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Intensity-modulated radiation therapy (IMRT) has been used for high-accurate physical
dose distribution sculpture and employed to modulate different dose levels into Gross
Tumor Volume (GTV), Clinical Target Volume (CTV) and Planning Target Volume (PTV).
GTV, CTV and PTV can be prescribed at different dose levels, however, there is an
emphasis that their dose distributions need to be uniform, despite the fact that most types
of tumour are heterogeneous. With traditional radiomics and artificial intelligence (AI)
techniques, we can identify biological target volume from functional images against
conventional GTV derived from anatomical imaging. Functional imaging, such as multi
parameter MRI and PET can be used to implement dose painting, which allows us to
achieve dose escalation by increasing doses in certain areas that are therapy-resistant in
the GTV and reducing doses in less aggressive areas. In this review, we firstly discuss
several quantitative functional imaging techniques including PET-CT and multi-parameter
MRI. Furthermore, theoretical and experimental comparisons for dose painting by
contours (DPBC) and dose painting by numbers (DPBN), along with outcome analysis
after dose painting are provided. The state-of-the-art AI-based biomarker diagnosis
techniques is reviewed. Finally, we conclude major challenges and future directions in
AI-based biomarkers to improve cancer diagnosis and radiotherapy treatment.

Keywords: functional imaging, radiotherapy, personalized radiation dose, dose painting by contours, dose painting
by numbers
1 INTRODUCTION

For treatment planning and outcome management, medical imaging plays a significant role to
guarantee satisfying treatment of radiation therapy (RT) (1). Conventional anatomical imaging,
such as CT and MRI, have been widely used to define the tumour size and locations. However,
conventional anatomical imaging techniques provide limited insight into tumour macro- and
micro-environments, especially regarding biological function, such as metabolic activity, cell
proliferation, perfusion, hypoxia etc. This information can facilitate evaluating the severity of
disease, improving tumour staging and thus the subsequent patient stratification and treatment (1).
Therefore, interest in extracting quantifiable radiologic biomarkers with functional imaging has
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arisen recently (2). For example, functional images are used to
protect critical-tissue and neural-nerve functionality during
RT (2).

RT technology has been developed rapidly over the past
decades and continues to be a standard treatment for
malignant tumors, resulting in improved treatment outcomes
over performing surgery or chemotherapy alone at certain cases.
However, local recurrence after RT is one of the important
modes of failure when dealing with most malignant tumors.
The main reason may be that the planning target volume (PTV)
of the tumor receives a uniform prescribed dose without
considering the heterogeneity of the tumor itself in terms of
time and space. In 1998, dose painting was originally proposed at
ESTRO to address this challenge (3). In the 2000s, Ling et al.
employed biological imaging to achieve “biological
conformality”, where higher doses are applied to some areas
with higher clonogenic cell density and radiation resistance in a
tumour, while lower doses to less aggressive areas (3). In this
way, tumor cells can be eliminated, and healthy tissues can
recover faster (4, 5). To improve the accuracy of dose painting,
many functional imaging optimisations have been proposed
recently (2). Functional images have potential strengths to
improve prognostication response to RT, which can facilitate
personalized treatment and clinical trial designs in terms of
patient-specific prescription dose and biological target volume
(BTV) (6, 7). Moreover, quantitative functional imaging can be
used for heterogeneous dose painting, where doses can be
spatially redistributed throughout the target tumour based on
personalized parameter maps (1).

Although current quantitative-imaging techniques are largely
used for response management (8–11), there are only very
limited studies on dose painting and no prior studies related to
dose stratification. Therefore, clinical potential of quantitative
function imaging becomes a prosperous direction that deserves
investigations (1). Heide et al. suggested that high-quality
imaging of the tumor and its surrounding tissues facilitate
effective dose painting (2), and have discussed MRI-guided
dose painting in 2012. In this article, we summarize various
functional images as the pre-requisite for dose painting, as shown
in the outline. The details of each image modality are discussed
in Section 2. After that, dose painting by contours (DPBC) and
dose painting by numbers (DPBN) using functional imaging are
Frontiers in Oncology | www.frontiersin.org 2
discussed in Section 3. Although at present, the supplementary
exposure of dose painting to biological target areas is mostly
implemented through PET-CT imaging technology, other
modalities such as multi-parameter MRI also have potential in
dose painting. In section 4, a review of recent AI-based
biomarker diagnosis techniques is presented. On this basis, a
biological target volume can be defined by identifying
biomarkers from functional images. Section 5 concludes some
existing challenges and provide corresponding possible research
directions, including use of AI techniques in advanced functional
imaging, though which we hope to inspire exciting developments
and fruitful research avenues.
2 FUNCTIONAL IMAGING

Because of the plethora of functional imaging techniques, this
article focuses on DW-MRI, MRS, Perfusion MRI including
Dynamic susceptibility contrast (DSC) and dynamic contrast
enhanced (DCE), DTI MRI and PET-CT. We present a review
for these methods by surveying the state-of-the-art works.
Table 1 summarised current functional imaging techniques
and their biomarkers.

2.1 DW-MRI
Diffusion-weighted magnetic resonance imaging (DW-MRI) is used
to measure the mobility of water molecules in the microscopic
environment of tissues. DW-MRI is very sensitive to cellular
density, proliferation rate and cellular permeability (8, 9), and can
reveal microscopic details of normal and diseased tissues. The
sensitized signal is modelled by the amount of diffusion weights,
called b-value. The amount of diffusion existing in the tissue,
predominantly in the extracellular space (10, 11), is given by the
apparent diffusion coefficient (ADC) (12). ADC map is an MRI
image that shows better diffusion than conventional DWI (1). ADC
map can be measured/defined by DW-MRI with at least two b-
values (1). Darker areas in ADC images represent smaller
magnitude of diffusion. Lower ADC values indicate slower water
infusing where malignant tumour appears (13). Therefore, ADC
and cellular density have an inverse correlation relationship. Several
studies estimated the relationship between ADC and cellular density
for different tumour sites. Ginat et al. performed a histological study
TABLE 1 | An overview of functional imaging techniques.

Functional imaging
techniques

Quantitative parameters Biomarkers Threshold

MR-Spectroscopic
(MRS)

Metabolism A ratio of choline to NAA (Cho/NAA) Not clear

Diffusion weighted
(DW)-MRI

Diffusion of water molecules Apparent diffusion coefficient (ADC) Not clear

Perfusion MRI Tissue perfusion Cerebral blood volume (CBV), cerebral blood flow (CBF), transfer constant
of Gd- diethylenetriamine pentaacetic acid (Ktrans)

Relative (r)
CBV > 1.75

Diffusion tensor
imaging (DTI)- MRI

Tensor of water diffusion White matter tracts (WMT) Not clear

PET-CT Glucose metabolism and the upregulation of
glucose transporters in cancer cells

Standardized uptake value (SUV) Not clear
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and achieved the relationship between ADC and cellular density for
chordoma (14), while Gupta et al. estimated the relationship for
GBM (15).

The restricted spread of water has been considered as an
indicator of solid tumours. However, in DW-MRI with b values
of 0 and 800-1000s/mm2, ADC values are usually unpredictable
because of the mixture of micronecrosis, normal tissues, high-cell
tumors and oedema, as shown in Figure 1. ADC values of a
tumor are sometimes higher than those in normal tissues.
Researchers used the minimum ADC value to determine its
prognostic value (16–19). However, the area of malignant
tumours is usually larger than the area with the minimum
ADC value. Therefore, high b-value DW-MRI (e.g., 3000-
4000s/mm2) are used to eliminate the signal from edema (20–
22). Pramanik et al. showed that the hypercellular subvolume
(HCV) of GBM determined by high-b value (3000s/mm2) DWI
can predict progression-free survival (PFS) (23). About 40% of
HCV may exceed the area of the traditional high-dose volume,
which suggests a potential biological target with more radiation
dose (23). Cao et al. showed an example of DW-MRI with two
different b values. The lesions were more obvious in the high b-
value DW-MRI (b=3000s/mm2) than the conventional b-value
DW-MRI (b=800-1000s/mm2) (24).

Hamstra et al. (25) and Moffat et al. (26) provided information
for individual patient’s adaptation to radiotherapy. Patients
usually have higher overall survival (OS), whose voxel ADC
values are changed dramatically after 3 weeks of radiotherapy
(25, 26). However, when the tumor grows or shrinks, the paired
images obtained before and during radiotherapy must
consistently produce high-quality registration (27). ADC can be
used to calculate tumour control probability (TCP) to analyse
Frontiers in Oncology | www.frontiersin.org 3
patient-specific characteristics. A recent study showed that MRI-
driven cellular density can enhance TCP value differences in
patients (28). Buizza et al. evaluated DW-MRI for modelling TCP
in skull-base chordomas, which has enrolled in CIRT protocol
(29). The aforementioned methods facilitate personalized and
optimized treatments. The main limitation of these studies lies in
uncertainties that inherently affect the relationship between ADC
and cellular density. Moreover, single-shot echo planar imaging
(EPI) pulse sequence is used in DW-MRI, which is very sensitive
to geometric distortion. To reduce the geometric distortion due to
EPI, multi-shot EPI, read-out segmentedmulti-shot EPI, and high
parallel imaging factor are used. To achieve the golden standard,
tumor target defined by high b-value DWI and parameter
response curves therefore requires pathological verification.

2.2 MR-Spectroscopic Imaging
MR-Spectroscopic Imaging (MRS) uses radio-labelled glucose
and methionine to identify high-risk regions in large tumours. In
MRS, active tumors exhibit at areas with high resonance in the
choline spectral peak and a low NAA (N-acetylaspartate).
Figure 2 shows an example of MRS on post-operation MRI
with choline/NAA. In other words, creatine resonance
correlating with high choline/NAA, or choline/creatine ratios
versus low ratios for areas of inactivity (30–37). Graves et al.
analysed 36 patients with recurrent high-grade gliomas, who are
treated with Gamma Knife stereotactic radiosurgery (SRS).
Patients in high-risk regions of the SRS target had an
improved survival rate versus those with MRS high-risk
regions outside the SRS target (38). Croteau et al. studied 31
patients whose high-grade gliomas were resected after
conventional MRI and MRS and found that MRS can
FIGURE 1 | The same patient position shown in T2 weighted MRI (left) and DW-MRI (right), where T2 MRI represents more distinguishable classification than DW-MRI.
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accurately define the tumor boundary using histopathologic
correlation (36). Moreover, Pirzkall et al. presented a pre-
treatment analysis of 34 patients with high-grade gliomas (39)
and found that high-risk regions defined by MRS were
significantly smaller than regions in conventional T2-wighted
imaging. Thanks to MRS, more normal areas in the brain can be
distinguished from the tumour, thereby, reducing side
effects (39).

Einstein et al. illustrated the procedure of Gamma Knife SRS
incorporated with MRS functional imaging. Einstein et al.
conducted the first prospective Phase II trial using MRS-
targeted SRS for patients treated with GBM. In this work, the
value of Cho/NAA> 2 was used as the area that is required to
boost doses (40). However, the value of the Cho/NAA has no
consensus to define the tumour area. The metabolic abnormality
of Cho/NAA often exceeds the enhancement range of the lesion,
and sometimes even exceeds the abnormal range of FLAIR (37,
41, 42). In some cases, the tumor recurs where the Cho/NAA is
normal (41). Therefore, this technique has been discussed for
several decades but not been transferred into clinical practice.
Other obstacles include long acquisition, low spatial resolution,
low robustness of spectral acquisition, and how to consistently
obtain high-quality spectral images (1, 42, 43).
2.3 Perfusion MRI
Perfusion MRI is also a widely used method for tumour
characterisation and diagnosis (1), which includes dynamic
susceptibility contrast (DSC) and dynamic contrast enhanced
(DCE) MRI. When using Perfusion MRI, patients will get
injection of gadolinium-based agent during continuous image
Frontiers in Oncology | www.frontiersin.org 4
acquisition. Gadolinium contrast agents can decrease the T1
relaxation time. Therefore, the distribution within the patient
can be studied by continuously acquiring T1-weighted images.

In particular for brain tumor, modelling the distribution of
contrast agent in tissue allows us to quantify vascular leakage,
cerebral blood volume (CBV), mean transit time and cerebral
blood flow (CBF) (43–45). As tumor keeps growing, new blood
vessels will appear. CBV, CBF and vascular leakage will be
increased. Thus, CBV and CBF can be used as prognostic
biomarkers to predict OS and progression-free survival PFS for
tumours (43, 44, 46–48). Law et al. suggested that the mean
relative CBV > 1.75 can be used as the threshold of low
progression time for low grade and high grade GBM (43). As
another biomarker, Gd-diethylenetriamine pentaacetic acid
(Ktrans) can be used to quantify the leakage of vascular for OS
prediction (49). Using the mean or median of CBF and CBV in
the entire tumor volume has certain limitations for GBM, since it
is a highly heterogeneous tumor which reduces the sensitivity of
indicators for evaluating efficacy. Several methods have been
proposed to solve this problem, such as dividing the entire tumor
volume into several different sub-volumes according to different
CBV values or vascular leakage (44, 46), and comparing the CBV
before and during RT. Prior to the use of elevated CBV for
defining enhancement target in GBM, the amount of elevated
CBV in GBM related to tumors is a key factor. This makes sense
since tumors can exist at areas where CBV is not elevated (50).

Even though DSC and DCE MRI can be used to estimate
CBV, there are serval limitations of perfusion MRI. Similar with
DW-MRI, DSC MRI has serious geometric distortion and signal
loss because it is obtained by EPI. Moreover, CBV can be
achieved from T1-weighted DCE MRI (51), however
determining reliable arterial input function is still non-trivial.
Use of a large sagittal view is able to determine the arterial input
function of aorta, thereby reducing uncertainties. To incorporate
CBV calculations into the RT workflow, a validated software is
also necessitated. Last but not least, consider the fact that longer
scanning time for every picture empowers large spatial
resolution, however a high temporal resolution restricts the
spatial resolution (52–54). Therefore, temporal and spatial
resolution needs to be balanced.

2.4 Diffusion Tensor Imaging (DTI)-MRI
Diffusion tensor imaging (DTI)-MRI is one of the most popular
technique to detect brain tumour and implement radiotherapy.
Kelly et al. (55) and Price et al. (56) have shown that tumour cells
preferably transmit along the white matter tracts (WMT) and
have decreased infiltration in gray matter. Krishnan et al.
investigated another retrospective study and showed the
process from the original tumor to the recurrence using DTI-
MRI for glioma patients. Their results confirmed that WMTs can
be used as a route to indicate tumor spreading (57). These
findings demonstrated that GBM grows along with WMTs.
WMTs can be used as a biomarker to simulate tumor growth,
and DTI-MRI can be used to define the corresponding CTV, as
shown by serval retrospective studies (57–61). Moreover, DTI-
MRI incorporated with mathematical model could define the RT
FIGURE 2 | An example of MRS with a distribution of Choline/NAA.
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target areas and evaluates the coverage rate of recurrence in
patients with clinical target volume (CTV) derived from DTI.

Trip et al. implemented the first phase 0 study to deline CTVs
using the DTI in post-operative chemo-/radiotherapy for GBM
(61). Their results showed that CTVs derived by DTI-MRI
performed worse for the central recurrences, however they are
better for non-central and satellite recurrences. Unfortunately,
this study lacks enough patient samples to conclude fair
observations. In addition, the authors did not use the
deformable registration, and measured the Hausdorff distance
(HD) geometrically rather than anatomically. Nonetheless, due
to the time-dependent migration of tumor cells, the effect of
adopting a new target definition can only be truly evaluated in
interventional studies.

2.5 Positron Emission Tomography (PET)-
CT
Positron emission tomography (PET)-CT has been a valuable
technique for RT in staging (62) and accurate target-volume
delineation (63, 64). When imaging patients using PET-CT, a
radioactive substance emitting positrons must be injected.
Thereafter, the scanner detects the emitted photon pairs (511
keV) and quantifies their distribution throughout the patient
after signal correction and normalization steps. A variety of PET
radiotracers are available for in vivo imaging of biological
processes. There are only five oncologic indications approved
by the U.S. Food and Drug Administration, i.e. [18F]-fluoro
deoxy-D-glucose (FDG), Na[18F], 18

fluciclovine, [11C]-choline,
and [68Ga]-DOTA-octreotate (DOTATATE). Many other
candidates are being evaluated for clinical treatment.

As the most widely used PET radiotracer in the clinic, the
details of FDG-PET are discussed in the following. FDG-PET
depends on the relation between glucose metabolism and the
upregulation of glucose transporters in cancer cells, and has
played a significant role for patient staging, selection and RT
target delineation (65–71). For example, mistreatment [18F]-
FDG PET scan serves as a biomarker for adaptive dose
painting. Kong et al. recently performed a phase II RT trial
based on PET-CT for patients with NSCLC using interim [18F]-
FDG PET to identify regions of poorly responding disease (72).
An improved 2-year control rate was achieved with a factor of
82% versus 69% in the trial Radiation Therapy Oncology Group
(RTOG) 1106 trial (73). Given the aforementioned results, FDG-
PET is now the basis for RTOG 1106. Generally, the higher the
uptake of FDG is, the more dose is needed, with a 10-30%
increase to achieve the same control probability in the low FDG
area (74).

Vogelius et al. derived dose–response functions for different
structures that were distinguished by pre-treatment FDG-PET
CT (75). Such dose response functions are used in the dose
optimization process. Versus traditional treatments, they can
maximize the patient’s TCP under the constraint of a constant
average dose. Based on this study, Grönlund et al. implemented
dose painting by numbers (DPBN) (76), and showed that TCP
values were increased compared to uniformly delivered dose.
Since uncertainties exist in the relationship between SUV and
Frontiers in Oncology | www.frontiersin.org 5
TCP, Grönlund et al. focused on the heterogeneity of SUV rather
than absolute SUV, which provide a method to deal with the
uncertain threshold of SUV.
3 DOSE PAINTING

In recent decades, the advancement of radiotherapy has mainly
benefited from advanced imaging technologies such as CT and
MRI. Traditional tumor targets such as gross tumour volume
(GTV) and clinical target volume (CTV) were defined in
ESTRO-ACROP (77). Standard practice of radiotherapy is to
give uniform radiation doses to the target area. However, this has
been greatly challenged recently (78). Many factors affect the
sensitivity of radiotherapy in the tumor, such as hypoxic area,
cell proliferation rate, tumor cell density and intratumor blood
perfusion, etc. (79). These factors change dynamically with the
time and space during the treatment process (77). In view of the
large heterogeneity of biological characteristics in tumors, when
using uniform radiation dose for heterogeneous tumors.
Therefore, it is possible to improve the local control by
performing supplemental irradiation for the biological volumes
that are relatively insensitive to treatment in the tumor. Given
the aforementioned discussion in Section 2, modern biological
imaging techniques, such as PET-CT, and multi-parameter MRI,
can facilitate the development of dose painting (80). Dose
painting is a new radiotherapy approach that produces
optimized non-uniform dose distribution by using functional
imaging for tumour control (80). Dose painting can be employed
for three-dimensional (3D) radiobiological analysis, thereby
investigating relations among relevant parameters in
radiotherapy, the inherent potential to trace the real target
volume, and therapeutic dose to control the disease. At
present, the supplementary exposure of dose painting to
biological target areas is mostly implemented through PET-CT
imaging technology.

In order to deliver a relatively higher proportion of dose to a
more resistant part of tumor, dose escalation and dose
redistribution have been proposed recently. There are two
main strategies of dose painting, dose painting by contours
(DPBC) based on threshold of biomarkers and dose painting
by numbers (DPBN) based on voxels. In DPBC, a tumour’s sub-
volumes are heterogeneous in the functional images needed to be
treated in a differentiated dose level (81). In DPBN, dose
prescription is delivered to each voxel of a tumour, determined
by the voxel value in functional images. Such voxel-based dose
distribution is usually represented in a dose-prescription map
(81). Their definitions, features and state-of-the-art advances are
reviewed as follows. Table 2 summarised the current DPBC and
DPBN techniques and their application of dose escalation.

3.1 Dose Painting by Contours
In 2005, Ling et al. proposed the first DPBC technique (3). DPBC
applies a dose boost by a certain threshold to a subvolume of the
tumour. The regions of relatively lower and higher risk for
recurrence are fixed with the threshold from the quantitative
January 2022 | Volume 11 | Article 764665
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functional imaging. There are uncertainties related to the
imaging modalities where the prescription function should be
based, and when translating the image into a prescription
function for dose painting (96, 97). Some major uncertainties,
induced by PET imaging partial volume effect (PVE), tumour
deformable image registration (DIR), and variation of the time
interval between FDG injection and PET image acquisition have
been investigated by Chen et al. (89).

In particular, interobserver variability in target volumes is a
well-known factor for radiotherapy. For PET-CT based dose
painting, detailed contouring guidelines can be referred to the
PET-Plan (NCT00697333) clinical trial protocol (98). As a part
of the PET-Plan quality assurance, a contouring dummy run
(DR) was performed to analyse the interobserver variability (82).
In addition, Korreman et al. investigated dose conformity by
using the RapidArc optimizer and beam delivery technique (87).
Optimisations for dose panting were performed in Eclipse by
tuning the leaf width of multi-leaf collimator (MLC), the number
of arc and collimator rotation. Positioning uncertainties are also
considered for robust analysis and have been demonstrated with
a low positional error (87).

A commonly used treatment planning approach for DPBC is
the simultaneous integrated boost (SIB) technique (99) to
Frontiers in Oncology | www.frontiersin.org 6
increase the dose at a subvolume of the tumour. Patients
treated by this approach are expected to achieve better dose
tolerance (100). A homogeneous boost dose is assigned to the
subvolume in many clinical trials (101). PET-guided DPBC was
used to assess the feasibility of intensity-modulated radiotherapy
(IMRT), where the maximum tolerated dose in head and neck
cancer can be determined (88). The same purpose of increasing
tolerated dose is also explored in non–small-cell lung cancer
(NSCLC) treatments (85). Fleckenstein et al. proposed a source-
to-background contouring algorithm for FDG-PET in the
process of RT planning (85). There have been other advantages
when using DPBC for RT planning. For example, Kong et al.
demonstrated that adapting RT by boosting dose via DPBC to
the FDG avid region improves 2-year local-regional tumour
control and overall survival rate (84).

3.2 Dose Painting by Numbers
The term ‘‘dose painting by numbers” describes prescription
dose on a voxel-by-voxel level (6). DPBN is a method to increase
the additional dose gradually, adjusted by the local voxel
intensities. Mathematical models are usually used to identify
the relationship between the voxel values of the functional
imaging and the risk of local recurrence (76). In particular,
TABLE 2 | A review of the state-of-the-art DPBC and DPBN techniques.

Author Year Tumour
place

Level of dose
escalation

Conclusion

DPBC Schimek-Jasch et al. (82) 2015 NSCLC 60-74 Gy Target volume delineation is improved.
Heukelom et al. (83) 2013 Head

and
neck

BR 77Gy, PTV
outside the BR 67 Gy

5% improvement in LRC with a power of 80% at a significance level of
0.05.

Kong et al. (84) 2013 NSCLC 84 Gy (median) 2-year rate of in-field LC and overall LC were 84%and 68%, the rate of OS
was 51%.

Fleckenstein et al. (85) 2011 NSCLC 66.6 to 73.8 Gy Median survival time was 19.3 months.
van Elmpt et al. (86) NSCLC BR 86.9 ± 14.9 Gy Not Applicable
Korreman et al. (87) 2010 NSCLC 90 Gy (mean) Good conformity was obtained using MLC leaf width 2.5 mm, two arcs,

and collimators 45/315 degrees, and robustness to positional error was
low.

Madani et al. (88) 2006 Head
and
neck

72.5, 77.5 Gy Actuarial 1-year rates of LC were 85% and 87%, and 1-year rate of OS
was 82% and 54% (P=0.06).

DPBN Chen et al. (89) 2020 HNSCC Not Applicable Uncertainties in quantitative FDG-PET/CT imaging feedback arising from
PVE and DIR have been analysed.

Håkansson et al. (90) 2020 Head
and
neck

85.3 Gy(Maximum) Proton dose-painting can reduce the non-target dose generally, but should
avoid unintended hot spots of mucosal toxicity.

Grönlund et al. (76, 91, 92) 2020,2019,
2017

Head
and
neck

CTVT 66 to 74.5 Gy TCP values increased between 0.1% and 14.6% by the ideal
doseredistributions for 59 patients.

Jiménez-Ortega et al. (81) 2017 NSCLC 68 Gy (minimum) The total planning time spent ranged from 6 to 8 h.
Berwouts et al. (93) 2013 Head

and
neck

Prescription dose of
GTV 70.2 Gy
(median)

Disease control in 9/10 patients at a median follow-up of 13 months.

Madani et al. (94) 2011 Head
and
neck

80.9 and 85.9 gy
(median)

Actuarial 2-year rates of LC and freedom from distant metastasis were
95%, 93% and 68%, respectively.

Meijer et al. (95) 2011 NSCLC 66 Gy DPBN can increase higher dose levels than DPBC when considering
organs at risk.
BR, boost region; CTVT, primary clinical target volume; LC, local-regional control; OS, overall survival; TCP, tumour control probabilities; GTV, gross tumour volume; HNSCC, squamous
cell carcinoma of head and neck; PVE, partial volume effect; DIR, deformable image registration.
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Chen et al. (89) analysed how the uncertainties in quantitative
FDG-PET CT imaging impact intratumorally dose–response
quantification, such as ones cause by PVE and tumour DIR
(89). The negative effect arising from some of these uncertainties
could be optimised by DPBN techniques (89).

There has been various technical feasibility and robustness of
DPBN published recently (102–104). Dose prescription with
steep gradients can be delivered by numerous subvolumes via
a conventional linear accelerator (105). Rickhey et al. used the
DPBN approach in brain tumours with [18F]-FET-PET, and
achieved with high accuracy (106). Moreover, [18F]-FDG-PET-
guided DPBN was proved to be feasible in phase I clinical trial by
Berwouts et al. in head and neck RT (93). Recently, Grönlund
et al. investigated the spatial relation between retrospectively
observed recurrence volumes and pre-treatment SUV from
FDG-PET (76). As were shown in the aforementioned studies,
SUV driven dose–response functions have been presented to
optimize ideal dose redistributions under the constraint of equal
average dose of a tumour volume (76). A further analysis was
proposed to investigate the feasibility of DPBN to increase the
TCP in a clinical scenario (91).

Some DPBN approaches have been proposed by using sub-
volumes as targets (76, 87, 91) or dose maps with prescription to
the voxel as objective function (107), but these methods belong to
dose-volume based optimization algorithms. Jiménez-Ortega
et al. presented a new optimization algorithm to implement
directly constraints to voxels instead of volumes, where Linear
Programming (LP) is used to carry out DPBN approximation.
This method is implemented in CARMEN, a Monte Carlo (MC)
treatment planning system (81). Since proton therapy has been
reported as potentially capable of decreasing toxicity, Håkansson
et al. investigated DPBN in proton RT planning by comparing
proton dose distributions with delivered photon plans from a
phase-I trial of FDG-PET based dose-painting (90).
Experimental results stay in line with the physical properties of
the photon and proton beams, i.e. proton DPBN can be
optimised with a quality comparable to photon DPBN (90).

3.3 Comparisons on DPBC and DPBN
DPBC mainly refers to the specific function image parameters to
set the threshold for the replenishment area. Biomarkers in the
high-risk area for recurrence have larger values over the defined
threshold, while low-risk recurrence area corresponds to
biomarkers having smaller values than the threshold. DPBN
assumes that the recurrence risk of a certain pixel in the tumor
area is positively correlated with the parameter intensity of its
specific function image pixel, and the radiation dose of a certain
pixel is directly related to its corresponding functional image
pixel information. DPBN directly relies on theragnostic imaging
(6). DPBN requires a customised software package to optimize
the irradiation plan, but there is no commercial software directly
implement optimization of DPBN (108, 109).

We remark that DPBC and DPBN have their own advantages
and disadvantages (109). Advantages of DPBC are that sub
volumes that need to boost dose can be pre-drawn before the
treatment plan. Then the sub volumes can be set to add margins
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to supplement the geometric uncertainty, and the treatment plan
can also be evaluated by conventional DVH. Disadvantages of
DPBC mainly include the lack of consensus of the threshold for
biomarkers. DPBN has more theoretical advantages than DPBC
because it can deliver doses to voxel level. However, it cannot
extend the margin of specific voxels and is more sensitive to
uncertainty arising in image registration. Therefore, online
image-guided treatment that can clearly show soft tissues
is required.

Meijer et al. examined both DPBC and DPBN techniques for
non-small cell lung cancer (NSCLC) patients’ treatment (95). In
general, the amount of DPBC dose-boosting is limited whenever
the GTV boost is close to any serial risk organ. However, DPBN
shows significant higher dose values to high SUV voxels and are
more distant from the organs at risk, since DPBN boosts work at
a voxel-by-voxel basis (95).
4 AI-BASED BIOMARKERS DIAGNOSIS

We have investigated the potential of functional imaging on dose
painting. With the help of the artificial intelligence (AI)
techniques, we can define biological target volume by
identifying biomarkers from functional images. Based on the
degree of user interaction, methods used for the classification of
various tumors can be classified as manual methods, semi-
automatic methods and fully automatic methods. For the
manual segmentation methods, radiologists use the multi-
modality data, provided by the medical images along with
information pertaining to both the anatomy and the
physiology. This kind of segmentation needs the radiologist to
manually draw the areas and regions of tumour carefully by
going through slices of CT/MRI scans. Therefore, manual
segmentation is a tedious, radiologist dependent task, resulting
in variable outcomes. However, manual segmentations are useful
in the evaluation process of the results obtained from semi-
automatic and fully automatic methods.

For semi-automatic methods for image segmentation-based
cancer treatment, three processes are usually needed:
initialization, intervention response or feedback response and
evaluation of results (110). Initialization is usually performed
through the process of defining a Region of Interest (ROI), which
contains the approximate region of tumor, enabling the
automatic algorithm procedure. Thereafter, machine learning
algorithms can be used to obtain an optimal result during the
process by providing adjustments based on the feedback received
in response. Users, such as doctors and physicists can also assess
the results and alter or repeat the process if the results are
unsatisfactory. The semi-automatic segmentation method called
Tumor Cut requires the user to outline the diameter (maximum)
of the tumor on medical images (110). Post initialization, a
cellular automaton (CA) based seeded tumor segmentation
method is run for two steps, firstly applying the algorithm to
each imaging modality individually (e.g., T1, T2, and FLAIR),
and then obtaining the resultant tumor volume through
combining the results. An improved Tumour-Cut semi-
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automatic method is proposed to use a classification approach
where the segmentation problem was reformed into a
classification problem (111). Machine learning classification
methods for tumour segmentation require large amounts of
data in the form of imaging scans (with known ground truth)
from numerous subjects to train on which requires intensity bias
and noise correction. Alternatively, we can use a subset of voxels
from each tissue type. For these selected voxels, the intensity
values along with spatial coordinates as features are extracted by
the algorithm, and a support vector machine (SVM) is trained to
classify all the voxels of the same input image to their respective
tissue type (111). Semi-automatic segmentation-based cancer
diagnosis consumes less time than manual methods and can
obtain efficient results, however, semi-automatic tumor
segmentation methods are still prone to intra and inter user
variability. Therefore, the recent tumor segmentation research
majorly focuses on fully automatic methods.

User interaction is not required in fully automatic tumor
segmentation methods. The automatic segmentation is very
challenging for some type of tumour, e.g., gliomas. Tumor
bearing imaging data is a 3D data where tumor shapes, size
and location vary greatly among patients (112). In addition, the
tumor boundaries are usually unclear and irregular with
discontinuities, posing great challenge especially against
traditional edge-based methods (113). For example, brain
tumor MRI data obtained from clinical scans or synthetic
databases are inherently complex. The MRI machines and
protocols used for data collection vary dramatically resulting in
intensity biases and other variations for each image in the dataset
(114). The need for several modalities to effectively segment
tumor sub-regions even adds complexity. Even though the
manual and semi-automatic classification methods reported
noteworthy performances, novel fully automatic tumor
segmentation techniques based on deep learning algorithms
are also emerging with exemplary results. Many studies have
applied AI to the field of tumour diagnosis. Table 3 summarizes
recent AI-based tumour diagnosis techniques and reviews
several tumour types which are suitable for radiotherapy, such
as brain tumour, head and neck cancer, esophageal cancer,
lung cancer, and metastasis lymph node. Technical features
and method accuracy have been investigated for comparison
and improvisation.
5 CHALLENGES AND FUTURE PROSPECT

5.1 Robust Calibration for Biomarkers
Current quantitative imaging approaches have larger voxels and
worse signal-to-noise-ratio (SNR) compared to other clinical
imaging techniques, since quantitative imaging requires one or
multiple quantitative parameters for each voxel (92). For dynamic
contrast-enhanced MRI/CT, the acquisition of multiple images is
required (1). Therefore, target delineation and dose painting on
functional images rely more on the values of parameters of
biomarkers compared to other clinical imaging. As was reviewed
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in Section 2, the main limitation of functional imaging lies in the
uncertainties related to the relationship between biomarker and
their corresponding parameters. Further studies involving more
robust calibration are needed to propose a more robust
relationship. One alternative way is to use the heterogeneity of
the biomarkers rather than the absolute value of biomarker, which
can reduce the impact the uncertainties of the biomarkers (76). For
tumor types with high tumor heterogeneity, such as GBM, it
makes more sense to consider the biomarker parameters of voxel
level instead of the mean value of a whole tumor. Ideally, dose
painting prescriptions should be based on dose response data
which can be observed from multiple functional imaging
methods (108).
5.2 AI-Based Biomarkers Quantification
At present, the interest of imaging biomarkers is not only due to
the state-of-the-art treatment development and personalized
medicine but also due to the recent application of artificial
intelligence (AI) algorithms in image processing (140).

AI techniques can help construct image-based biomarkers
which can provide a comprehensive view of the entire extent of
the tumor and can capture regional tumor heterogeneity (141–
143). Since biomarkers are used in a non-invasive (or mildly
invasive) way, AI techniques, such as convolutional neural
networks (CNN) can facilitate revealing tumor phenotype
related to prognosis and monitoring the development and
progression of the disease or its response to radiotherapy.
Traditionally, CNN-based medical image processing has been
used to segment the organ and tumor (140). In addition, it is
necessary to explore other kinds of biomarkers (such as ADC,
SUV, NAA) instead of tumour size and volume only. However,
the quantification of these biomarkers has been difficult.
Therefore, by defining biomarkers as a function of a large
number of image descriptors (features) extracted from an
image, we can employ machine learning or deep learning
techniques to analyse these image features. The most
discriminatory subset of features can be found to achieve the
best performance for tasks such as result prediction (144–146).
Savadjiev et al. presented a novel approach which firstly uses a
segmentation-specific CNN to narrow the analysis only to the
needed organ and tumor area in the image. Then, the relevant
radiomic features will be transferred to another neural network
model to classify tumor phenotype (140).

However, use of AI to analyse deep radiomics features has
several concerns. Firstly, the theoretical analysis of deep radiomic
features extraction are not easily interpretable due to the
complexity of deep learning models. This is because a deep
neural network requires a large number of complex but weak
regularities in the data, which has highly complex and non-linear
interactions between multiple network nodes and layers (147). In
addition, a deep neural network usually contains millions of
parameters, which is also a difficult task, involving sufficient
compute power, patient data, and reproducible network models
(140). Therefore, interests in building customised neural network
models used for different medical imaging-based biomarkers
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TABLE 3 | Recent AI-based tumour segmentation techniques.

Method Technical features Tumour
type

Accuracy

Tchoketch et al. (112) Gaussian mixture model, Fuzzy C-Means, active contour, wavelet transform and entropy segmentation
methods, without the need to any human interaction and prior knowledge for training phases as
supervised methodologies in clinical applications.

Brian
tumour

69%

Maharjan et al. (113) Extreme learning machine local receptive fields (ELM-LRF) consisting of convolutional layers and pooling
layers and modified softmax loss function.

Brain
tumour

Not
Applicable

Ali Shah Tirmzi et al. (114) Experimental work incorporating modified GA, along with SVM learning mechanism on MR brain image. Brain
tumour

98.56%

Abdel-Gawad et al. (115) Balance contrast enhancement technique (BCET) is used to improve the image features to provide better
characteristics of medical images. The proposed GA edge detection method is then employed, with the
appropriate training dataset, to detect the fine edges. A comparative analysis is performed on the number
of MR scan images.

Brain
tumour

99.61%

Kaur et al. (116) A new feature named density measure for the classification of the LG and HG glioma tumours using the
Hilbert transformation technique.

Brain
tumour

100%

Dahab et al. (117) Modified image segmentation techniques on MRI scan images to detect brain tumours; probabilistic neural
network (PNN) model based LVQ with image and data analysis and manipulation techniques to carry out
an automated brain tumour classification using MRI-scans.

Brain
tumour

100%

M.Y. Bhanumurthy, K. Anne
(118)

Feature extraction, classification, segmentation and neuro-fuzzy classifier. Brain
tumour

95.65%

Shrasthta Chauhan, Er. Neha
Sharma (119)

Histogram thresholding and artificial neural network techniques. Brain
tumour

Not
Applicable

T. Chithambaram, K. Perumal
(120)

Edge detection and artificial neural network techniques. Brain
tumour

98%

Hollon, Todd C. et al. (121) Combination of stimulated Raman histology, a label-free optical imaging method and deep convolutional
neural networks (CNNs).

Brain
tumour

94.6%

M. RajatMehrotra et al. (122) Deep learning pretrained models includes AlexNet, GoogLeNet, ResNet50, ResNet101, SqueezeNet by
using MR images of BT and applied TL on given dataset.

Brain
tumour

99.04%

Adel S. Assiri et al. (123) Ensemble classification (simple logistic regression learning, support vector machine learning with
stochastic gradient descent optimization and multilayer perceptron network).

Breast
tumour

99.42%

Gauri P. Anandgaonkar,
Ganesh S.Sable (124)

Fuzzy C-Means. Brain
tumour

Not
Applicable

Yasmeen M. George et al. (125) Classification models namely multilayer perceptron (MLP) using back-propagation algorithm, probabilistic
neural networks (PNN), learning vector quantization (LVQ) and support vector machine (SVM).

Breast
cancer

Not
Applicable

Cardenas, C.E. et al. (126) A deep learning algorithm based on deep auto-encoders is used to identify physician contouring patterns. Head and
Neck
cancer

93%

Lin, L. et al. (127) A three-dimensional convolutional neural network is applied for training (818 cases) and validation MRI
data sets to construct the AI tool, which was tested in 203 independent MRI data sets.

Head and
Neck
cancer

88.7%

Guo, Z. et al. (128) A DenseNet framework based on 3D convolution with dense connections which enables better information
propagation and takes full advantage of the features extracted from multi-modality input images.

Head and
Neck
cancer

Not
Applicable

Tang, H. et al. (129) A deep convolution neural network-based method to automatically delineate OARs in head and neck
cancers.

Head and
Neck
cancer

80.43%

Guo, D. et al. (130) A novel stratified learning framework to segment OARs, called (SOARS). SOARS divides OARs into three
levels, i.e. anchor, mid-level, and small & hard (S&H). Neural architecture search (NAS) is also to
automatically search the optimal architecture for each category.

Head and
Neck
cancer

82.4%

Yousefi, S. et al. (131, 132) A DenseNet-based end-to-end approach to analyse the contrast similarity between esophageal GTV and
its neighbouring tissues in CT scans.

Esophageal
cancer

Not
Applicable

Jin, D., et al. (133, 134) Progressive semantically nested network (PSNN) model, is proposed to incorporate joint RTCT and PET
information for accurate esophageal GTV segmentation.

Esophageal
cancer

82.6%

Hansen, S. et al. (135) An unsupervised learning based supervoxel clustering framework for lung tumor segmentation in hybrid
PET/MRI.

Lung
cancer

78.9%

Tan, J. et al. (136) A GAN-based architecture with a novel loss function based on the Earth Mover distance for lung
segmentation.

Lung
cancer

93.8%

Barbu, A. et al. (137) A robust learning-based method for automatic detection and segmentation of solid lymph nodes from CT
data.

Metastasis
lymph node

83.0%

Zhu, Z. et al. (138) A distance-based gating strategy in a multi-task framework is proposed to divide the underlying Lymph
Node Gross Tumor Volume distributions into “tumor-proximal” and “tumor-distal” categories, and a shared
encoder and two separate decoders are adopted to detect and segment two categories.

Metastasis
lymph node

78.2%

Chao, C.H. et al. (139) Graph neural networks (GNNs) is used to model this inter-lymph nodes relationship, and 3D convolutional
neural network (CNN) is used to extract lymph node gross tumor volume instance-wise appearance
features from CT.

Metastasis
lymph node

85%
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have risen, through which a tremendous potential for biomarker
qualification is expected.

5.3 Quality of Image Registration
Image registration is the process of geometrically aligning two or
more images of the same scene taken at different times, from
different viewpoints, and/or by different sensors (148).

Since current radiotherapy treatment planning systems have
to create a treatment plan on the images produced by a radiation
simulator. Most of the simulators are CT-based, therefore, they
can only produce anatomical imaging. Properties of functional
imaging as mentioned in this article can be employed by image
registration to the anatomical imaging. Thereafter, the dose
painting can be implemented to deliver more doses to the
high-risk area of tumour defined by the functional imaging. As
mentioned in Sections 2 and 3, the high quality of registration is
important when using functional imaging to perform the dose
painting. For DPBC, the uncertainties of registration can be
reduced by adding margins to the high-risk area. However,
DPBN features the voxel-level analysis and is more sensitive to
uncertainty arising in image registration (92). Most treatment
planning systems support image registration and fusion to allow
the use of multimodality and time-series image data and even
anatomical atlases to assist in target volume and normal tissue
delineation. Image registration is also needed to assess dose
variation during treatment course and enable adaptive
radiotherapy, as will be discussed in Section 5.4.

Medical image registration is a broad topic which can be
grouped from various perspectives. From an input image point of
view, registration methods can be divided into unimodal,
multimodal, interpatient, intra-patient (e.g., same- or different-
day) registration. From a deformation model point of view,
registration methods can be divided in to rigid, affine and
deformable methods. From a region of interest (ROI)
perspective, registration methods can be grouped according to
anatomical sites such as brain, lung registration. From an image
pair dimension perspective, registration methods can be divided
into 3D to 3D, 3D to 2D and 2D to 2D/3D. There was a survey
summarizing algorithms of conventional image registration
(148). The Therapy Physics Committee of the American
Association of Physicists in Medicine commissioned Task
Group 132 to review current approaches and solutions for
image registration (both rigid and deformable) in radiotherapy
and to provide recommendations for quality assurance and
quality control of these clinical processes (149). However, there
is no standard mathematical formalism to perform registration,
because noise, distortion and complex anatomical variations can
occur. In addition, validation of the software systems
performance is complicated due to the lack of documentation
available from commercial systems. Recently, many researchers
studied AI-based image registration. Compared with the
conventional image registration, performing registration with
AI can be more accurate and generally order of magnitude faster.
Fu et al. summarized the details of the latest developments,
challenges and trends in AI-based medical image registration
methods (150). It is foreseeable that AI will continue to play an
important role in this field.
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5.4 Dose Painting for Adaptative RT
Most RT plans remain “unchanged”. Once the plans are
initialized, they are carried out until the end of treatment,
along with minimal modifications on top of the original plans
(151). RT treatments are usually delivered for the period of
several weeks, which is a long and arduous process. In most
cases, the tumour size, location and microscopic status (e.g.,
metabolism and hypoxia) will change, thereby resulting in long-
term and even life-long consequences on patients’ life quality
after treatment. To address such challenges, the adaptive RT has
been developed recently, where interests in functional image-
based dose painting have been growing.

Adaptive radiotherapy is a process to control for anatomical
and functional variation over the treatment course (126). Figure 3
shows the workflow of the conventional and adaptive
radiotherapy. Both conventional and adaptive radiotherapy
require four key technologies: imaging, planning, quality
assurance and treatment. Versus conventional radiotherapy
workflow, adaptive radiotherapy additionally requires
assessment (126). Assessment is the process by which imaging
is used to decide whether to adapt the plan or not. This process
can range from a manual evaluation to highly automated review
of cumulative dose. Therefore, in this step we can embed
functional imaging to evaluate the functional variation and re-
prescribe dose, employ AI to automatically deline targets and
organ at risk, and perform AI-based the image registration. Many
studies have discussed the potential of functional images for a
more personalized RT planning, however, how to incorporate
such quantitative functional imaging into adaptative RT has been
barely investigated. For example, since functional imaging can
define easy-to-control and hard-to-control areas in the tumor
before a treatment, assume that patients take the same functional
imaging after a period (e.g., 2 weeks) of radiotherapy, changes in
biomarkers can be measured, indicating radio sensitivity and
radio resistance after serval fractions of radiotherapy. Adaptative
RT can be therefore realisable.
5.5 Alleviation of Uncertainties
The field of radiation oncology has been used to address different
sources of uncertainties during patient planning, including range
and setup uncertainties (152), organ movements (153) and
clinical target volume (CTV) definition (154). Consider that
the implementation of dose painting depends on the quality of
data obtained via biomarkers. The interpretation of such data
inevitably introduces some uncertainties. Therefore, it is foreseen
that potential mathematical tools to solve uncertainties, e.g.,
partially observable Markov decision processes (POMDP),
imperfect state information (ISI) and adjustable robust
optimization (ARO) might be necessitated.
6 CONCLUSION

In this article, we reviewed the state-of-the-art functional
imaging techniques which facilitates the development of dose
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painting. Dose painting by contour and dose painting by
numbers are discussed in detail, respectively, along with a
summary of their advantages and disadvantages. Finally, we
conclude some existing challenges and provide corresponding
possible research directions. Efforts to develop image biomarkers
for tumor characterization have been ongoing for decades. Using
DPBC and DPBN could better consider the heterology than the
current uniform dose distribution in tumour area. Therefore,
they are beneficial for circumventing local recurrence and get
better tumour control probability. It is necessary to establish
strict pipelines and reproducible workflow, which make DPBC
and DPBN feasible and practical in the clinic. In the future,
combing the state-of-the-art AI techniques with advanced
functional imaging approaches can open up possibilities to
Frontiers in Oncology | www.frontiersin.org 11
conduct new avenues of research in biomarkers discovery to
improve cancer diagnosis and treatment.
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