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ABSTRACT

Densely ionizing charged particle irradiation offers physical as well as biological advantages compared with photon
irradiation. Radiobiological data for the combination of such particle irradiation (i.e. therapeutic carbon ions) with
commonly used chemotherapeutics are still limited. Recent in vitro results indicate a general prevalence of additive
cytotoxic effects in combined treatments, but an extension of established multimodal treatment regimens with
photons to the inclusion of particle therapy needs to evaluate possible peculiarities of using high linear energy
transfer (LET) radiation. The present study investigates the effect of combined radiochemotherapy using gemcita-
bine and high-LET irradiation with therapeutic carbon ions. In particular, the earlier observation of S-phase specific
radiosensitization with photon irradiation should be evaluated with carbon ions. In the absence of the drug gemci-
tabine, carbon ion irradiation produced the typical survival behavior seen with X-rays—increased relative biological
efficiency, and depletion of the survival curve’s shoulder. By means of serum deprivation and subsequent replenish-
ment, ~70% S-phase content of the cell population was achieved, and such preparations showed radioresistance in
both treatment arms—,photon and carbon ion irradiation. Combined modality treatment with gemcitabine caused
significant reduction of clonogenic survival especially for the S-phase cells. WIDR cells exhibited S-phase-specific
radioresistance with high-LET irradiation, although this was less pronounced than for X-ray exposure. The com-
bined treatment with therapeutic carbon ions and gemcitabine caused the resistance phenomenon to disappear

phenotypically.
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INTRODUCTION
The antimetabolite gemcitabine (2'2-difluoro-2"-deoxycytidine,
dFdCyd) has structural similarity to cytarabine; however, it differs
considerably in its biophysical properties, such as mechanism of
action, metabolism and antitumor effect. It is well known for its
broad spectrum of antineoplastic effectiveness in solid malignancies
[1-3]. Applied as a prodrug it is transformed intracellularly into
dFdCMP and its active di- and triphosphate metabolites (dFdCDP/
dFACTP) [4], which inhibit DNA polymerase and ribonucleotide
reductase. After insertion of only one more deoxynucleotide,
chain termination occurs [S], which makes damage detection and

subsequent repair by exonucleases more difficult [6]. A self-potentiat-
ing effect develops through increasing depletion of available deoxynu-
cleotide triphosphates and inhibition of dCMP deaminase and CTP
synthetase, resulting in accumulating intracellular levels of the active
metabolite, thereby increasing the probability of incorporation [7].
The predominant mechanism of inactivation is mediated by cytidine
deaminase which transforms the active metabolite into 10° less active
dFdUridine; alternatively, dFACMP is converted into dFdUMP by
cytidilate deaminase [8]. Furthermore, gemcitabine is well known for
its radiosensitizing properties. Radiosensitizing potential increases
with longer exposure and higher concentration. This effect was also
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observed in combination experiments with low dose application of ~ gemcitabine [9]. Furthermore, radiosensitization in vitro apparently
gemcitabine, in which no cytotoxicity was developed if it was admi-  requires cellular activities linked to S-phase progression [10].

nistered as a single agent [7]. Several factors are considered to be High-LET radiation in general offers several biological as well as
responsible for this phenomenon, because Lawrence et al. showed physical advantages compared with photon radiation—such as
that depletion of dATP by ribonucleotide reductase inhibition is a  inverse depth—dose profile and increased relative biological effective-
key step in producing radiosensitization. Cell lines with overexpres- ness (RBE). However, there is only limited radiobiological data for
sion of ribonucleotide reductase are resistant to effects mediated by  the effects of combined treatment with dFdCyd and heavy ion
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Fig. 1. Baseline experiments. A: Proportions of cell cycle distribution after stimulation of serum-deprived (60-h) WIDR cells.
Added is data of cell cycle distribution for the untreated controls (right portion). Means of three independent experiments, each
performed in triplicate, are presented. B: Clonogenic survival curve for human colorectal cell line WIDR treated with increasing
doses of gemcitabine for 2 h. Means and standard deviations from three independent experiments are presented. C: Clonogenic
survival curve for human colorectal cell line WIDR after treatment with photon or carbon ion irradiation alone. Means and
standard deviations from three independent experiments are presented.
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irradiation. Recently, a respective combination effect was described
for tumor cells from log-phase culture, and only additivity was
observed [11]. In light of our earlier results with photon irradiation,
we attempted to test whether cell-cycle stage-specific radiosensitiza-

tion was also observed with carbon ion exposure.

MATERIALS AND METHODS
Cell culture

In the present study, the human colorectal tumor cell line WIDR was
used—cells expressing mutant pS3 (pS3mut). The cell line was
obtained from the American Type Culture Collection (ATCC; Mana-
ssas, USA) and cultured in Dulbecco’s modified Eagle medium
(DMEM) (Biochrom, Berlin, Germany) supplemented with 10%
fetal calf serum (FCS) (Biochrom, Berlin, Germany). Cultures were
maintained in an exponential monolayer at 37°C in 5% CO, and 95%
humidity. Cell population doubling times were 14-18 h for WIDR.
Cultures were passaged once a week.

Synchronized cell populations

Cell cultures were incubated for 60 h with DMEM and only 0.5%
FCS. After serum deprivation, they were stimulated with medium of
usual composition. Progression through the cell cycle was monitored
every 2-4 h by FACS analysis for 38 h, resulting in an up to 70%
synchronized cell population. The maximum Gl percentage was
achieved immediately after serum stimulation, whereas 22 h later,
most of the cells had progressed into S-phase (Fig. 1A).

Cell cycle analysis
The distribution of the various cell cycle phases was measured prior
to irradiation by routine flow-cytometry (FACScan, Becton-Dickinson,
Heidelberg, Germany). Cells were stained with propidium iodide
(Sigma-Aldrich, Deisenhofen, Germany), and histograms were
created and analyzed using ModFit software (Verity Software House,
Topsham, USA).

Radiation and drug treatment

Adherent cells were irradiated with 6-MV X-rays from a clinical linear
accelerator (100-cm reference distance) at a dose rate of 2.2 Gy/min
and at room temperature in T25 culture flasks with 5 ml medium.
Carbon ion irradiation was performed at HIT (Heidelberg Ion
Therapy Center) with a horizontal beam line with a rasterscanning
technique using an extended 8-mm Bragg peak, energies varying from
1.47 to 1.64 GeV/ion. Cell monolayers were positioned in the middle
of the extended Bragg peak (dose averaged LET of 103 keV/um).
Due to the experimental settings, T2S flasks were completely filled
with medium during irradiation. The dFdCyd stock solution (1 mM)
was stored at —20°C and diluted in double-distilled water for the
required concentrations. Immediately before performing radiotherapy
and after incubation with dFdCyd for 2 h, the cell layer was rinsed
twice with phosphate-buffered saline and fresh medium was added.

Clonogenic assay and statistical analysis
After performing a cell viability test with 0.4% trypan blue, vital log
phase tumor cells were plated in T25 culture flasks in appropriate
numbers to obtain 50-150 colonies for each different treatment. A
colony was defined as S0 or more cells and was identified microscop-
ically. Data for survival curves were obtained from three independent

experiments, each performed in triplicate. Sigma Plot’s (Systat Soft-
ware GmbH, Erkrath, Germany) non-linear least-squares regression
was used to fit the linear—quadratic expression S = exp (—-aD-BD?) to
the resulting averaged survival fractions after the plating efficiency (of
treated cells) was normalized to the untreated controls.

RESULTS AND DISCUSSION
In the baseline experiment, increasing concentrations of gemcitabine
(2-h exposure) allowed us to determine a concentration (ECgo =70
nM) with appropriate cytotoxicity for use as a single agent in all
further combination experiments (Fig. 1B). Survival analysis for treat-

ment with photons alone compared with therapeutic carbon ion
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Fig. 2. Clonogenic survival curve of WIDR G1-phase cell
preparation (A) or S-phase cell preparation (B) after
combined treatment with X-rays and with or without
(mock-treated) 2-h exposure to 70 nM dFdCyd. Survival
curves are normalized for dFdCyd monotoxicity. Means
and standard deviation from three independent
experiments are presented.
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Fig. 3. As in Fig. 2, but after combined treatment with
therapeutic carbon ions.

irradiation produced characteristic differences, as shown in Fig. 1C.
Gemcitabine monotherapy for 2 h at 70 nM resulted in reduction of
survival to 65% (Gl-preparation) and 51% (S-phase), respectively.
Combined treatment of Gl-phase preparations with X-rays showed
additive cytotoxic effects (Fig. 24, after normalization for the mono-
toxicity of dFdCyd). S-phase cells, however, display radioresistance,
which is at least qualitatively similar to our earlier observation [10].
After normalization for the monotoxicity of dFdCyd, the radioresis-
tant phenotype is reversed, which is equivalent to an expression of
supra-additive toxicity in the S-phase preparations (Fig. 2B). For
combination experiments with carbon ions, radiation doses of up to 3
Gy were used, due to higher radiobiological effectiveness. RBE values
ranged between 2.6 and 3.1, depending on dose level and surviving
fraction. Combination of gemcitabine with carbon ions instead of
photons again revealed cell-cycle dependence for killing efficiency
(Fig. 3A and B). This is summarized in Table 1, in which the initial
slopes of the survival curves are listed. The main finding of the
present investigation is the S-phase-specific radiosensitizing effect of
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Table 1. Comparison of a-values from monoexponentially
fitted survival curves of WIDR cells after carbon ion
irradiation, treated either with or without dFdCyd

Cell phase W/o dFdCyd Plus dFdCyd P

Gl 1.39 (0.036) 1.51 (0.017) Not significant
S 1.02 (0.074) 1.39 (0.051) <0.001

p <0.001 Not significant

dFdCyd = 2"2"-difluoro-2"-deoxycytidine, dFdCyd (‘gemcitabine’).

dFdCyd in combination with therapeutic carbon ion irradiation,
which is in agreement with earlier findings, when chemoradiation
employing X-rays had been tested for the same in vitro cell system
[12] and which was confirmed for clonogenic cell survival, here.
While monotoxicity of gemcitabine was similar for the G1-phase and
S-phase —enriched cell populations, the combination with radiation
elicited radiosensitization for cells in S-phase by overcoming the well-
known S-phase-associated radioresistance phenotype. The latter is
thought to result—at least in part—from the increased contribution
in S-phase cells of homology-directed DNA double-strand breaks
[13], which could selectively be targeted by gemcitabine [14]. A defi-
ciency in the mismatch repair system (MMR), however, has also been
implicated in radiosensitization by gemcitabine [15], but the WIDR
cells used in the present investigation are MMR-proficient [16].
Remarkably, even with high-LET irradiation, S-phase—specific radio-
resistance was observed, even though not as pronounced as with
photons. This is particularly interesting in that one of the characteris-
tics of densely ionizing radiation is to generally overcome radiation
resistance phenomena by generating more complex damage to DNA
[17-19], including contributions to apoptosis induction [17, 20].
Wang et al. could show that the role of Ku-dependent non-homolo-
gous end joining in particular is reduced by densely ionizing radi-
ation, but not other repair mechanisms [21]. Therefore, homology-
directed repair via removal of heavy ion-induced DNA damage and
its inhibition by gemcitabine needs to be taken into consideration.
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