventral 
distance.
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