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Single-cell RNAseq for the study of
isoforms—how is that possible?

Ángeles Arzalluz-Luque1 and Ana Conesa1,2*
Abstract

Single-cell RNAseq and alternative splicing studies
have recently become two of the most prominent
applications of RNAseq. However, the combination of
both is still challenging, and few research efforts have
been dedicated to the intersection between them.
Cell-level insight on isoform expression is required to
fully understand the biology of alternative splicing,
but it is still an open question to what extent isoform
expression analysis at the single-cell level is actually
feasible. Here, we establish a set of four conditions
that are required for a successful single-cell-level
isoform study and evaluate how these conditions are
met by these technologies in published research.
stress and, when altered, disease. These events and
Introduction
Sequencing technologies have had a profound impact
on the way we conduct transcriptome research,
enabling access to the entire span of transcripts in a
biological sample thanks to RNAseq. RNAseq applica-
tions range from classic evaluations of differential
transcript or gene expression between samples [1] to
more-diverse problems such as the characterization of
gene expression dynamics [2], gene boundaries [3, 4],
translation efficiency [5] or RNA–protein interactions
[6, 7], to name a few. In the past few years, two RNA-
seq applications have raised particular interest for de-
scribing the complexity and diversity of transcriptional
regulation—single-cell RNAseq [8] and the study of al-
ternative splicing on a large scale [9, 10]. Bulk RNAseq
experiments average gene expression across populations
of cells and thus preclude capture of cell-to-cell variability.
This motivated the development of a single-cell strategy
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for RNAseq [8], and efforts have been relentless to im-
prove the strategy ever since. To this date, single-cell
RNAseq has provided valuable insight into cell differen-
tiation [11–15], complex tissue and rare cell population
composition [16–19] or tumor heterogeneity [20, 21]
and growth [22], and it constitutes a cutting-edge tech-
nology in biological research. As for the field of isoform
transcriptomics, early studies showed high levels of
tissue-specific and developmentally regulated alterna-
tive splicing (AS) events [9, 10, 23–25], which was
interpreted as an extra layer of phenotypic complexity.
Since then, RNAseq has served to characterise an in-
creasing number of AS events with well-established
roles in biological processes, namely cell proliferation
and survival, differentiation, homeostasis, responses to

their mechanisms of regulation have been thoroughly
reviewed over the past few years [23, 26–31], setting
the notion of alternative splicing as a complex, tightly
regulated, functionally relevant process, although still
poorly understood on a global scale. Moreover, there is
an ongoing controversy surrounding their biological
relevance [32–34].
In contrast to the high abundance of both single-cell

RNAseq and bulk-level alternative splicing studies, cases
where single-cell transcriptome profiling is used to ad-
dress the variability of isoforms are scarce (Table 1).
However, quite contrarily to what might be suggested by
the extant gap in the literature, daring to go beyond the
bulk is essential to answer some of the questions con-
cerning the expression patterns of alternative isoforms.
The recently found heterogeneity in isoform expression
mechanisms in single cells [35–38] is highly intriguing
to the scientific community, and raises the question of
whether this diverse and complex isoform expression
landscape constitutes an additional layer of gene expres-
sion regulation or is solely a result of the stochastic
functioning of the alternative splicing machinery. There
is currently no doubt that single-cell isoform studies
could be the key to resolve this fundamental problem.
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Transcriptome-level analyses of isoforms have been
performed as a part of single-cell RNAseq gene expres-
sion publications [35, 39] or in bulk studies of isoform
diversity [40], but merely as a proof-of-concept. Usually,
the aim of these studies was never to address single-cell
isoform diversity, but to test the performance of the
experimental protocols or computational tools in this
scenario. In such a limited frame, the former studies
accomplished identification of only a small number of
above-noise splicing differences among single cells and
lacked in-depth evaluation of results. For some years,
only methods developed for RNAseq, mainly ‘mixture of
isoforms’ (MISO) [41], were used in single-cell isoform
research [35, 36], and it was not until recently that com-
putational strategies tailored to the particularities of
single-cell RNAseq began to appear [38, 42, 43]. Notably,
the use of short-read sequencing and the unavailability
Fig. 1 Single-cell mRNA sequencing methods and sources of mRNA variati
combination of library preparation and sequencing technologies yields thre
are limited to sequencing of the 3′ (or 5′ end), which enables usage of UM
even if they are particularly suited to quantify expression at the gene level.
length, although they require late cell barcoding (barcodes inserted in tagm
difficult to assign unambiguously to an isoform. Single-molecule sequencin
provides full isoform connectivity, although it suffers from a high prevalenc
alternative isoforms and their position along the transcript. When compare
no introns and the complete UTRs), alternative TSSs (transcription start site
transcription process by shortening of the UTRs. Processing of the pre-mRN
isoforms that can be generated from the gene. In addition, more than one
consequently isoform diversity will increase with the number of possible co
unique molecular identifier
of tools for comprehensive isoform structure analysis
have limited most research to solely quantification of
exon inclusion levels [35, 36, 38, 39, 43] or targeting
specific regions of the transcripts—that is, the 3′ un-
translated region (UTR) for alternative polyadenylation
sites [44] or the 5′ UTR for transcription start sites
(TSSs) [45]. Recent studies applying single-molecule
sequencing technologies, however, have succeeded in
characterizing full-isoform structures [46, 47] on a
limited number of cells (four to six), incorporating the
entire span of alternative splicing events. Of note, most
of the above-cited studies make use of publicly avail-
able computational methods (i.e. [41, 48]) and datasets
(i.e. [17, 18, 36, 49, 50]) (Table 1).
In the framework of single-cell isoform studies, three

combinations of library preparation and sequencing
technologies are available for data generation (Fig. 1a):
on. a Methodological approaches to single-cell isoform studies. The
e distinct methods to capture isoform diversity. UMI-based methods
Is to capture efficiently PCR bias in addition to early cell barcoding,
Smart-based methods produce short reads across the entire transcript
entation), cannot accommodate UMIs, and the reads might be
g allows sequencing of each transcript molecule in a single read and
e of sequencing errors. b Sources of transcript variation that yield
d with a reference isoform (for convenience, that including all exons,
s) and TTSs (transcription termination sites) are generated during the
A eliminates or retains introns and exons, adding variability to the
event can simultaneously be present in the same isoform, and
mbinations of AS events. Alt. alternative, RT reverse transcription, UMI
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� Within short-read technologies (Illumina), two
methods can be distinguished depending on the
library preparation strategy of choice:
○ UMI-based methods provide short reads from
a fragment of the 3′ or 5′ end and include a
unique molecular identifier (UMI) as a means of
accounting for amplification bias.
○ Smart-based methods provide short reads
spanning the entire length of the transcript but
cannot accommodate UMIs for a more accurate
expression quantification.

� Long-read technologies (a.k.a. single-molecule
sequencing), by contrast, capture an entire transcript
molecule in a single sequencing read.

Here, we focus on outlining the limitations of these
three methodological approaches in their application to
AS and isoform expression. To this end, we first estab-
lish an ideal set of requirements for a successful isoform
study and evaluate to what extent they are fulfilled in
single-cell RNAseq publications (Table 1). Based on the
knowledge drawn from this analysis, we show a simple
computational simulation that reveals the limiting fac-
tors intrinsic to each of the three methods in a real
experimental setting. Finally, we discuss the biological
questions that single-cell isoform studies could address
and the future perspectives of the approach.
Fig. 2 Summary of limitations of the four ideal conditions for successful stu
and current limitations of full-length transcript sequencing, capture efficien
sequencing errors and artefacts for isoform detection are presented in the
transcription, UMI unique molecular identifier
Ideal conditions for single-cell isoform RNAseq
Analysing isoforms at the single-cell level requires a
deep understanding of the biology of alternative splicing,
regarding both structural complexity and the nature of
changes in their expression level. Isoform diversity is
determined by the number of exons, introns, the TSS
and transcription termination site (TTS) and alternative
donor/acceptor sites that are contained in a gene, but
more importantly by the different combinations of them
that are expressed as transcripts (Fig. 1b). Hence, each
AS event is very likely to be present in several different
isoforms. To add to this complexity, isoforms within a
gene are very differently expressed, typically showing, for
a particular cell type, a dominant (i.e. very highly
expressed) isoform and several others with significantly
lower expression values. In the light of these two particu-
larities—the constraints and the biases intrinsic to
single-cell RNAseq—we discuss a number of parameters
important for single-cell RNAseq isoform analyses (Fig. 2).

Full-length transcript capture
Different types of splicing variations can occur at different
points of the mRNA molecule (Fig. 1b). Hence, partial se-
quencing of the transcript will naturally overlook a fraction
of the events and might make it impossible to distinguish
some of the isoforms of a gene. Such is the case in library
preparation protocols for Illumina sequencing that include
dies of single-cell RNAseq isoforms. From left to right, the importance
cy and sequencing depth, the number of cells sequenced, and
diagram. Each is discussed in the main text. Alt. alternative, RT reverse
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unique molecular identifiers (UMIs) [51] UMIs are short,
random oligonucleotides that are incorporated into cDNA
before PCR, in the reverse-transcription step, and are de-
signed so that, by probability, cDNA molecules belonging
to the same gene will have a different UMI. This system
allows for molecular counting after PCR. Thus, non-linear
amplification, which hinders accurate expression quantifi-
cation, can be corrected by collapsing reads with matching
UMIs and mapping sites. This is especially relevant to
single-cell RNAseq owing to the extra PCR cycles neces-
sary to obtain enough cDNA for sequencing, which typic-
ally add up to between 30 and 40 cycles and introduce a
non-trivial amount of bias. However, UMI-based methods
provide reads coming only from the 3′ end of transcripts,
where the UMI is attached in most current protocols
(CEL-seq2 [52], inDrop [53], Drop-seq [54], MARS-seq
[55] or SCRB-seq [56]). Among these, STRT-seq [51]
constitutes an exception, since the UMI is attached at the
5′ end. UMI methods therefore enable sequencing of only
a fragment of the transcript, preventing isoform discrimin-
ation when differences are not located in this part of the
sequence.
As a result, a trade-off is established, by which isoform

studies therefore necessitate relinquishing UMI usage in
favour of strategies that provide full-length transcript
information. The Smart-seq [39] and Smart-seq2 [57]
protocols accomplish this by including an enhanced
reverse transcription (RT) step that ensures capture of
the entire transcript and full-length cDNA synthesis,
and hence are particularly suitable for isoform studies.
The resulting system, known as SMART [58], uses the
Moloney murine leukemia virus (MMLV) reverse tran-
scriptase to leave a 5′ oligonucleotide overhang after the
enzyme has reached the end of the first strand, which is
then used for template-switching (i.e. priming and syn-
thesis of the second strand of the cDNA).
Single-molecule sequencing (SMS) technologies are an

alternative to Illumina for sequencing SMART-generated
libraries. Illumina’s tagmentation generates many short
reads from the same transcript, which requires subse-
quent assembly of the transcriptome by computational
methods. Assembly tools fail to recover the structure of
the different isoforms and limit quantification to the
level of exon expression. Alternatively, sequencing the
full transcript in one read would facilitate isoform identifi-
cation without the need for an assembly step. Current
technologies that enable this are single-molecule real-time
(SMRT) sequencing, by Pacific Biosciences (known as
PacBio), and Oxford Nanopore Technologies’ MinION
portable sequencer. Although different (for instance,
Oxford Nanopore allows direct RNA sequencing, whereas
cDNA synthesis is essential when sequencing with Pac-
Bio), both platforms have in common that the output
reads are several kilobases long. Hence, as a rule, one
read equals one transcript for both Oxford Nanopore
and PacBio data, which makes them an attractive alter-
native for isoform studies.
Sequencing depth
The low amount of starting material in single cells hin-
ders capture efficiency and causes the appearance of
transcript ‘drop-outs’—that is, the identification of a
gene as unexpressed owing to absence of transcripts
during reverse transcription [35, 59]. This mostly affects
genes that are expressed at very low levels [60], for
which zero-expression values cannot be distinguished
from true, biological absence of expression. Therefore,
mRNA capture efficiency sets a limit to the total number
of transcripts that can be detected in single-cell RNAseq,
but, for transcripts expressed above this detection limit,
sequencing depth (coverage) is the key to maximize
sensitivity (i.e. the probability of capturing a particular
transcript in the cell [61]). The general consensus in the
field concerning the level of depth at which saturation is
achieved is that sequencing beyond one million Illumina
reads per cell barely adds any new information [62, 63].
However, isoform expression requires different consid-

erations concerning capture and depth. First, isoforms
are more sensitive to high drop-out rates. As alternative
(i.e. non-dominant) isoforms are typically expressed at
low levels, the probability of missing them is high, and
thus isoform diversity per gene can easily be underesti-
mated. In addition, the saturation limit of single-cell
RNAseq has been set regarding library complexity at the
gene level, and thus reaching saturation at the isoform
level could potentially require more than one million
reads per cell.
In the context of isoform expression, lower depth might

suffice when changes in isoform expression are isoform
switches—that is, changes in the more highly expressed
isoform. In this case, as long as the sequencing is deep
enough to observe the most highly expressed isoform,
cell-to-cell differences in splicing for a given gene will be
detected. However, isoform expression often comprises
modifications in the ratio of expression of the gene
isoforms, which will only be detected when depth goes
beyond the expression levels of both isoforms.
On a general note, the quality filtering steps required

in single-cell RNAseq also apply and will have an impact
on isoform studies, even though they are not specific to
them. They comprise, first, removal of low-quality cells
(for instance, cells where a low number of features are
detected [64]) and, second, filtering of features that have
zero expression in a high proportion of the cells. Not-
ably, a stringent filtering of features is likely to decrease
the number of alternative isoforms detected, which are
expressed poorly and/or unevenly captured across cells.
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Number of cells sequenced
Sequencing a high number of cells contributes favorably
to the power of an analysis—that is, the ability to
characterize with high confidence the expression patterns
among cells in the population [61]. Sequencing large sets
of cells can therefore yield significant advances in our un-
derstanding of isoform expression at the single-cell level.
UMI-based library preparation protocols for Illumina

currently enable processing of thousands of cells thanks
to microfluidic implementations in droplet-based sys-
tems. Examples include inDrop [53], Drop-seq [54] or
the 10× Genomics version of the inDrop protocol, which
have raised the bar up to 250,000 cells [65]. However,
these methods are not only restricted to the 3′ end but
also provide low sequencing depth, which results in de-
tection of fewer genes, and isoforms, per cell.
The Smart-based alternatives [39, 57] warrant high

sensitivity (i.e. detection of up to 20,000 genes [61]) but
are limited owing to cost and the necessity to prepare
libraries manually for each cell. To reduce labour, the
Smart strategy can be implemented using the Fluidigm
C1 instrument for parallelization and automation of the
library preparation process, although the system is still
limited in terms of the cost per cell. By way of illustra-
tion, most recent studies show data from only 100 to
200 cells [38, 42] (Table 2).
In contrast, long-read technologies allow sequencing of

very few cells [46, 47]. This constraint is intrinsic to the
design of PacBio and Oxford Nanopore technologies, each
of which is based on the use of flow-cells (that is, micro-
fluidic chips containing the necessary structures for se-
quencing) capable of yielding a limited amount of total
sequencing reads per run. Hence, cell multiplexing inevit-
ably means limiting the number of reads that will be ob-
tained per cell. Although trivial for a bulk population (as
only a few samples will be sequenced in each flow-cell),
this currently limits the number of cells per flow-cell that
can be deep-sequenced to four to six [46, 47].

Sequencing errors and artefacts
Sequencing errors are generated owing to base miscalls
during sequencing, whereas artefacts usually appear dur-
ing the amplification and reverse-transcription processes
and comprise products that were not originally present
in the original cell lysate [66]. These issues can have a
significant impact in studies of single-cell isoforms.
Table 2 Summary of number of cells sequenced in studies of single

Reference Ramsköld
et al. [39]

Shalek
et al. [36]

Marinov
et al. [35]

Velten
et al. [44]

Reference for data – – – –

Total number of cells 12 18 15 144

Library preparation method Smart-seq Smart-seq Smart-seq BATSeq
Sequencing errors are highly frequent in long-read
technologies, as sequencing is based on single molecules.
Note that error rates in SMS refer to the consensus se-
quence and not the raw reads. PacBio implements a cir-
cular consensus sequencing (CCS) system, by which a
cDNA molecule is sequenced in a circular manner, gen-
erating concatenated copies that are then collapsed in a
consensus sequence where random errors are cancelled
out. The accuracy of the final transcript sequence there-
fore depends on the number of copies present in the
long read. Oxford Nanopore, by contrast, is equipped
with a system based on the sequencing of the forward
and reverse strands linked by a hairpin adapter, which
are known as two-dimension (2D) reads. As a conse-
quence, typical error rates for consensus PacBio se-
quences are in the range of ~ 2–5% [66], whereas, for
Oxford Nanopore, the values go up to ~ 7% [67, 68].
This contrasts with the high accuracy of Illumina se-
quencing (~ 0.005% error rate).
Such high error rates are problematic for single-cell

RNAseq isoform studies. A first constraint is the reso-
lution of cell-specific barcodes (de-multiplexing) and
UMIs. Given that single-cell RNAseq relies heavily on
multiplexing strategies (to minimize batch effects and
manual sample processing) as well as on UMI counts (to
eliminate amplification bias), the occurrence of errors in
these regions can add an extra challenge to analysis
pipelines. Additionally, sequencing errors can lead to the
erroneous identification of novel isoforms by introducing
false alternative donor or acceptor sites. These errors
frequently result in non-canonical splicing sites [66, 69]
and might be corrected in downstream analyses.
Sequencing errors in SMS can be corrected using three

different strategies: (a) a consensus of the long reads
(discussed above); (b) clustering of reads belonging to the
same transcript; and (c) complementary short-read se-
quencing, combining the accuracy of Illumina with the
scaffolding potential of long reads. Sadly, compatibility
with single-cell-level studies is only ensured in (a) as
clustering requires high sequencing depth (not always
achieved in single-cell sequencing) and complementary
short-read sequencing is impracticable (the same cell
cannot be sequenced using two different technologies).
Some errors can therefore survive computational correc-
tion and result in erroneous mapping, leading to the
discovery of false novel junctions.
-cell isoforms (short reads)

Welch
et al. [42]

Karlsson
et al. [45]

Song
et al. [38]

Buettner et al. [17] Zeisel et al. [18] –

96 2816 206

Fluidigm C1/Smart-seq Fluidigm C1/STRT-seq Fluidigm C1/Smart-seq



Fig. 3 Qualitative performance comparison of the three main single-
cell RNAseq methods for isoform detection. From the inside to the
outside of the graph, the three dotted lines represent ‘low’, ‘medium’
and ‘high’ levels of each characteristic. The most prominent features
of long reads (red) are high isoform resolution potential but a high
occurrence of errors. Smart-based methods (yellow) provide high
sequencing depth and medium isoform resolution power and
number of cells. UMI-based methods (blue) can process high
numbers of cells with medium to low sequencing depth and
accurately quantify isoform expression, although their isoform
resolution potential is strongly limited. UMI unique
molecular identifier
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Reverse transcription (RT) artefacts are also of high rele-
vance to long-read-isoform studies. First, intra-priming
events in genes with internal poly(A) sequences [70] can
generate shorter cDNA artefacts that can be mistaken for
isoforms with an upstream TTS. Additionally, mRNA
molecules form secondary structures that can prevent ac-
cess of the reverse transcriptase to certain fragments of
the sequence, favouring template switching and skipping
of these segments, which will appear as alternatively
spliced isoforms [71]. SMS technologies have been shown
to accumulate this kind of RT artefact and, in combination
with sequencing errors, yield false new isoforms as a con-
sequence. A software tool, SQANTI, is now available to
control for the overestimation of novel isoforms in bulk
PacBio RNAseq data [66], although the extent of these
limitations in single-cell studies has not been assessed yet.
These four requirements (full-length transcript cap-

ture; high capture efficiency and sequencing depth; high
number of cells sequenced; and low occurrence of errors
and artefacts) and how their technological and experi-
mental limitations impact isoform detection in single
cells are summarized in Fig. 2. We are confident that
these can work as criteria to assist experimental design
and provide a framework to assess the success of future
isoform studies.

Expectations meet reality—What has been, and
remains to be, done in single-cell isoform studies
We next discuss how these limitations have been encoun-
tered in published studies, and, as a conclusion, present
an overall comparison of the performance of the three
cited strategies in the single-cell isoform context (Fig. 3).

Full-length transcript capture and isoform continuity
The full-length requirement inflicts limitations in two
ways: first, observation of a limited number of AS events
owing to the restricted sequencing length; and, second,
less-accurate quantification of isoform expression owing
to incompatibility with UMIs.

Limitations regarding length
The Smart-seq protocol by Ramsköld and colleagues
[39] was the first to improve coverage across the tran-
script sequence in comparison to prior methods, which
possessed strong 3′ bias. Using an RNA dilution of a
bulk sample to mimic the amount of RNA in a single
eukaryotic cell (~ 10 ng), Ramsköld et al. accomplished a
remarkable ~ 40% coverage of the 5′ end. In spite of the
coverage improvement, Smart-based protocols (and
subsequently most cited short-read studies; Table 1) are
limited to quantification of exon inclusion/exclusion.
In the study by Ramsköld et al. [39], an assessment of

differential exon inclusion in three cancer cell lines was
included in the benchmarking of Smart-seq. In this
dataset, 25% of multi-exon genes detected were covered
end-to-end, and twice as many differentially spliced
exons were detected among the cells when compared
with previously published data [11]. Nevertheless, this,
together with other studies showing single-cell splicing
changes (such as the ones by Marinov et al. [35] and
Zhang et al. [40]), was a proof-of-concept isoform study,
aiming solely to demonstrate that AS can be studied at
the single-cell level.
Regarding mechanisms other than splicing, Karlsson

et al. have targeted alternative TSSs [45] using STRT-seq
[51], whereas Velten et al. have focused on alternative
TTS/poly(A) sites using a novel 3′-targeted method
[44]. One advantage of these methods is that they are
perfectly compatible with UMIs as they do not span the full
transcript. It is interesting to see, however, that Karlsson
et al. [45] only obtained a rate of 14% of 5′ end-aligned
molecules (obtained by collapsing same-UMI reads) from
STRT-seq data, with a 3′-biased coverage distribution
ending in a strong 3′ end signal peak—a manifestation of
3′ end bias persistence in short-read sequencing.
Two isoform studies using Oxford Nanopore [46]

and PacBio [47] have recently allowed end-to-end
characterization of transcript variants for the first time in
single cells. Remarkably, Byrne and colleagues [46] have
identified an impressive number of alternatively spliced
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genes (696 using alternative TSS/TTS, and 354 undergo-
ing exon inclusion/exclusion) in B1a cells. Although the
level of expression of these isoforms was not quantified,
the study shows how SMS can identify larger numbers of
AS events than short reads, as expected. In addition, the
structures of complex isoforms (in which alternative TSS/
TTS and alternative splicing occur simultaneously, as
defined in [46]) belonging to 169 genes were identified at
an unprecedented level of isoform structure resolution in
single cells.

Limitations regarding quantification
Initially, the incompatibility of Smart-seq with UMIs was
not compensated for by any further assessment or cor-
rection of technical variability, including spike-ins, and it
cannot be excluded that exon expression estimates
published by Ramsköld et al. [39] suffer from technical
bias. By contrast, a later study by Shalek and colleagues
[36] incorporated validation of results in a dual manner—
RNA fluorescence in situ hybridization (RNA-FISH), to
compare the isoform ratio differences of two candidates,
and a set of additional UMI libraries to exclude the possi-
bility of PCR leading to an overestimation of expression.
Validation was successful, indicating that 89 highly
expressed isoforms underwent differential exon inclusion
across the population.
In a later publication, Zhang and colleagues [40] tested

WemIQ (a tool to detect differential exon inclusion in
bulk RNA-seq) on the Shalek et al. [36] single-cell data-
set. Interestingly, WemIQ removed a great degree of the
cell-to-cell heterogeneity from the data, which was
attributed to technical bias. As Shalek et al. [36] had re-
ported high levels of heterogeneity in alternative spli-
cing, the WemIQ results raised the question of whether
this variability was biological or technical. Simultan-
eously, this could indicate that bulk RNA-seq tools mis-
take the higher biological variability in single-cell data
for technical noise and points towards the necessity to
develop single-cell-specific methods. At any rate, Shalek
et al. [36] focused on the bimodality of isoform expres-
sion (very high vs very low expression across cells, in a
switch manner, synonymous with isoform switches),
which can be detected with confidence, even if the re-
sults are affected by technical noise.
A first conclusion arising from the above is that, in

scenarios where technical bias cannot be properly
accounted for, it would be advisable to make a qualita-
tive approximation to isoform variability. In addition,
not including UMIs requires other forms of validation,
such as RNA-FISH or quantitative PCR (qPCR; as in the
Expedition benchmarking [38]), although a limited num-
ber of candidates can be validated in this manner. For
instance, differential exon inclusion was proven in only
two genes in the study by Shalek et al. [36].
An interesting alternative to UMIs was presented in a
more recent study by Marinov and colleagues [35]. As a
means of estimating noise-contributing factors, and in
combination with spike-ins, the authors implemented
pool/split controls, produced through pooling several
single cells and then splitting the RNA into equal
amounts before library preparation. Pooling evens out
biological differences between the cells and guarantees
that any variability observed will solely be technical, in-
cluding PCR bias. Differences between controls can then
be used to re-estimate cell-to-cell differences. Marinov
et al. [35] hereby succeeded to validate isoform switches
in 282 multi-exon genes. However, no subsequent stud-
ies of isoform diversity at the single-cell level have used
pool/split controls.
Regarding quantification and long reads, in contrast to

the non-quantitative study by Byrne et al. [46], Karlsson
and Linnarsson [47] specifically addressed quantification
of isoform expression by optimizing a protocol combin-
ing PacBio sequencing with effective resolution of UMIs.
Expression estimates in single-cell RNAseq can be used
to understand how each transcript might be affected by
technical variability or capture issues. In this particular
study, poorly expressed isoforms were found to be rarely
shared among cells, which provided a means of evaluat-
ing sequencing depth limitations.

Capture efficiency and sequencing depth
Low capture efficiencies yield expression values that will
never truly reflect transcript abundances in the cell. In
this light, some potentially biologically relevant observa-
tions will inevitably be questioned as they could be
caused by low capture efficiencies. As an illustration of
this, most novel splice sites detected by Marinov et al.
[35] are observed only in one cell, which could indicate
that these are true isoforms expressed below the detec-
tion limits or that they are artefacts. To ascertain
whether this is the case, the authors rely on the fact that
poorly expressed transcripts are more highly affected by
technical noise [60]. As this observation is exclusively
true for poorly expressed genes, they conclude that it is
less reliable and probably a single-cell technical artefact.
Similarly, in the study by Karlsson et al. [45], a

co-expression pattern for TSSs is observed, with good
correlation in highly expressed genes, but a weaker rela-
tionship as expression levels decrease. Improved capture
is proposed as the solution to verify whether TSS ex-
pression is also correlated in poorly expressed genes.
Interestingly, the cells had been sequenced to an average
of 0.5 million reads per cell in the study that generated
the data [18], and, although there is probably room to
increase the sequencing depth, the low number of reads
mapping to TSSs probably would benefit more from
higher capture efficiency than from deeper sequencing.
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Regarding sequencing depth, numbers of reads per cell of
20 to 40 million have been obtained in single-cell RNAseq
isoform studies [36, 38, 39, 44]. This is far above the consen-
sus saturation limit, although no study has addressed how
isoform complexity changes with sequencing, and it is un-
known whether this is an excess of information for isoform
studies, as it seems to be for genes. Nevertheless, it is clear
that shallow sequencing can hinder detection of multiple
isoforms per gene. This is manifest in the SingleSplice study
[42], where the number of detected splice variants and the
sequencing depth per cell were shown to follow a linear
relationship. Another indicator of unsaturated libraries re-
ported by Welch and colleagues [42] are cells where fewer
splice variants than genes were detected. Finally, concerning
targeted approaches, higher depth is required to ensure that
a sufficient proportion of the reads covers the events of
interest. For example, only approximately one-quarter of the
total reads per cell in the poly(A) study by Velten and
colleagues [44] included polyadenylation sites and were
therefore useful for downstream analysis. A similar problem
was faced in the investigation of alternative TSSs by Karls-
son et al. [45], in which the 3′ bias significantly interfered
with the number of reads mapping to the 5′ end.
However, the saturation threshold for long reads is

most likely below one million per cell (as reads are not
fragmented) and could potentially be estimated as the
number of transcripts in the cell lysate. Even so, sequen-
cing depth limitations are exacerbated owing to the
trade-off between sequencing depth and number of cells.
As an example, Byrne et al. [46] obtained approximately
57,000 to 128,000 reads per cell by multiplexing of four
cells on a single MinION flow-cell, and the authors re-
ported difficulties in the identification of low-abundance
transcripts and the impossibility of using spike-ins. In
the case of Karlsson and Linnarsson’s study [47], a total
of six single-cell libraries were pooled and sequenced in
a single PacBio-RSII run. In this case, 61% of UMIs were
observed only once per transcript, which, owing to the
high number of duplicated reads (and hence UMIs)
expected following the high levels of amplification re-
quired in single-cell RNAseq, the authors concluded was
an indicator of sequencing depth limitations. These
results suggest that the read-throughput estimates pro-
vided by both Oxford Nanopore and PacBio are overesti-
mations, as they significantly differ from that achieved
by researchers, and that the current sequencing depth
limitation in SMS is a technological one. In spite of this,
the isoform detection potential of short versus long reads
cannot be faithfully compared solely in terms of sequencing
depth—if shallow single-cell sequencing using long-read
technologies serves to detect fewer genes, but more iso-
forms, than using Illumina, a trade-off of quantity for
quality might be worth considering in future single-cell
isoform studies.
Number of cells sequenced
Analysing a higher number of cells increases the chances
of recurrent detection of novel sites in a bigger cell
population, which ultimately increases confidence. Cell
throughput is thus recurrently discussed in single-cell
isoform studies. Welch and colleagues [42], for instance,
observed that few splice variants were detected in more
than one cell and highlighted that a higher frequency of
detection would have been obtained by sequencing a lar-
ger population. Related observations made by Marinov
et al. [35]—for instance, that the majority of novel splice
sites are present only in a single cell—could have been
similarly validated.
In the same way, bimodality and unimodality rates in

the study by Song et al. [38] of single-cell neuronal de-
velopment would acquire more robustness following
analysis of a larger population. Even though that study
already includes approximately 200 cells (Table 2), there
is no current estimate of the minimal number of cells
necessary to confidently estimate isoform expression for
a given cell type, population or cellular trajectory, but
there seems to be room for improvement. For now,
deep, Smart-based Illumina sequencing of cell popula-
tions is only possible in the range of hundreds of cells
[72]. Reassuringly, using Smart-seq and a stringent min-
imal coverage threshold for splice junctions (i.e. only
events covered by at least ten reads were included in
subsequent analysis), Song et al. [38] firmly identified
2000–10,000 alternative splicing events in each cell, in
spite of cell number limitations.
In the case of long-read technologies, the sequencing

depth and budget restrictions pose a limitation upon the
number of cells that can be processed. This results in a
trade-off between dual reads per cell and cells per ex-
periment. As an estimate, we can consider the MinION
experimental design by Byrne et al. [46] (four single cells
per flow-cell) as the current maximum capacity of the
instrument. Based on these premises, for a 100-cell ex-
periment, approximately 25 MinION flow-cells (which
are disposable and can be used in runs of up to approxi-
mately 72 h (source http://nanoporetech.com/)) would
be necessary. Even though the MinION instrument is
cheaper to acquire compared with bench sequencers
($1000 for a starter pack including two flow-cells and a
reagent kit), one should note that the cost of the 23
extra flow-cells, plus any additional reagent kits neces-
sary, would rapidly increase the budget to nearly pro-
hibitive costs (source https://store.nanoporetech.com/).

Sequencing errors and artefacts
Sequencing errors in long-read technologies prevent dis-
crimination of true differential start sites and termin-
ation sites from degradation and incomplete reverse
transcription artefacts; therefore, TSS and TTS sites have

http://nanoporetech.com/
https://store.nanoporetech.com/
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to be defined as nucleotide position ranges (i.e. bins).
Consequently, stringent conditions are required for the
identification of novel sites, in order to avoid false posi-
tives. A particularly conflicting issue is that some of
these errors, such as template-switching, arise during re-
verse transcription, and therefore cannot be identified
using UMIs. An alternative is to use spike-ins, which
have known sequences, to estimate the probability that
such an error occurs and correct it in sequencing data.
Using this approach, Karlsson and Linnarsson [47] were
capable of attributing an uncertainty of ± 5 bp to the
premature termination of reverse transcription (hence
variability at the 5′ end), and only considered variation
beyond this window as indicating true alternative TSSs.
Artefacts can also introduce uncertainty in the identifi-
cation of exon junctions, which was similarly character-
ized and corrected using spike-ins in the Karlsson and
Linnarsson study.
High error rates also interfere in barcode and UMI

resolution. Indeed, Byrne et al. [46] report the impossi-
bility of using UMIs owing to the high error rates of
Oxford Nanopore sequencing. In order to be able to
resolve them, these authors estimated that UMIs longer
than 30 bp would be required, with the subsequent
increase in RT and PCR artefacts that such long oligonu-
cleotides would inflict. By contrast, Karlsson and Linnarsson
[47] managed to overcome the high occurrence of se-
quencing errors in PacBio reads thanks to correction of
both reads and UMIs by circular consensus sequencing
(CCS). It is interesting to keep in mind, concerning bar-
coding, that PacBio provides the users with a set of 384
barcodes that enables multiplexing of samples, opti-
mized for the technology’s error model (source https://
github.com/PacificBiosciences/Bioinformatics-Training/
wiki/Barcoding). Oxford Nanopore, in spite of the 2D
consensus system, still relies on improvements in se-
quencing accuracy to incorporate UMIs, and has not
developed compatible barcodes for multiplexing.
Hence, these need to be designed by the user [46].
Notably, SMS data correction using Illumina sequen-

cing was implemented by Byrne et al. [46] in their appli-
cation of Oxford Nanopore to single-cell RNA-seq,
where support for novel splice junctions by both long
and short reads was used as an indicator of high confi-
dence in the true nature of the site. To overcome
single-cell limitations, the authors split the cDNA from
single cells after library preparation and sequenced it
using both Illumina and Oxford Nanopore, although this
approach is only feasible when a sufficiently high amount
of cDNA has been generated.
Following from our analysis above, none of the three

extant methods fulfils the four criteria for successful
isoform studies in single cells (Fig. 3). Among them, we
have determined that Smart-based methods achieve the
best balance, providing high capture efficiency in exchange
for reduced statistical power (number of cells analysed). In
addition, these methods achieve good numbers of iso-
forms detected and expression quantification accuracy.
However, the latter relies heavily on the computational
method of choice, namely on tools to assign reads to the
correct transcript isoform, or on other event-based
methods, which provide varying approaches to measure
splicing changes.

Computational methods for single-cell isoform
studies
Throughout this review, several computational methods
that can be used to study isoform expression at the sin-
gle cell level have been mentioned. Next, we will provide
a more detailed description of the assumptions they rely
on and the focus of their results (Fig. 4). Note that we
will solely review tools developed for short-read data.
The tools can be divided into three categories: first,

methods that detect alternatively spliced genes (i.e.
SingleSplice [42]); second, methods that work at the
event and exon level (i.e. MISO [41], BRIE [43] and
Expedition [38]); and, third, methods that provide a
single expression value per transcript isoform (i.e. ‘RNA--
seq by expectation maximization’, RSEM [73]) (Table 3).
To deal with the limitations of single-cell RNAseq,

SingleSplice introduces the novel concept of ‘alternative
splicing modules’ (ASMs, referred to as ‘splice variants’
in the previous section for clarity). The power of ASM
lies in the fact that isoforms that differ in junctions near
the 5′ end are automatically grouped together under the
same ASM and assigned a combined expression value.
In this manner, SingleSplice does not need to discrimin-
ate all isoforms, only as many as possible given the lack
of 5′ coverage and the limitations intrinsic to assigning
short reads to transcripts. Once the tool has identified
all ASMs that belong to each gene, it looks for genes
showing cell-to-cell changes in ASM expression. This
can be considered a ‘zooming out’ approach, focusing on
identifying genes that are alternatively spliced in a given
biological context, instead of identifying particular
isoform changes.
Although MISO was developed to detect alternative

splicing in bulk RNAseq, it has been applied to early
single-cell studies that incorporated isoform diversity
[36, 39]. Instead of reconstructing full transcripts from
short reads, the tool uses reads aligned to splice junc-
tions and a mixture model to estimate percentage
spliced-in (PSI) values for alternatively spliced exons.
PSI is defined as the fraction of mRNAs that represent
isoforms where the exon is included. This value depends
on the number of reads aligning to the exon, the flank-
ing constitutive exons, their junction and the bodies of
other constitutive exons, which contain information on

https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Barcoding
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Barcoding
https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/Barcoding


Fig. 4 Simulation of short- and long-read workflows and the modelling of a UMI-based library preparation strategy. a Short-read simulation
workflow. Transcript sequences from the Tardaguila et al. 2018 neural transcriptome [66] were trimmed, and reads simulated from fragments to
recreate UMI library preparation limitations in transcript covered length. Full-length reads were also simulated. Reads were aligned to the mouse
genome using STAR and isoform expression quantified using RSEM. For UMI simulations, the number of isoforms resolved using Smart-seq reads
was used as the 100% reference to calculate the percentage of resolution of MIG. For the Smart-seq simulation, the annotated number of
isoforms per gene (in Tardaguila et al. [66]) was used as the 100% reference. b Long-read simulation workflow. The Illumina quantification of
isoform expression available in Tardaguila et al. [66] was scaled to one million reads (TPM) to recreate a Sequel run of one million long reads,
where a single cell is sequenced. Values were downsampled to simulate scenarios where an increasing number of cells (2, 6, 10, 16, 20) are
sequenced together in a similar run. The number of reads per cell is therefore gradually decreasing. The number of MIGs in the Tardaguila et al.
annotation was compared with the number of MIGs detected in the simulated scenarios. Then, the number of isoform switches detected in the
Tardaguila et al. data was compared. c Short-read length simulated for each simulation scenario (represented for 3′ UMIs only). PacBio transcript
sequences in the Tardaguila et al. dataset [66] were trimmed as described. To ensure that coverage was even when capturing growing lengths of
the transcripts in simulated UMI-based protocols, the length of the simulated reads was increased for longer fragments (100 and 200 bp—25 bp
reads, 300 and 500 bp—50 bp reads, 1000 bp—100 bp reads, full length—250 bp reads, paired-end). MIG multi-isoform gene, NSC neural stem
cell, RSEM RNA-seq by expectation maximization, TPM transcripts per million, UMI unique molecular identifier

Table 3 Comparative summary of five computational approaches used to study splicing in single-cell RNAseq

SingleSplice [42] MISO [41] BRIE [43] Expedition [38] RSEM [73]

Observation level Gene Exon Exon Exon Isoform (full transcript)

Measure of expression Differentially alternatively spliced (yes/no) PSI PSI PSI Read counts per isoform

Single-cell specific ✓ ✗ ✓ ✓ ?

Includes interpretation of changes ✓ ✗ ✗ ✓ ✗

PSI percentage spliced-in, RSEM RNA-seq by expectation maximization
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the abundance of both the inclusion and exclusion iso-
form. To incorporate the latter, inference of PSI for each
exon is treated as a Bayesian problem, and confidence
intervals are used to evaluate the reliability of the PSI
estimates.
BRIE and Expedition build on the same premises as

MISO and assess expression at the exon level. Neverthe-
less, these tools use new strategies to face challenges
specific to single-cell data. In particular, they differ in
the way they quantify events (1) and in their approach to
evaluate splicing across cells (2).
Regarding (1), in the case of BRIE, isoforms are not

defined as full transcripts, but as exclusion/inclusion
isoforms for each alternatively spliced exon. For exons
where read count is high, a mixture model approach simi-
lar to that of MISO is used. In addition, however, inform-
ative priors learned from the data are used in a Bayesian
regression model in order to improve sensitivity and
obtain accurate estimates where reads are sparse. This
feature can also be used for drop-out imputation. By con-
trast, Expedition exclusively uses junction-spanning reads
for quantification, but is rather conservative to only quan-
tify sufficiently covered, reliable events (> 10 reads), as
opposed to the greedier approach of BRIE.
As for feature (2), the modelling strategy used by BRIE

allows good quantification but is limited to relative
inclusion rates (PSI defined as in MISO). In addition,
once PSI is estimated for all events in the cells, pairwise
comparisons are used to detect differences between cells.
This is both computationally costly and impractical, par-
ticularly when high numbers of cells are analysed. For
Expedition, the authors instead define an absolute PSI
measure (a 0 to 1 value that indicates the percentage of
transcripts per cell that include a given exon) used to
measure exon usage at the single-cell level. The tool
then classifies events into ‘modalities’ according to their
distribution of PSI scores in the overall cell popula-
tion. The classification used by Expedition is useful to
understand global trends for each event, as well as to
assess changes in these trends across cell types or
conditions. Consequently, Expedition yields more easily
interpretable results than the pairwise comparison strategy
of BRIE.
Finally, it is currently possible to use the bulk-designed

tool RSEM [73] specifying a single-cell parameter option,
a feature added in a 2015 release. When selected, RSEM
uses a sparse prior for its Expectation Maximization algo-
rithm in order to better account for the characteristics of
single-cell RNAseq data when assigning reads to tran-
scripts. This provides a single expression value per anno-
tated isoform. However, this feature has not been
benchmarked using single-cell data, and therefore it is
currently unknown whether the expression estimates pro-
vided are sufficiently accurate.
Choosing one tool over another depends mostly on the
aim of the study. SingleSplice provides a general overview
of the consistency of splicing for all multi-isoform genes
in a given population, which can be selected when event
or isoform-level resolution is not required. For informa-
tion on splicing changes involving particular events that
might be interesting in a given population of cells, Exped-
ition is recommended. Finally, RSEM is the only available
tool that provides a single expression value per tran-
script isoform, although its performance on single-cell
data has not been tested. Note that, to make the most
of isoform-level assessment, a comprehensive annotation
of the full-length isoforms in the sample is recommended.

What are the theoretical limits of current
technologies for single-cell isoform studies?
We have described technological limitations and dis-
cussed results obtained in the analysis of isoform expres-
sion at the single-cell level. One immediate question is
to what extent characterization of isoform diversity in
single cells is actually feasible given the current state of
the art. In order to gain insight into this issue, we ran a
simple simulation experiment where single-cell tran-
scriptomics data for the different technological approaches
were emulated. As a reference, we used data from a re-
cently published bulk-RNAseq study, which sequenced
the RNA from mouse neural progenitors (NPCs) and oli-
godendrocytes using the long-read PacBio platform [66]
and quantified isoform expression using Illumina short
reads. This dataset comprises approximately 0.6 million
PacBio and 60 million Illumina reads per sample, resulting
in approximately 13,000 full-length transcripts belonging
to approximately 7000 genes, 45% of them multi-isoform
genes (MIGs; described in the annotation available else-
where [66]). Basing this simulation on a PacBio dataset al-
lows the consideration of transcripts expressed specifically
in these cell types. Note that by basing our simulation on
RNAseq data we assume similar isoform diversity at the
cell and bulk levels, which is unlikely, but sets a theoretical
maximum for single-cell transcriptome complexity. Based
upon this, other factors such as sequencing depth and
library construction strategy were then assessed, as de-
scribed below.

UMI versus Smart-based methods—Partial sequencing of
transcripts limits isoform resolution
Related to the effect of library preparation upon transcript
coverage using short-read sequencing, we simulated how
the partial 3′ (and 5′) end sequencing intrinsic to
UMI-based methods limits the number of isoforms that
can be detected (for detailed workflow, see Fig. 4a). The
polyester R package [74] was used to simulate reads from
a growing length of the 3′ and 5′ ends of the neural
full-length PacBio transcripts. To simulate this, we took
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advantage of the fact that polyester requires transcript
sequences as a template to generate short reads and of the
number of reads to generate per transcript. We trimmed
the sequences of transcripts in the PacBio transcriptome
to lengths of 100, 200, 300, 500 and 1000 bp, starting from
the 3′ and 5′ ends and independent of the length of each
transcript, and used them as the input template tran-
scripts to polyester. In this scenario, polyester generated
short reads from limited portions of the transcripts. In this
manner, we recreated a range of simulated UMI-based
library preparation results. Note that our simulation does
not capture a real UMI library scenario, where covered
lengths vary from transcript to transcript and duplicated
reads are collapsed. However, as longer fragments are
Fig. 5 Simulation results. a Short-read simulations—proportion of transcript l
library preparation scenario. Short fragments (100–200 bp) leave most of the
simulation of longer (> 300 bp) fragments affects transcripts differently depen
Short-read simulations—multi-isoform genes (MIGs) detected in each 3′ and 5
according to their individual percentage of resolution. Results shown for neur
50–75 and 75–100% of their isoforms are resolved. The 3′ end and 5′ end labe
Smart-seq data have been plotted twice, in both the 3′ end and 5′ end bar-gr
simulations—the number of genes for multi-isoform genes detected as sequ
number of multi-isoform genes present in the original neural cell transcriptom
which more than one isoform can be observed. d Long-read simulations—th
oligodendrocytes in a similar scenario, assuming half of the cells belong to ea
A decrease in sequencing depth per cell not only prevents detection of isofo
isoform expression), but also reduces the number of isoform switches that ca
oligodendrocyte isoform switches detected in the original transcript expressio
sequenced, an increasing number of AS events is expected
to be captured, which is sufficient to illustrate the limita-
tions in covered transcript length extant in both 3′ and 5′
UMI-based methods (Fig. 5a). In parallel, a second set of
short reads was simulated spanning the entire transcript
sequence, recreating a Smart-based library preparation
strategy (Fig. 4c).
For all simulated samples, a total of one million reads

were generated. To achieve this, the expression values
obtained for both NPCs and oligodendrocytes using
Illumina reads in the neural cell-type study [66] were
scaled to one million (transcripts per million (TPM))
and used as input to polyester. This ensures a realistic
range of expression values, maintained across simulated
ength left uncovered as longer fragments are simulated in a UMI-based
transcript uncovered by the reads (> 0.75 proportion), while the
ding on their length, hence the growing distributions in the boxplot. b
′ end as well as in the Smart-seq simulation are classified in four intervals,
al stem cells (NSCs) only. Intervals gather MIGs for which 0–25, 25–50,
ls only refer to unique molecular identifier (UMI) simulations. Note that
aph rows, for completeness and to ease visual comparison. c Long-read
encing depth per cell is progressively lost. The dashed line indicates the
e. A decrease in depth per cell decreases the number of genes for
e number of isoform switches detected between neural stem cells and
ch cell type (i.e. two cells equate to one oligodendrocyte and one NSC).
rm ratio expression changes (which constitute the majority differences in
n be observed. The dashed line indicates the number of NSCs versus
n data
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samples. As the total reads and reads per transcript are
constant, even coverage was controlled by gradually in-
creasing read length with the fragment lengths (Fig. 4c).
In addition, single-end reads were simulated for shorter
fragments, whereas paired-end reads were generated for a
full-length transcriptome scenario. Isoform expression was
calculated using RSEM [73] with STAR [75] in order to ob-
tain a single expression value per transcript isoform. Then,
the number of isoforms detected per multi-isoform gene
(MIG) simulation was calculated and compared (Fig. 5b).
Figure 5b shows that, for a 3′ end UMI library where

reads are generated from the first 100 bp of the tran-
script, only 25% of the MIGs would be near to fully re-
solved (green bar section, MIG where > 75% of its
isoforms are discriminated). This group comprises MIGs
where events decisive for isoform discrimination occur
near the 3′ end. However, for the majority of genes, 25
to 50% of the expressed isoforms would be discrimi-
nated, meaning that most of the splicing variations occur
beyond the last 100 bp and are being missed. Covering a
longer fragment of the transcript molecules would only
improve results marginally, according to the minimal in-
crease in the numbers of MIGs resolved at > 75% reso-
lution in the 200 to 1000 bp 3′ UMI simulations. Our
simulations suggest that the percentage of MIGs falling
into this category is slightly higher if UMIs are 5′ end
located (Fig. 5b, second row of bars).
Interestingly, methods based on the Smart-seq2 protocol

would resolve well ~ 50% of the MIGs at the simulated
one million reads, when arguably a higher percentage
would be expected. This can be attributed to a failure to
capture poorly expressed transcripts in the original data
and/or limitations of the RSEM algorithm when resolving
highly similar isoforms using short reads. Arguably, then, a
single-cell Smart-seq experiment will always suffer the pit-
falls intrinsic to short-read isoform reconstruction, which
should be accounted for when interpreting results. Finally,
it should be noted that very similar trends were observed
when simulating neural stem cells (NSCs; Fig. 5b) and
oligodendrocyte samples (data not shown).

Long reads—Illustrating the trade-off between cell
number and sequencing depth
The major limitation of long-read technologies for
single-cell sequencing is the impossibility of achieving
deep sequencing at an affordable cost. To understand
the implications for isoform detection, we simulated a
scenario where an increasing number of cells were se-
quenced by one PacBio Sequel run of a theoretical one
million full-length reads. In such a situation, where
maximum depth is fixed, the number of reads per cell
decreases as the cell number sequenced per run in-
creases. Next, we calculated the number of genes for
which more than one isoform can be detected and the
number of isoform switches that can be observed between
NSCs and oligodendrocytes in each simulated scenario.
To simulate this, we downsampled the bulk transcript

expression results obtained in neural cell types [66],
assuming equal distribution of the reads among cells.
Using bulk data allows one to work with a theoretical
maximum of transcript detection, but presumably the
drop-outs in a real single-cell scenario would play an im-
portant role. The results discussed below should there-
fore be interpreted as upper-bound estimates. Single-cell
transcript expression results were generated for 2, 6, 10,
16 and 20 cells, and the simulation workflow is detailed
in Fig. 4b.
Not surprisingly, we found that the number of genes for

which more than one isoform is detected decreases with
sequencing depth (Fig. 5c). This is inevitable as shallow se-
quencing will more easily capture highly expressed tran-
scripts but will miss alternative isoforms. Single-molecule
technologies might, however, still be able to capture differ-
ences in isoform expression when they imply drastic
changes in expression—that is, isoform switches. We eval-
uated this by computing the average number of isoform
switches between the NSC and oligodendrocyte simulated
single-cell transcriptomes (Fig. 5d). We found that, for a
total of 2423 multi-isoform genes detected in the original
data [66], only 337 (~ 14%) undergo isoform switches.
This means that, as expected, most isoform changes con-
stitute expression ratio variations. Most of them (305) are
detected in the best-case scenario of our simulation (one
NSC and one oligodendrocyte cell), although the number
decreases as the number of reads per cell decreases. For
example, in a 20-cell experiment, only about one-third
of these changes can be detected, according to our
simulation. Therefore, we can anticipate that favouring
cell number over sequencing depth will lead to missing
the majority of isoform expression changes in a cell
population.

Attributing biological significance to isoforms at
the single-cell level
While the functional role of alternative isoform expression
is the subject of intensive research and discussion, specif-
ically, the aim of single-cell studies is to evaluate isoform
prevalence in cell populations, either for subpopulation
characterization (#1), to assess the importance of isoform
expression changes in dynamic processes (#2) or to inves-
tigate its stochastic nature (#3).
A remarkable example of (1) is how, as opposed to

population-level estimates of isoform abundance—which
indicate co-expression of the different splice variants of a
gene—single-cell RNAseq has shown that not all cells
express all isoforms, but predominantly show either
exclusion or inclusion of the exon, revealing a bimodal,
switch-like pattern for splicing across immune cells [36].
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A later study by Marinov et al. [35] consistently found bi-
modality in isoform expression in a related immune cell
type. In it, stochastic gene expression bursts are proposed
as an explanation for isoform dominance in cell subpopu-
lations over space and time, a hypothesis that aims
towards answering question #3 proposed above. These
findings, however, conflict with evidence that cell-specific
isoform co-expression is tightly regulated in the nervous
system, where it is essential to the formation of synapses,
neuron self-recognition and gene expression homeostasis
[37]. Similarly, observations made by Karlsson et al. [45]
support the idea that TSSs are mostly co-expressed in
the mouse brain, and that, therefore, TSS usage is a
co-regulated process and not a stochastic one. More-
over, recent research on neural differentiation has
found that the majority of isoforms were expressed in
accordance with a unimodal pattern—that is, that the
dominating isoform tended to be the same in the
entire population of cells [38], in line with Shalek
et al. [36] and Marinov et al. [35]. Concerning differ-
entiation dynamics (#2), however, Song et al. [38] ob-
served that this was not a static behaviour, but that
20% of alternative splicing events shared among the
population changed during differentiation. Changes
were mostly from a unimodal pattern, where all cells
presented either the inclusion or the exclusion iso-
form, to a bimodal pattern where two subpopulations,
each one predominantly expressing one of these vari-
ants, could be identified. This seems to indicate that
isoform switches (i.e. switching of the dominant isoform)
could be a useful tool to examine cell subpopulation
differences, and has in fact been used by Song et al. [38]
to separate distinct subpopulations appearing during the
neural differentiation trajectory. However, these studies
have only been conducted at the event level, and therefore
it has not been investigated whether transcript isoform
expression in single cells follows similar trends. Therefore,
how an isoform-level analysis would contribute to answer
the three questions we propose is still unknown.
Regarding studies using SMS, which have the potential

to enable full-length isoform studies, sequencing depth
and cell number limitations have for now prevented con-
clusions tackling these questions. However, the two
studies published to date [46, 47] are groundbreaking in
terms of demonstrating that it is possible to use
long-read technologies in single-cell RNAseq. We antici-
pate that future improvements by PacBio and Oxford
Nanopore will allow more biologically oriented studies
to refine and complete the hypotheses developed from
short-read studies on the single-cell biology of isoform
expression.
Another aspect that is relevant for understanding the

biological role of isoforms is how changes in their expres-
sion are connected to other layers of gene regulation. To
this end, methods to generate other types of single-cell
data, such as single-cell epigenomics, are beginning to
appear. These kinds of technologies are bound to be com-
bined with transcriptomics into single-cell multi-omics
and data-integration approaches, as has been reviewed
recently [76]. However, this approach to single-cell biology
is still in its infancy, and there are few examples of these
types of studies (see [77–81] for single-cell multi-omics,
and Lake et al. [82] for a data-integration approach). In
addition, none of them, to the best of our knowledge,
includes alternative splicing, TSS or polyadenylation infor-
mation within their transcriptome data, only gene expres-
sion. In order to build complex models that include these
isoform-associated forms of regulation, multi-omics tech-
nologies must use Smart-based methods (or, in the future,
long reads) to obtain transcriptomics data. Interestingly,
two recently developed single-cell multi-omics methods,
scM&T-seq [81] (methylome and transcriptome) and
scNMT-seq [78] (chromatin accessibility, methylome and
transcriptome) use Smart-seq2 to profile the transcrip-
tomes of cells. Even though these data have not been ana-
lysed at the isoform level, these protocols are potentially
useful to understand how the expression of alternative
isoforms is coupled to other gene-regulation mechanisms.
Alternative isoforms are the result of alternative splicing,

as well as changes in TSS and polyadenylation site usage.
Single-cell RNAseq has demonstrated great potential to
characterize the diversity of isoforms that exist in a single
cell. The main challenges facing the field are conferring
biological entity to this diversity by answering the three
questions mentioned: determining the importance of iso-
form expression in defining the identity of cell types (#1),
the biological role of the expression changes observed in
dynamic processes (#2) and the degree of stochasticity of
the mechanisms by which they occur (#3).

Concluding remarks and future perspectives
We have described how current limitations of isoform
studies using single-cell RNAseq impact investigations
published within the field, together with the main con-
siderations that should be taken into account before
producing isoform data. Given the novelty of this appli-
cation, we believe that this review will be useful to in-
form experimental design, as we have both enumerated
present experimental concerns and provided guidance as
to how to maximize isoform detection. Even so, most limi-
tations of single-cell RNAseq cannot be solved through ex-
perimental design as they are fundamentally technological.
Short-read sequencing is mainly limited by library

preparation protocols. Although current Smart-based
protocols are capable of detecting transcripts from up to
~ 20,000 genes [61], this is not always sufficient to cap-
ture rare isoforms. A second key issue is the number of
cells that can be sequenced at high depth, at present
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limited by the cost per cell of the Smart-seq2 protocol,
which is not able to compete with low-coverage,
high-throughput protocols such as Drop-seq. Interest-
ingly, cost reduction has been reported when producing
an in-house transposase [61, 83], although in this case
Smart-seq2 still qualifies as more expensive than most
of the other protocols and thus needs optimization.
Last, but not least, current full-length protocols do not
enable inclusion of UMIs for PCR bias detection and,
furthermore, are not completely efficient in capturing
the 5′ ends of transcripts.
To compensate for the incompatibility with UMIs,

new experimental controls could be developed to refine
quantification. In fact, the necessity to develop a set of
spike-in RNAs that is more adequate for single-cell
RNAseq, given the biases that widely used ERCC mate-
rials suffer from, has recently been pointed out [84, 85].
Alternatively, new computational approaches where true
transcript abundances are estimated without the neces-
sity to use UMIs—or spike-ins—are beginning to appear.
Such is the case of Census [86], a tool that, based on the
assumption of linear amplification, estimates relative
transcript counts initially present in the cell lysate. Even
though linear amplification constitutes a bold assump-
tion, authors report that Census performs more accur-
ately than normalized read counts when UMIs and
spike-ins are incompatible with the experimental design.
Census opens an interesting path towards estimation
strategies along these lines that could aid isoform studies
in the future.
Also on the computational side, a robust, manageable

and easily interpretable estimation of exon inclusion is
required for short-read studies. Several strategies have
recently been developed for single-cell data [38, 42, 43].
The necessity to adapt estimates to the peculiarities of
single-cell RNAseq data has been based upon three con-
siderations: first, high levels of technical noise (addressed
by Welch et al. in SingleSplice [42]); second, high process-
ing requirements for single-cells (addressed by Song et al.
in Expedition [38]); and, third, misquantification of
poorly expressed isoforms caused by lack of coverage
in low-expression ranges (addressed by Huang et al.
in BRIE [43]). The cited studies use diverse strategies
to overcome a common problem, which results in dif-
ferent isoform expression metrics. Future research, by
contrast, should aim to bring the field closer to a standard
way of measuring isoform expression. Standardization
would not only save time comparing the performance of
the different tools, but also make single-cell-isoform stud-
ies significantly more comparable. More importantly,
however, the field lacks a single-cell-specific tool that pro-
vides one expression value per transcript isoform, as
opposed to the assessment of single splicing events.
Isoform-level expression estimation integrates the whole
combinatorial diversity of splicing, TSS and poly(A)
events, and will ultimately enable complete, system-level
assessment of the role of splicing in generating functional
diversity and its interplay with other layers of gene regula-
tion. Therefore, we recommend evaluating transcript iso-
form expression in this manner, currently only possible
using RSEM [73].
Concerning computational approaches, long-read se-

quencing lags behind in comparison with strategies
using short-read data. To illustrate, the first computa-
tional workflow, Mandalorion [46] was developed and
published very recently by Byrne and colleagues and
focuses on identification of isoforms without expression
quantification (furthermore, the pipeline has not been
scaled and released as a compact tool). This application
of SMS is in a very preliminary phase, where experimental
design and technological limitations hinder high-throughput
and high-quality data production. Two issues currently
require improvement—flow-cell capacity and sequencing
accuracy. Flow-cell capacity refers to achieving higher depth
per cell, through both the development of zero mode wave-
guides (ZMWs, PacBio) and nanopores (Oxford Nanopore)
that resist pre-run inactivation, as well as an increase in
cost-effectiveness, oriented towards lowering costs per
cell, per run and per flow cell. In this context, the much
expected release of the throughput-enhanced Sequel
(PacBio), GridION and PromethION (Oxford Nanopore)
sequencers is a promising next step.
In the light of the current limitations, alternative ap-

proaches can be proposed. The first one is the possibility
for combining long-read sequencing with prior selection
of homogeneous cell subpopulations. Specifically, a large
cell population could be screened and sorted according
to biological properties of interest (i.e. by flow cytome-
try), generating pools of a few thousand cells. Pooling
cells would improve read depth and capture efficiency to
levels near bulk RNAseq, while subpopulation selection
would facilitate getting beyond the bulk population level.
Nevertheless, subpopulation homogeneity can be as-
sumed only to a certain extent, and selection requires a
considerable amount of previous knowledge. In addition,
this strategy excludes cell-level pattern observation.
Second, targeted sequencing using PacBio or Oxford
Nanopore could be used to characterize isoform sets
belonging to genes of interest—that is, genes that are
known to have isoform diversity in the biological context
under study, which could be detected via bulk RNAseq.
As a result, only a fraction of the diversity in the
single-cell isoform landscape would be detected, but the
limited read depth and cost restrictions of both SMS
technologies would be overcome.
In conclusion, no currently available single-cell RNA-

seq strategy (nor alternative one) performs optimally
when isoforms are the aim of the study. In this context,
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future advances will rely strongly on the ability of
researchers to design alternative experimental solutions
to complement the gap left by single-cell sequencing
and, more importantly, on technological improvements
in both library preparation and sequencing protocols.
Reassuringly, the increasing number of studies using
single-cell RNAseq will certainly make such progress a
reality sooner than later. Hence, the ultimate challenge
for single-cell isoform studies will be to rationalize the
biological significance of isoforms—that is, whether such
high diversity truly constitutes an extra layer of regula-
tion in the cell or, on the contrary, is solely a manifest-
ation of the stochasticity that governs biological systems.
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