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Abstract

Background: Since thermodynamic stability is a global property of proteins that has to be conserved
during evolution, the selective pressure at a given site of a protein sequence depends on the amino acids
present at other sites. However, models of molecular evolution that aim at reconstructing the
evolutionary history of macromolecules become computationally intractable if such correlations between
sites are explicitly taken into account.

Results: We introduce an evolutionary model with sites evolving independently under a global constraint
on the conservation of structural stability. This model consists of a selection process, which depends on
two hydrophobicity parameters that can be computed from protein sequences without any fit, and a
mutation process for which we consider various models. It reproduces quantitatively the results of
Structurally Constrained Neutral (SCN) simulations of protein evolution in which the stability of the native
state is explicitly computed and conserved. We then compare the predicted site-specific amino acid
distributions with those sampled from the Protein Data Bank (PDB). The parameters of the mutation
model, whose number varies between zero and five, are fitted from the data. The mean correlation
coefficient between predicted and observed site-specific amino acid distributions is larger than <r>=0.70
for a mutation model with no free parameters and no genetic code. In contrast, considering only the
mutation process with no selection yields a mean correlation coefficient of <r> = 0.56 with three fitted
parameters. The mutation model that best fits the data takes into account increased mutation rate at CpG
dinucleotides, yielding <r> = 0.90 with five parameters.

Conclusion: The effective selection process that we propose reproduces well amino acid distributions
as observed in the protein sequences in the PDB. Its simplicity makes it very promising for likelihood
calculations in phylogenetic studies. Interestingly, in this approach the mutation process influences the
effective selection process, i.e. selection and mutation must be entangled in order to obtain effectively
independent sites. This interdependence between mutation and selection reflects the deep influence that
mutation has on the evolutionary process: The bias in the mutation influences the thermodynamic
properties of the evolving proteins, in agreement with comparative studies of bacterial proteomes, and it
also influences the rate of accepted mutations.
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Background

The evolutionary information embedded in the sequences
of extant biological macromolecules can be used to recon-
struct their evolutionary history (see for instance Ref.
[1,2]). Methods based on the Maximum Likelihood (ML)
principle are quite successful in reconstructing the past of
molecules and species [3], but they rely on models of the
evolutionary process at the molecular level. ML computa-
tions are usually carried out assuming that the sites of a
protein evolve independently, a feature that is rather unre-
alistic, since selection for thermodynamic stability of the
native state acts on all sites at the same time, introducing
correlations between sites [4,5].

Incorporating selection for thermodynamic stability in a
ML framework has been recently the focus of very interest-
ing studies [6-10]. However, for large data sets ML compu-
tations become unfeasible without the assumption of
independent sites. It has been also shown that modeling
site-specific residue frequencies significantly improves
methods for evolutionary reconstructions [11].

The simplest models of molecular evolution are based
only on the mutation process and do not attempt to eval-
uate its effect on fitness. Kimura's neutral model [12,13]
uses a binary fitness function to represent purifying selec-
tion. Protein sequences are considered either unviable or
equivalent (neutral). In this model a fraction x of the
mutations gives rise to neutral mutants and the remaining
fraction 1 - x is eliminated by purifying selection.

In this paper, we use a binary fitness function based on the
evaluation of the thermodynamic stability of the native
state, in the same spirit of models first introduced in the
context of RNA evolution [14-16] and subsequently
extended to protein evolution [6,17-28]. The model that
we study is a neutral evolution model with explicit stabil-
ity requirements, the Structurally Constrained Neutral
(SCN) model of protein evolution [29-32]. We study the
model in the limit in which the product of the population
size M times the mutation rate g is small, which means
that the population is very narrowly distributed in geno-
type space. This limit is appropriate for animal popula-
tions. In the regime of frequent mutation, the
evolutionary dynamics is different from the rare mutation
regime considered here in that there is a trend towards
increased mutational robustness for increasing My [33-
35].

Stability requirements induce correlations between the
sites of the macromolecule, as the free energy is a property
of the system as a whole. In the present paper, we present
an evolutionary model in which the sites evolve inde-
pendently of each other and, in addition, are subject to
structural stability. We show that the selection rules can be
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chosen in such a way to reproduce the evolutionary proc-
ess simulated through the SCN model of protein evolu-
tion, in which the stability is explicitly evaluated. In order
to eliminate the correlations induced by stability require-
ments there is, however, a price to pay: In the mean-field
model, the effective selection depends on the mutation
process. As a result, sites evolve independently but selec-
tion and mutation become interrelated, whereas in real
evolution sites evolve in a correlated fashion and muta-
tion and selection are independent processes.

We simulated the SCN model with different mutation
schemes. The results of these simulations agree very well
with the mean-field model, and show that both mutation
and selection have influence on protein folding thermo-
dynamics.

Furthermore, we applied the effective evolutionary model
to a non-redundant set of globular protein structures con-
tained in the Protein Data Bank (PDB), using several
mutation schemes of increasing complexity. The mutation
scheme that best reproduces the observed amino acid dis-
tributions at all sites is one that takes into account the
increase of the mutation rate at CpG dinucleotides. The
site-specific amino acid distributions obtained through
this model reproduce quite well observed amino acid dis-
tributions.

The SCN model

The SCN model evaluates the "fitness" associated with a
protein sequence through a model of protein folding
based on an effective free energy function (see Eq. (13) in
Methods). We adopt two measures of protein folding sta-
bility: (1) with respect to the unfolded state (unfolding
stability), estimated through the effective native energy,
and (2) with respect to misfolded states (misfolding stabi-
lilty), estimated through the normalized energy gap (see
Methods). We use a binary fitness function that assigns fit-
ness one if both stabilities are above predefined thresh-
olds and zero otherwise. Thus our model is neutral, since
there is no fitness difference between viable proteins.

The free energy calculations introduce correlations
between the sites of the protein. As a result of these
dependencies, the fraction of neutral mutations x is no
longer constant, as in Kimura's model, but fluctuates
broadly from one sequence to another. This implies that
the distribution of the number of substitutions is broader
than the Poissonian distribution arising from the stand-
ard neutral model by Kimura, i.e. the process of protein
evolution is overdispersed [30-32], in better agreement
with empirical observations [36,37].
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Results

Optimal sequence for a protein structure

We evaluate the stability of folded states through the con-
tact free energy function

E(C,A) = ZCijU(Ai,Aj), 1)
ij

where C represents the binary contact matrix derived from
the protein structure, A represents the protein sequence
and U(a, b) is the effective contact interaction strength
between amino acids a and b, belonging to the set of
twenty standard amino acids. This model of protein sta-
bility, despite its simplicity, captures several relevant fea-
tures of protein folding, in particular those related with
hydrophobicity. In particular, it allows to estimate the sta-
bility against unfolding and misfolding for sequence-
structure pairs, in such a way that the native structure is
more stable than all alternative structures for almost all
protein chains in the PDB [38]. Difference in stability
between homologous proteins can be related to evolu-
tionary and ecological variables [39], and estimates of
unfolding free energy are correlated with experimental
measures (UB, unpublished result).

A further approximation of this model allows to design
analytically the optimally stable sequence for a given fold.
This approximation consists in truncating the spectral
decomposition of the contact interaction matrix at the
first spectral component, namely U(a, b) =~ -h(a)h(b),
where h(a) indicates the component of the main eigenvec-
tor of U(a, b) corresponding to amino acid a, which we
call the interactivity of amino acid a. It is well known that
the main eigenvector of contact interaction matrices is
related to hydrophobicity [40,41]. Consistently, the inter-
activity scale is strongly correlated with empirical hydrop-
athy scales as for instance the octanol scale derived by
Fauchere and Pliska [42].

We define the hydrophobicity profile (HP) of a protein
sequence associating at each site the interactivity value
h(A;) corresponding to its amino acid. Using only the first
spectral component, the interaction matrix can be recon-
structed to good accuracy (the correlation coefficient
between U(a, b) and -h(a)h(b) is r = 0.80). Under this
approximation, the energy can be written as a quadratic
form of the hydrophobicity profile

E(C,A) = =) C;h(A)h(A)). (2)
ij

In the following, we will use the complete contact interac-
tion matrix U(a, b), Eq. (1), for simulations of the SCN
model, and the hydrophobic energy Eq. (2) for analytic
computations. We further neglect the discretization of the
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HP into twenty values and consider the h; as real valued

independent variables. This setting allows to solve analyt-
ically the sequence design problem of determining the
optimally stable sequence for a target structure. The HP
with minimal energy for a given contact matrix C and for

fixed mean square! Zihiz /N E(h2) is parallel to the

principal eigenvector (PE) of the contact matrix, whose
components are denoted here by ¢

hoPt = \IN(h%)c; .

However, selection in the SCN model is applied not only
to the native energy, which estimates stability with respect
to unfolding, but also to the stability against misfolded
compact structures. The relevance of molecular diseases
related to misfolding and aggregation [43], the impor-
tance for cell physiology and evolution of molecular chap-
erones preventing misfolding [44-46], and comparative
analysis of thermodynamic properties of homologous
proteins [39] all indicate that selection for stability against
misfolding is an important selective force. In our model,
this is achieved imposing a minimal allowed value for the
normalized energy gap (see Methods).

i.e.

i

Therefore, we set out to minimize the native energy with
a large value of the normalized energy gap. The computa-
tion is reported in the Methods section. The implicit ana-
lytic solution, Eq. (17), receives its main contribution
from the PE. This contribution is overwhelming in case of
structures without internal modularity. Therefore, we fur-
ther approximate the optimal HP as the sum of the PE
profile plus a term which is constant at all sites. This is
equivalent to stating that the correlation coefficient
between PE and HP is one, and yields

() =)
(¢ -@?)
Before ending the section, we list the approximations

involved in the above equation and its limits of validity.
For comparison with simulation results, see Fig. 1 below.

hopt _

(ci =<c)) +<h). ()

1. We neglected the lower eigenvectors in the spectral
expansion of the contact interaction matrix U(a, b). Simu-
lations of the SCN model with equiprobable mutations
show that this approximation is rather good, since one
can get correlation coefficients larger than 0.95 between
the simulated optimal HP and the PE of single-domain
proteins, which would not be the case if the other compo-
nents of the contact interaction matrix would pose signif-
icant constraints.

Page 3 of 21

(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:43

0.9

r([h]evol; C)

0.8}

0 0.5 1
GC

Figure |

Correlation coefficient between the average HP and the PE
for SCN simulations with various mutation models yielding
different GC biases, for three single-domain proteins, lys-
ozyme (PDB code 3 1zt, circles), phosphocarrier protein Hpr
(PDB code lopd, diamonds), and myoglobin (PDB code |aég,
squares), and for the small two-domains protein ATP syn-
thase ¢ unit (ATPE, PDB code lagqt, triangles).

2. We neglected the discretization of the hydrophobicities
in twenty values corresponding to the amino acids. This
approximation is usually good for values of <h> and <h2>
as observed in real proteins, which are much larger than
the minimum and much smaller than the maximum of
the twenty hydrophobicity values, but it is violated for
extreme mutation bias.

3. We used the REM approximation for the normalized
energy gap [47], which has been calculated through
threading in the simulations. This is not a problem, since
there is very good correlation between the REM estimate
and the threading result at fixed sequence length. Moreo-
ver, since the threading calculation overestimates the nor-
malized energy gap for long proteins, the REM
approximation may even yield a more appropriate esti-
mate [47].

4. We assumed that the lower eigenvectors contribute neg-
ligibly to the optimal hydrophobicity. This approxima-
tion is violated for multi-domain proteins, where other
eigenvectors have non-negligible contributions. For sin-
gle-domain proteins the corrections are usually small in
the cases that we simulated.

Evolutionary average of the hydrophobicity profile

In the SCN model, following Kimura's neutral model, all
sequences having stability properties above some prede-
termined threshold are selectively equivalent. Therefore,
the optimal sequence is very unlikely to be realized during
evolution. However, all viable sequences must be suffi-
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ciently stable, which implies that they must have large cor-
relation coefficient with the optimal HP. Thus, in SCN
simulations protein sequences are expected to move
around the optimal sequence, so that the evolutionary
average of the HP almost coincides with the optimal HP
[48]. This condition can be written formally as

(A levor = X 7i(a)h(a) = h". (4)
{a}

The evolutionary average of the HP is indicated as [h],
and it is expressed as a sum over all amino acids {a} of the
site specific amino acid distribution at site i resulting from
the evolutionary process, 7;(a). The average sequence so
defined is closely related to the prototype sequence
defined by Bornberg-Bauer [21,22], which is maximally
stable both thermodynamically and against mutations.

Combining Eq. (3) and (4), we obtain an analytic predic-
tion of the average value of the site-specific amino acid
distributions,

(h*) = (h*)
(¢ ()

The quantities <h> and <h?> are the only parameters that
we need in order to compute the average HP at all sites of
the protein as a function of the PE. In the following, these
parameters will be measured in the simulations.

> 7i(@)h(a) =
{a}

(ci =) +<{h). (%)

If the correlation coefficient between the PE and the aver-
age HP would be one, then the prediction Eq. (5) would
be exact. We verified that the correlation coefficient is
large (see below) and the analytic prediction yields a good
fit of the average HP. The slope of the linear relationship
between average HP and PE has a typical relative root
mean square error of 9% with respect to the predicted
value. The intercept has a typical relative error of 34%, but
the mean absolute error is very small, 0.02, which is less
than 5% of the mean HP. In the following, we further dis-
cuss the quality of the prediction reporting the correlation
coefficient, which gives a strong indication of the relative
eITor.

We plot in Fig. 1 the correlation coefficient between the
average HP and the PE for SCN simulations with various
mutation models characterized by different bias towards
the nucleotides C+G, for lysozyme (PDB code 31zt),
phosphocarrier protein Hpr (PDB code lopd) and
myoglobin (PDB code 1a6g), which are three single-
domain proteins, and ATP synthase ¢ subunit (ATPE, PDB
code 1aqt), which, despite its small size of 135 residues,
has two domains, a small beta barrel and a two-helix bun-
dle.
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Except for extreme mutational bias the correlation coeffi-
cient between average HP and PE is always larger than 0.8.
Lysozyme and Hpr have a similar behavior, characterized
by high correlation coefficient between the average HP
and the PE. The decrease of the correlation at extreme
mutation bias is mainly due to the finite values of the
minimal and maximal hydrophobicity. The same effect is
present for myoglobin and ATPE, but for these proteins
the correlation is lower because the contribution of other
eigenvectors to the optimal HP is not negligible. Never-
theless, the correlation r([h],,, ¢) is close to one for all
four proteins for almost all the mutation models that we
simulated. We found that a good predictor of the rele-
vance of other eigenvectors is the quantity 7, defined in
Eq. (20). This quantity is small (=~ 0.04) for the first two
proteins and larger (= 0.4) for the other two and correlates
strongly (r = -0.935) with r([h],,,, ) at zero GC bias (GC
= 0.5)2. Since simulations of ATPE represents the worst
case for our analytic theory, we will focus on them as an
example in the rest of the paper.

Effective selection model based on the principal
eigenvector of the contact matrix

Our aim here is to exploit the results on the average HP in
order to define an effective selection model that repro-
duces the SCN results based on explicit protein thermody-
namics.

Let us first consider a mutation model where mutations
from any amino acid to any other one are equiprobable.
This is the mutation model that we simulated in our pre-
vious studies [29-31]. In this case, we assume that Eq. (5)
is the only condition acting on the stationary amino acid
distributions 7;(a). This assumption is translated into the
requirement that each 7(a) is the distribution of maxi-
mum entropy with mean values given by Eq. (5). As it is
well known, this is an exponential, or Boltzmann, distri-
bution of the form [49]

7(a) o< exp [-fh(a)],  (6)

The site-specific Boltzmann parameters S can be com-
puted analytically imposing that the average values
Zani (a)h(a) are given by Eq. (5), which depends only
on the PE components ¢; and on the two parameters <h>

and <h2>.

Details on the calculation of £ are given in the Methods
section. f; takes both positive and negative values.
Through the theorem of the implicit function it is easy to
see that £, is a decreasing function of ¢;. This has a very
simple interpretation: Positions with large c; are buried in
the core of the protein, so they tend to have larger mean
hydrophobicity, Eq. (5), and with higher probability they
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are occupied by hydrophobic amino acids, thus having
more negative f,. Positions with small ¢; are exposed, tend
to be hydrophilic, and have large and positive S. This
result is not surprising qualitatively, but it is remarkable
that it allows to compute quantitatively the probability to
observe a hydrophobic amino acid as a function of a struc-
tural indicator, the component ¢; of the principal eigen-
vector of the contact matrix, and on the two parameters
<h> and <h?>.

Modelling amino acid distributions using Boltzmann dis-
tributions of physico-chemical properties had been previ-
ously proposed by Goldstein and coworkers [50,51] and
by Shaknovich and coworkers [27,28]. Our approach dif-
fers from previous ones in the sense that we compute the
Boltzmann parameter explicitly as a function of a struc-
tural indicator, the principal eigenvector of the contact
matrix.

Several structural properties of proteins are found to fol-
low Boltzmann distributions as well, i.e. the frequency of
a structural motif is exponentially depending on its
energy. For a review and a theoretical explanation based
on the Random Energy Model, see [52].

The above result allows us to define a stochastic evolution
process with independent sites that reproduces the site-
specific distributions obtained through the SCN model
where sites are interacting. The simplest site-specific tran-
sition matrices having Eq. (6) as its equilibrium distribu-
tion and satisfying detailed balance have the form

P (4, b) = min {1, exp[-4 [1(b) - h(@)]]}.  (7)

It is possible to extend this selection model to take into
account functional conservation, which is not considered
in this paper.

Mean-field model with selection and mutation

The condition on the site-specific average hydrophobicity,
Eq. (5), is independent of the mutation model in our ana-
lytic approximation. Simulations show a weak depend-
ence on the mutation parameters, see Fig. 1. For strong
mutation bias, at very low GC, this dependence is a con-
sequence of the fact that the average hydrophobicity
approaches its maximum value. For intermediate bias,
this dependence can be rationalized noting that the rele-
vance of other eigenvectors depends on the parameter 1 -

<h>/(\ N(h?) <c>), which varies with the mutation bias.

In any case, Eq. (5) is a good approximation to SCN sim-
ulations, except for extreme mutation bias.
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The stochastic selection process described by Eq. (7)
imposes that the average hydrophobicity follows Eq. (5).
This effective selection process reproduces the site-specific
amino acid distributions obtained through simulations of
the SCN model with equiprobable mutation. Here we
simulate the SCN model with a more realistic mutation
process that takes into account the genetic code and repre-
sent mutations nucleotide level. The stochastic process
that corresponds to this modified SCN model is the com-
bination of two processes [53]: (1) A mutation process
identical to the one simulated in the SCN model; (2) The
selection process described by Eq. (7), which imposes that
the site-specific average HP is perfectly correlated with the
PE.

For implementing the nucleotide mutation model, we
define the state of each site i as a codon n = {n;n,n;}. The
substitution process is then decomposed into mutation
and selection processes according to

PO(n,n’) = PFOP (n,n")PY)(A[n] AM’]) (n=n), (8)

sel

COD
Py

where (n, n') is the codon mutation matrix arising

from the mutation process at the nucleotide level (see
Methods), the selection process is represented in Eq. (7),
and A [n] represents the amino acid coded by the codon
n. The diagonal elements are defined through the normal-
ization condition

POmn)=1- Y PO (n,n)P)(An], AN)). (9)

sel
n’zn

We first assume that the mutation process at the DNA
level satisfies detailed balance, also called reversibility in
the molecular evolution literature. This means that the
stationary nucleotide frequencies f(n) satisfy the equation

f(n)) By (ny, ny) = f(ny) Py (ny, my), where By (ny, n,)

is the mutation matrix at the nucleotide level.

Under this hypothesis, the stationary distribution for the
full substitution process can be decomposed as the prod-
uct of the amino acid frequency wy,(a) expected from the
mutation process without selection, which is the same for
all sites, times the site-specific distributions due to the
selection process, Eq. (6),

7m(a) o wyy(a) exp-f;h(a)],  (10)

(11)

waa (@) = Y, 8(a,An])weop (n).
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The factor wy,(a) is obtained as the sum of the expected
frequencies of its codons under mutation alone, wgp(n)
= f(n,) f(n,) f(n;), with ny, n,, n; the three nucleotides
composing the codon n, and f(n) is the stationary fre-
quency of nucleotide n under mutation alone. It is easy to
see that the distribution Eq. (10) satisfies detailed balance
with respect to the full substitution process, Eq. (8).

Eq. (6) is a special case of Eq. (10), with a constant muta-
tion factor wy,(a) = 1 for all amino acids, consistently
with the assumption that all mutations are equiprobable.
Combining Eq. (10) with Eq. (5), we obtain

3 hahwan (@ expl-Bi(a)]
Z{a) WAA (a)exp[_ﬁih(‘l)] -

() —(hy? [ G

—-1 h). 12
(<Cz>7<c>2)/<c>z © ]"’() (12)

This equation is the central result of this work. It allows to
compute the Boltzmann exponents £, and from them the
site-specific amino acid distributions as a function of the
normalized PE of a protein structure, c;/<c> which
depend little on the protein length, of two hydrophobicity
parameters, <h> and <h?>, and of the stationary frequen-
cies wy,(a) of the mutation model, which must fulfill
detailed balance. From this equation one sees that the
Boltzmann exponents S, which define the selection proc-
ess, depend on the mutation factors wy,(a). This contrasts
with the fact that in the SCN model mutation and selec-
tion are two independent processes. The entanglement
between selection and mutation is a consequence of the
mean-field approach: We reduce an evolutionary process
where sites are interrelated to a process where sites evolve
independently, but under the global constraint given by
Eq. (5). Because of this global constraint, the evolutionary
process becomes dependent on the average properties of
the amino acid chain, which in turn depend on the muta-
tion process. Hence, at the mean-field level, mutation and
selection become interrelated.

SCN model with genetic code

To test the mean-field model, the SCN model was simu-
lated using several mutation schemes. In a first set of sim-
ulations, we used mutation matrices that fulfil detailed
balance and depend on the stationary frequencies f(n), n
e {A, T, C, G}, and on the transition-transversion ratio k
(see Methods). We further imposed the conditions f(C) =
f(G) and f(A) = f(T), called type 2 parity rule [54], so that
there are only two parameters in the mutation matrix.

Fig. 2 shows the site-specific amino acid distributions
obtained through SCN simulations for the protein ATPE
(PDB code 1aqt), divided by the frequencies expected
under mutation alone, wy,(a). The distributions plotted
in Fig. 2(a) and 2(b) refer to a site with small PE compo-
nent, ¢;/<c> = 0.43, favoring amino acids with low hydro-
phobicity. We show data for two different mutational
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Comparison of the site-specific amino acid distribution 7;(a)
obtained from simulations of the SCN model for ATPE (PDB
code laqt, full symbols) and from the mean-field model (lines
and open symbols) at site i = 128 with ¢/<c> = 0.43 [(a) and
(b)] and at site i = 82 with ¢/<c> = 1.55 [(c) and (d)]. The
upper panels (a) and (c) show the case of high GC mutational
bias, whereas the lower ones (b) and (d) show low GC muta-
tional bias.

biases, one favoring GC-rich codons (f(C) + f(G) = 0.8),
which tend to be more hydrophylic, and one favoring GC-
poor codons (f(C) + f(G) = 0.2), which tend to be more
hydrophobic. The exponent f; changes with the muta-
tional bias: For large GC bias the codons coding for
hydrophilic amino acids are favored at the mutation level,
and the £, is almost zero, meaning that almost no purify-
ing selection is needed at this site. The contrary holds
when the mutation bias favors GC-poor codons: In this
case f is large, and the site experiences strong purifying
selection.

The opposite situation is observed in Fig. 2(c) and 2(d),
obtained for a site with ¢;/<c> = 1.55. In this case amino
acids with high hydrophobicity are preferred, and f, is
almost zero when the mutational bias favors GC-poor
codons, whereas it is negative and large when GC-rich
codons are favored at the mutational level. In both cases,
the mean-field model (straight lines and open symbols)
fits very well the results of the SCN simulations (full sym-
bols). The average over all sites of the correlation coeffi-
cients between predicted and observed amino acid
distributions, for all mutational biases simulated, lies in
the range <r> = 0.83 and <r> = 0.92 and increases as a
function of the number of sequences examined (we simu-
lated about 10°¢ sequences for each mutational bias).

In all cases studied, the stationary amino acid distribu-
tions only depended on the stationary nucleotide fre-
quencies f(n) and did not depend on the transition-
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transversion ratio, in agreement with Eq. (10). We also
simulated a mutation process that does not fulfil detailed
balance. In this case, Eq. (10) does not represent the sta-
tionary amino acid distribution of the process, which
must be explicitly computed from the full transition
matrix. Also in this case, Eq. (10), calculated with the sta-
tionary frequencies f(n) of the pure mutation process, is a
very good approximation of the stationary distribution for
high GC bias, but not for low GC, because of the large fre-
quency of stop codons, which are strongly negatively
selected (data not shown).

As a result of the change of the selection parameters £
with the mutation bias, the probability that a mutation is
accepted depends on the mutation bias. This probability
is also influenced by the transition-tranversion ratio k. The
probability that a mutation is accepted, obtained from
SCN simulations, and analytically computed from the
effective stochastic process Eq. (8) (see Methods), is plot-
ted in Fig. 3. The analytical calculation is in very good
agreement with simulation results. Interestingly, the
acceptance probability has a maximum as a function of
the GC frequency, meaning that there is an optimal muta-
tion bias that maximizes the rate of accepted mutations.
This maximum is achieved at f(C) + f(G) > 0.5, since stop
codons, which are the most deleterious mutations, are
rich in AT. The acceptance probability increases with the
transition to transversion ratio k, which favors more con-
servative mutations.

Figure 3

Acceptance probability for a mutation P, calculated in SCN
simulations for ATPE (PDB code laqt, symbols) and in the
mean-field model (lines) for three different values of the tran-
sition to transversion ratio k as a function of the GC content,
f(C) + f(G). The mutation model is such that P(C) = P(G) and
P(T) = P(A), assuming type 2 parity rule [54].
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Influence of the mutation bias on protein folding
thermodynamics

In the SCN model, mutation and selection parameters
influence the properties of protein folding thermodynam-
ics arising from simulated evolution.

In both the SCN and the mean-field model, the nucleo-
tide content at different codon positions responds differ-
ently to the mutation bias. The second position is the
most difficult to mutate, whereas the third one is almost
completely neutral, with GC; = GC_,,, since most transi-
tions at third codon position are synonymous and they
are always accepted in the SCN model. Thymine content
at second codon position is least dependent on the muta-
tion bias. Almost all codons containing T in the second
position code for hydrophobic amino acids, so that the T
content at second position is strongly correlated with the
hydrophobicity of the coded protein and it is strongly
constrained by selection for thermodynamic stability. A
mutation bias towards T at the nucleotide level corre-
sponds to a mutation bias towards more hydrophobic
amino acids.

Also the selection thresholds on the native energy and the
normalized energy gap influence the hydrophobicity. In
fact, the more hydrophobic a protein is, the more stable it
is against unfolding (it has lower effective energy), and the
less stable it is against misfolding (it has smaller normal-
ized energy gap). Stronger selection for a large normalized
energy gap has thus the effect to reduce the hydrophobic-
ity, and stronger selection for a low energy has the effect
to increase it. The results presented here are obtained var-
ying the mutation bias at constant selection thresholds, so
that the differences between different simulations are due
to mutation alone. We choose the selection thresholds
equal to 98% of the values of the stability parameters in
the PDB sequence. In this way, the PDB sequence is
always selected, and we get stringent stability criteria that
are as uniform as possible between different proteins.

Therefore, mutation and selection parameters modify the
trade-off between the two kinds of stability and influence
the mean and mean square hydrophobicity, <h> and
<h?>. These quantities are used as parameters to calculate
the site-specific distributions in the mean-field model.
Unfortunately, we could not predict them analytically as a
function of the mutation and selection parameters. The
parameters used in the mean-field model were therefore
derived from the sequences generated through SCN simu-
lations. Nevertheless, using parameters <h> and <h?> that
do not depend on the mutation bias in Eq. (5) still pro-
duces a good agreement between the mean-field and sim-
ulation results.

http://www.biomedcentral.com/1471-2148/6/43

The dependence of hydrophobicity on the mutation bias
has a deep influence on protein folding thermodynamics.
For all the proteins that we simulated, the mean square
hydrophobicity <h2> is a decreasing function of the G+C
content (or, equivalently, an increasing function of the
A+T content), causing the normalized energy gap to
increase and the unfolding free energy per residue to
decrease for increasing GC. We observed this effect in our
SCN simulations. The same qualitative influence of the
mutation bias on protein folding thermodynamics was
inferred through a statistical analysis of the properties of
orthologous proteins in different bacterial species evolv-
ing with different mutation biases [39]. Fig. 4 shows the
mean hydrophobicity <h>, the effective energy per residue
-E/N and the normalized energy gap « as a function of the
GC content. Full symbols and lines are derived from sim-
ulations of the SCN model and open symbols are derived
from the computational study of bacterial proteomes
mentioned above [39]. Both sets of points show a similar
trend, but the dispersion of thermodynamic properties is
much larger in the bacterial proteomes than in SCN sim-
ulations.

There is however a qualitative difference between real and
simulated data concerning mean hydrophobicity. In real
sequences there is a negative correlation between the GC
content of the gene and the mean hydrophobicity (r = -
0.57, P < 104), as expected from the fact that T in second
position codes for hydrophobic residues. In simulated
sequences the correlation between GC content and mean
hydrophobicity is negative in the whole GC range, but it
is positive in the range of biologically observed GC values
for two of the proteins simulated, ATPE and myoglobin.
For the other two proteins, lysozyme and Hpr, the corre-
lation is always negative. In contrast, the root mean
square hydrophobicity <h?> is a monotonically decreas-
ing function of the GC for all four proteins (data not
shown). Interestingly, the proteins showing a positive cor-
relation between GC content and mean hydrophobicity
are those for which other eigenvectors besides the PE are
relevant. This suggests that the hydrophobicity has a une-
ven distribution between the different modules that corre-
spond to the relevant eigenvectors, so that, at decreasing
GC mutation pressure, the mean hydrophobicity
increases in one module and decreases in the other one
responding to selection for stability against misfolding.
The net effect is the lowering of the mean hydrophobicity
while increasing its within sequence variation. It is possi-
ble that the resulting positive correlation between GC and
hydrophobicity is an artifact of the SCN model, but it is
also possible that it is a property of modular proteins that
was not detected in the study of bacterial proteomes, since
in that study data from unimodular and from multi-mod-
ular proteins were averaged together. This point deserves
therefore further investigation.
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Figure 4

Full symbols and lines indicate average properties of protein
folding thermodynamics in SCN simulations, open symbols
indicate the same quantities in the proteomes of different
bacterial species [39]. The horizontal axis represents the GC
mutation bias for SCN simulations and the GC content at
third codon position of the bacterial genes, (a) Mean hydro-
phobicity. SCN results are rescaled by a factor 8.6 and corre-
spond to three single-domain proteins, lysozyme (PDB code
31zt, circles), phosphocarrier protein Hpr (PDB code | opd,
diamonds), and myoglobin (PDB code |aég, squares), and for
the small two-domain protein ATP synthase ¢ unit (ATPE,
PDB code lagqt, triangles), (b) Mean unfolding free energy.
SCN results are rescaled by a factor 4.3. Only ATPE is repre-
sented, the other proteins being qualitatively equivalent. (c)
Mean normalized energy gap. SCN results are rescaled by a
factor 1.3. Only ATPE is represented, the other proteins
being qualitatively equivalent.
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It should also be noted that the normalized energy gap o
is much smaller in bacterial proteomes corresponding to
genomes with low GC content than expected from SCN
simulations. As discussed in Ref. [39], these proteomes
with very low GC content belong to obligatory intracellu-
lar bacteria, whose effective population size is severely
reduced by the bottlenecks that they experience in their
intracellular lifestyle. Because of their reduced popula-
tions, natural selection is expected to be less effective in
eliminating deleterious mutations, causing their pheno-
typic properties, such as the folding stability of their pro-
teins, to be less stable than for large free living
populations [55-57].

Fig. 4 also suggests that natural selection acts on different
protein properties for different mutation bias. When the
mutation bias favors GC, the normalized energy gap tend
to be higher than the threshold and the unfolding free
energy tend to be small. In this case, most of the muta-
tions that are selected against are eliminated because they
yield proteins too unstable against unfolding. On the con-
trary, when the mutation pressure favors AT, most of the
mutations that are eliminated yield proteins that are
unstable against misfolding.

Last, we note that, despite simulated and observed prop-
erties have a qualitatively similar response to the muta-
tion bias, from a quantitative point of view simulated
quantities depend much more strongly on the mutation
parameters. In particular, the GC content at first and sec-
ond codon position, which influences the nature of the
coded amino acids, depends on the mutation bias much
more strongly in simulated genes than in real genes (see
the Discussion).

Site-specific amino acid distributions in the PDB
The predicted optimal hydrophobicity vector depends on
the two parameters <h> and <h?>, in particular through

the ratio <h>/ /(h?) , in such a way that the optimal HP is

almost parallel to the PE when <h>/ \/(hz) is almost

equal to /N <c> (see Methods). Before applying our

model to real proteins, we measured these quantities in a
non-redundant subset of the Protein Data Bank (PDB)
[58], containing both single-domain and multi-domain
proteins, filtered to select only globular proteins.

Protein sequences in this set have <h> and <h2> contained
in a narrow range, with standard deviation equal to 1/10
of the average value or smaller. Correspondingly, 7= <h>/

N <h2> lies in a narrow range between 0.4 and 0.65 (mean
value 0.56), and 7/ /N <c> lies in a range between 0.5
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and 1.1 (mean value 0.77). The largest values belong to
multi-domain proteins, whose VN <¢> is much smaller

than for single-domain proteins. The values of 7/ \/w; are

close to one, thus supporting our approximation to
neglect eigenvectors other than the PE in the computation
of the average HP. The distributions are plotted in Fig. 5,

which also shows the distribution of \Jw; = VN <c>.

In the following, we will consider only single-domain
globular proteins (see Methods) and assume that their
optimal HP is well approximated by Eq. (5), with the
same parameters <h> and <h?2> for all proteins. This is jus-
tified by the narrow distribution of these quantities. In
this way, we are able to predict the average hydrophobic-
ity for structurally equivalent positions, having the same
value of ¢;/<c>, in all structures in the PDB, using only two
parameters.

We sampled amino acid distributions at site classes char-
acterized by the same value (within a narrow range) of ¢,/
<c>). These observed site-specific distributions were then
compared with the distributions arising from the mean-
field model with different mutation schemes.

The agreement between predicted and observed distribu-
tions was measured through their mean correlation coef-
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Figure 5

Distributions of hydrophobicity related quantities from a
non-redundant subset of the PDB: Mean hydrophobicity;
Root mean square hydrophobicity; Ratio between mean and
root mean square hydrophobicity, 7, ratio between 7= <h>/

J(h?) and W, = JN <c>. All these quantities are nar-

rowly distributed, with standard deviations of the order of
less than 1/10 of the average value.
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ficient <r>. The parameters of the mutation models were
fitted optimizing this quantity (see Methods). Note that
only the mutation parameters were fitted, whereas the
selection parameters f; were calculated from the mutation
model and the site-specific mean hydrophobicities given
by Eq. (5), which only involves the two parameters A and
B. These were calculated from the mean and the standard
deviation of the hydrophobicity in the whole set of glob-
ular proteins, without any fitting procedure.

We performed the computations described here using sev-
eral hydrophobicity scales, listed in Methods. For all
mutation models considered, the best fit was always
obtained with the IH hydrophobicity scale [48], closely
followed by the CH scale [48] and the buriability scale
[59]. All other scales gave considerably worse results. In
the following we refer to the IH scale when not otherwise
stated.

We considered the following five mutation and selection
schemes:

(1) No selection (f; = 0), nucleotide mutation matrices
satisfying detailed balance with the equilibrium frequen-
cies as free parameters. This scheme is labeled as 'opt. freq.
at = 0'. Because of the normalization condition, there
are only three free parameters. The optimal equilibrium
frequencies are 0.265, 0.327, 0.175, and 0.233 (T, A, C,
and G), and yield <r> = 0.56.

(2) Selection and uniform mutation probabilities at the
amino acid level P() (a, b) = 1 without the genetic code
being taken into account, i.e. wy,(a) = 1. This scheme is
labeled as 'constant'. For this case we obtained <r> = 0.70
without any free parameter. It appears therefore that prop-
erly considering the selection process in the mean-field
model gives better results than taking into account the
genetic code but disregarding the amino acid properties
(hydrophobicity), as in scheme (1).

(3) Independent and identical nucleotide mutation matri-
ces satisfying detailed balance with equal equilibrium fre-
quencies for all nucleotides, with selection from the
mean-field model. This scheme is labeled as '#codons',
since it holds w4, (a) = number of codons. The nucleotide
frequencies are 0.25, 0, 25, 0.25, and 0.25 (T, A, C, and
G). In this case, both the genetic code and the selection
process are considered, and we obtained <r> = 0.80, again
without any free parameter.

(4) Independent and identical nucleotide mutation matri-
ces satisfying detailed balance with equilibrium frequen-
cies as free parameters, and selection taken from the
mean-field model. This scheme is labeled as 'opt. freq.'.
The optimal nucleotide frequencies are 0.243, 0.312,
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0.189, and 0.257 (T, A, C, and G) and yield <r> = 0.86
with three free parameters.

(5) Same scheme as above, with an additional free param-
eter that expresses the enhancement of the mutation rate
at CpG dinucleotides. Notice that this mutation scheme
does not fulfil detailed balance, and mutations at different
sites in the DNA sequences are not anymore independent.
We only considered CpG dinucleotides within the same
codon, otherwise the resulting mean-field model would
not be anymore independent at different positions along
the protein sequence. We label this scheme as 'CpG'. The
optimal nucleotide frequencies are 0.193, 0.316, 0.210,
and 0.281 (T, A, C, and G), and the enhancement of the
mutation rate at CpG is kg = 5.6. These optimal param-
eters yield <r> = 0.90.

Fig. 6 shows one example of observed and predicted site-
specific amino acid distributions. For illustration, we
chose the class of sites with ¢;/<c> € [0.435,0.545]. These
are sites with small PE component, favoring amino acids
with low hydrophobicity. Predictions (empty circles) were
derived from the mean-field model with various mutation
schemes (1, 2, 4 and 5, in the numeration above) and
parameters that optimally fit the observed distributions at
all site classes. Observed distributions sampled from pro-
tein sequences in the PDB are shown as full circles.

In order to make the plot more illustrative, the amino acid
frequencies, both predicted and observed, were divided by
the frequencies expected under mutation alone, wy,(a),
which depend on the mutation model considered. In this
way, for the mean-field models with mutation process sat-
isfying detailed balance (1, 2 and 4), the plot represents in
logarithmic scale the selection factor Z-lexp [-f h(a)] (Z is
a normalization constant). Since the horizontal scale rep-
resents the amino acid hydrophobicity h(a), one can
directly see from the slope of the plot the Boltzmann fac-
tor £ and notice that it indeed depends on the mutation
model considered. The mutation scheme 5 (‘'CpG/, Fig. 6
bottom right) does not obey detailed balance, therefore

the mean-field predictions, log ( nfr/eg) (a)/wss(a)) (open

circles), do not lay on a straight line as a function of h(a).
Nevertheless, Eq. (10), represented as a line in the figure,
is still a good approximation for the mean-field amino
acid distribution.

In Fig. 7 we show the observed frequencies ﬂ:gt/)?C) (a) ver-

sus the probabilities ﬂ:gr/e(‘i) (a) predicted through the

http://www.biomedcentral.com/1471-2148/6/43

mean-field model with optimal mutation parameters. All
amino acid types and all sites are represented and, as in
the previous figure, all frequencies are divided by the
expected frequencies under mutation alone wy,(a). The

four frames refer to mutation schemes 2, 3, 4 and 5. For
model 1, which is not shown, the predicted probabilities

coincide with the mutation factors (i.e., & o) (a) =
1

wau(a)), so their ratio, represented on the horizontal line,

is always one, and all points would lie on a vertical line
and would yield no correlation between observed and
predicted data. The best fit is obtained for models 4 and 5.

Discussion

Approximation used

Our analytic theory is based on a model of protein folding
thermodynamics where the contact energy is approxi-
mated through E(C, A) = - 2; C;h(A))h(4;), and the twenty
parameters h(a) can be associated with an effective hydro-
phobicity. The thermodynamically optimal sequence for
this model, for a fixed structure C of a single-domain glob-
ular protein, is the sequence whose HP h(A;) has correla-
tion coefficient close to one with the PE of the contact
matrix C. This result also holds with very good approxi-
mation for models with contact interactions, where the
contact interaction matrix U(a, b) is well approximated by
its main eigenvector h(a). This is the case of most contact
interaction matrices used in protein folding studies, as for
instance the Miyazawa and Jernigan interaction matrix
[60], and it is well known that the main eigenvector rep-
resents hydrophobicity [40,41]. For the case of the inter-
action matrix used in this study [38], the correlation
between the matrix elements U(a, b) and h(a)h(b) is larger
than 0.80, therefore contributions other than hydropho-
bicity are not completely negligible. However, for single-
domain globular proteins and for mutation models that
are not extremely biased, the average hydrophobicity pro-
file observed in SCN simulations with full contact interac-
tion matrix is practically undistinguishable from the
optimal HP predicted on the basis of the reduced matrix
h(a)h(b), which justifies our theory a posteriori. The
parameters h(a) are obtained from the main eigenvector
of the interaction matrix, therefore they should not be
interpreted as hydrophobicity in a strict biochemical
sense, since they also take into account other kinds of
interactions. For instance, aromatic amino acids have very
large h(a), in part due to the strength of the interactions
between aromatic rings. This is perhaps why the hydro-
phobicity scale that we use performs, for the purpose of
predicting site-specific amino acid distributions, better
than empirical hydrophobicity scales.

There are other kinds of interactions that can not be well
approximated in this simple contact scheme, such as elec-
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Observed and predicted site-specific amino acid distribution 71'61,/<C> (a), divided by the expected frequencies under mutation

alone wy,(a), for (a) the mutation models | (‘opt. freq. at = 0'), (b) mutation model 2 (‘constant’), (c) mutation model 4 (‘opt.

freq."), and (d) mutation model 5 ('CpG"). For the theoretical models where mutation satisfies detailed balance, ”ci/<<> (2)/

waa(a) oc exp [-f h(a)], so that the slope of the plot represents £ at this site class. For illustration, site class with ¢/<c> €

[0.435, 0.545] was selected. Full symbols show the observed distributions obtained from sequences in the PDB, whereas the

open symbols and the lines display the mean-field model.

trostatic interactions or local propensities for secondary
structures, although the latter could be easily incorporated
in the present scheme, and we are working in this direc-
tion. The good agreement between predicted and
observed distributions, however, indicates that the energy
function used captures a major component of the forces
stabilizing protein folding.

Using the approximate free energy function, Eq. (2), and
a continuous approximation for the hydrophobicity val-
ues h(4;), it is possible to determine analytically the
sequence with minimal energy subject to the constraint of
constant normalized energy gap. The HP of this optimally
stable sequence is given by Eq. (17). For single-domain

globular proteins, this optimal HP is almost parallel to the
main eigenvector of the contact matrix (the PE).

It may be useful to recall some properties of the PE, in
order to clarify its interpretation. The PE is the vector ;

which maximizes the quadratic form Q = X;C;cc; for fixed

value of the norm ¥, ¢ . Therefore, it can be interpreted as
an effective connectivity, since positions i with large c; are

in contact with as many as possible positions j with large

¢ Indeed, ¢; correlates with the number of contacts
formed by site i. Nevertheless, ¢; depends not only on the

local contacts, but also on the global structure of the pro-
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Figure 7

Site-specific amino acid frequencies sampled from the PDB, ngt/’z) (a), versus the probabilities nfr/eé (a) predicted through

the mean-field model with optimal mutation parameters. All amino acids and all sites are shown. Observed and predicted fre-
quencies are divided by the frequencies expected under mutation alone wy,(a). The four frames refer to (a) mutation model 2
(‘constant), (b) mutation model 3 (‘#codons'), (c) mutation model 4 (‘opt. freq.’), and (d) mutation model 5 ('CpG'), respec-
tively.
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tein chain, for instance its modularity, and it gives a much
richer information than the simple number of contacts. It
has been shown that a detailed knowledge of the PE is suf-
ficient to reconstruct the full contact matrix [61], whereas
different contact matrices may be associated to the same
contact vector [62], whose components are the number of
contacts at each site.

Influence of mutation on evolutionary and thermodynamic
properties

It was observed several years ago that the nucleotide con-
tent at first and second codon positions, which influences
the coded amino acid and the amino acid usage, is
strongly correlated with the nucleotide content at third
codon position, where transitions (A-G and T-C muta-
tions) in most cases do not modify the coded amino acid
[54,63]. As a consequence, the amino acid usage in pro-
teins of different bacterial species, which may evolve with
different mutation bias, is strongly dependent on the
mean nucleotide content of the genome, which is thought
to reflect essentially the mutation bias. However, this
dependence is not as strong as one would predict from a
model based on mutation alone [64], equivalent to our
model 1 discussed in the Results section. This deviation
from a pure mutation model reflects, at least in part, selec-
tion at the amino acid level.

SCN simulations of globular proteins, and the corre-
sponding mean-field models, which take into account
both mutation and selection, reproduce qualitatively
these results. Our results show that the amino acid com-
position, and the GC content at first and second codon
position, reflecting selection at the amino acid level,
depend on the mutation bias and they are strongly corre-
lated with the GC content at third codon position, but this
correlation is weaker than one would expect under a
mutation model alone.

SCN simulations also reveal the deep influence that the
mutation process exerts on protein evolution. Selection
for the stability of the native state has to fulfil two partially
contrasting requirements: stability against unfolding and
stability against compact misfolded conformations
[39,47]. The mutation bias influences the balance
between these two kinds of stabilities. For fixed selection
parameters, mutation processes favoring GC rich codons
favor protein sequences that are less hydrophobic, and
which are predicted to be more stable against misfolded
states but less stable against unfolding with respect to
mutation processes favoring AT rich codons.

This trend of decreasing unfolding stability and increasing
misfolding stability versus GC content occurs in SCN sim-
ulations for all the proteins that we studied, in agreement

http://www.biomedcentral.com/1471-2148/6/43

with a previous statistical analysis of bacterial proteomes
[39]. However, for two of the proteins that we studied, the
mean hydrophobicity was not a monotonous function of
the GC content.

The mutation bias also influences very strongly the frac-
tion of mutations that are eliminated by purifying selec-
tion. The optimum acceptance rate is observed for a slight
bias towards GC. The nucleotide frequencies that opti-
mize the match between the mean-field model and the
observed distributions yield a nearly optimal acceptance
rate.

However, in the SCN model the dependency between
amino acid usage and mutation bias is significantly
stronger than the one observed in the genes of different
bacterial species coding for globular proteins. In particu-
lar, the GC content at the first and second codon position
depends on the GC content at the third codon position
more strongly in the SCN model than in bacterial genes.
We discuss four possible explanations for this discrep-
ancy, that indicate possible extensions of the model.

First, and most important in our opinion, the selection
criterium used in SCN simulations is based on a contact
free energy function, whose main contribution comes
from the hydrophobicity effect and van der Waals interac-
tions. Selection in protein evolution, on the other hand,
also depends on functional constraints, on other stability
constraints, as for instance secondary structure, and on
constraints arising from protein dynamics. The ability of
the mean-field model to reproduce site-specific amino
acid distributions in the PDB, where these effects are aver-
aged out, suggests that it captures important features of
the selection process, but quite probably other selective
forces are relevant as well.

Second, in the SCN simulations presented here we have
considered mutation probabilities where we enforced the
symmetry between nucleotides related through Watson
and Crick pairing, f(A) = f(T) and f(G) = f{C), called type
2 parity rule [54]. The type 2 parity rule holds globally in
a double-stranded DNA molecule. However, it is well
known that the mutation process in the two DNA strands
is different, leading to asymmetric strand composition
called GC-skew [65]. Therefore, since the distribution of
coding sequences in leading and lagging strands may be
biased [65], there is no strict reason why this symmetry
should hold for protein coding sequences, and in fact we
found that the nucleotide contents under mutation alone
that optimally fit the observed amino acid distributions
do not follow parity rule 2. The results of the SCN model,
such as for instance the C+G content at different codon
positions, depend also on the proportion of C with
respect to G and A with respect to T, and not only on the
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cumulative content of C+G. Therefore the results pre-
sented here, obtained imposing the type 2 parity rule, are
only indicative of a qualitative trend and can not be com-
pared quantitatively with bacterial genes coding for glob-
ular proteins.

As a third possible discrepancy between SCN simulations
and biological data, we have calculated stationary amino
acid distributions when the substituion process has
reached equilibrium. However, in SCN simulations even
for short proteins equilibrium is attained after a very long
transient phase, of the order of 105 substitutions. This
number of substitutions is far larger than the estimated
number of substitutions that took place since the split of
the major domains of life [66]. In a recent study, Jordan et
al. [66] have proposed that the substitution process in
proteins has not yet attained equilibrium, and that one
can still find the fingerprint of ancestral amino acid distri-
butions by looking at the present day evolutionary proc-
ess. Last, we recall that the SCN simulations reported here
have been performed in the rare mutation regime where
the product of population size times mutation rate is My
<<> 1. In this regime, the population is genetically homo-
geneous. If this hypothesis does not hold, one observes a
trend towards increased mutational robustness for
increasing My [33-35]. However, this "selection" for
robustness, without any explicit selective force, is expected
to result in an increased correlation between the HP of
selected sequences and the optimal HP. In fact, it has been
observed by Bornberg-Bauer in simulations of neutral
protein evolution that one can identify a prototype
sequence that is maximally stable both thermodynami-
cally and mutationally [21,22]. In our model, the proto-
type sequence coincides with the sequence with the
optimal HP, which is strongly correlated with the PE.
Consistently, the mutational robustness increases as the
HP of the sequence gets closer to the optimal HP, pre-
dicted through the PE, as we have verified in previous sim-
ulations [67]. Therefore, we do not expect that selection
for mutational robustness modifies qualitatively the
results presented here, as far as equilibrium properties are
concerned.

Amino acid distributions in the PDB

The mean-field model developed in this paper gives a sat-
isfactory fit of the site-specific amino acid distributions
observed in single-domain globular proteins. In applying
the model to a representative subset of the PDB, we
assumed that: (a) Its selection parameters, <h> and <h?>,
are roughly the same for all proteins. This hypothesis is
reasonable, since both quantity are narrowly distributed,
with standard deviations smaller than 1/10 of the average
value. (b) The mutation process is the same for all the
genes from which PDB proteins are derived. This hypo-
thesis is clearly not valid, since mutation patterns depend
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on the organism considered and, within the same organ-
ism, they depend on the DNA strand and on the distance
from the origin of replication in bacterial genomes [65],
and they are thought to vary broadly within the large
eukaryotic genomes.

Nevertheless, the fact that our model fits well the observed
distributions may suggest the existence of a general muta-
tional pattern valid for different organisms. Freeman and
coworkers [68] found a strong correlation between excess
of coding sequences and excess of purine basis (i.e., fre-
quency of G+A) in bacterial and, later, eukaryotic
genomes. This pattern agrees quite well with the frequen-
cies that optimal fit our models to the observed distribu-
tions, which are f(T) = 0.243, f(A) = 0.312, f(C) = 0.189,
f(G) = 0.257 if the nucleotide frequencies are the only free
parameters and detailed balance is assumed, and f(T) =
0.193, f(A) = 0.316, f(C) = 0.210, f(G) = 0.281 if the muta-
tion rate is enhanced at CpG dinucleotides. In both cases,
we find that the frequency of A is larger than that of T and
the frequency of G is larger than that of C, i.e. the fitted
parameters suggest that there is purine excess in protein
coding genes.

However, for some bacterial genomes the coding excess is
better correlated with the excess of G+T (keto excess) than
with the purine excess. This is consistent with the fact that
in bacterial chromosomes there are two types of muta-
tional patterns: (1) Predominance of G over C (positive
GC skew) and of A over T (positive AT skew) in the lead-
ing strand, the opposite in the lagging strand, implying
purine excess in coding sequences that are overrepre-
sented in the leading strand; (2) Predominance of G over
C (positive GC skew) and of T over A (negative AT skew)
in the leading strand, the opposite in the lagging strand,
implying keto excess in coding sequences [69]. In agree-
ment with our SCN simulations, these mutational bias
strongly influence the amino acid frequencies for proteins
coded in the two strands [70]. The protein sequences that
we studied in this work were derived from the PDB, where
nucleotide sequences are not stored. We did not find any
study of nucleotide frequencies in genes coding for pro-
teins in the PDB. Therefore, we could not compare our fit-
ted parameters to nucleotide frequencies in the genes
coding for the proteins in the PDB. It would be interesting
to know whether the purine excess that our study suggests
is observed in these genes.

Conclusion

We have shown that an evolutionary model with inde-
pendently evolving sites is able to reproduce in a quanti-
tative way the results of simulations where conservation
of the thermodynamic stability of a protein native state is
explicitly enforced, and therefore sites evolve in a corre-
lated way. This mean-field model with independent sites
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is also able to reproduce site-specific amino acid distribu-
tions at sites with specific values of the principal eigenvec-
tor of the contact matrix, in good agreement with the
distributions observed in the whole PDB. As site-inde-
pendent evolutionary models are readily amenable to
computation, we expect these results to be widely applica-
ble in the context of the reconstruction of evolutionary
histories. Our results also demonstrate that the mutation
process has a deep influence on protein evolution. It mod-
ifies the balance between stability against the unfolded
state and stability against misfolded compact conforma-
tions, and it modifies the fraction of mutations which are
eliminated by purifying selection. In our mean-field
model, mutations and selection are strictly interrelated, as
the effective selection probabilities depend on the muta-
tion process.

Methods

SCN model of neutral evolution

In the Structurally Constrained Neutral (SCN) model of
protein evolution [29-32] amino acid mutations are pro-
posed randomly, and accepted according to a stability cri-
terion. The stability of the folded protein, is defined by an
effective free energy function, E(A, C), based on contact
interactions,

E(A,C) = Y C;U(A;, Aj), (13)

i<j

where A represents the protein sequence, C is the contact
map of the native structure, and U is a 20 x 20 symmetric
matrix whose element U(a, b) represents the effective
interaction, in units of k;T, of amino acids of types a and
b; we use the interaction matrix derived by Bastolla et al.
[38]. For most protein chains in the PDB this interaction
matrix assigns lower effective free energy, Eq. (13), to the
native structure than to decoys generated by threading,
and it produces a well correlated free energy landscape.
We then estimate two parameters: (i) The effective energy
per residue, E(A, C)/N, Eq. (13), where N is the protein
length. This quantity correlates with the folding free
energy per residue for a set of 18 small proteins that are
folding with two-states thermodynamics (correlation
coefficient r = 0.91; UB, unpublished result); (ii) The nor-
malized energy gap «, which characterizes fast folding
sequences [71] with well correlated energy landscapes
[17,72-75]. In the SCN model, mutated sequences are
considered thermodynamically stable if both stability
parameters are above predetermined thresholds. Synony-
mous mutations are always accepted, whereas mutations
to stop codons are always rejected.

The normalized energy gap «(A), estimating misfolding
stability, is defined as the minimal value of the difference
between the energy of the native configuration, C*, and
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the energy of any compact configuration C satisfying the
constraints of chain connectivity, excluded volume and
hydrogen bonding, normalized times the absolute native
energy and divided by the structural dissimilarity between
the structures C* and C, 1 - g(C*,C), where ¢ represents
the contact overlap,

o(A) = min E(A,C)-E(A,C¥)
¢ |E(ACY)|[1-g(C,CY)]

(14)

The normalized energy gap is estimated in our simula-
tions from a set of alternative configurations. It depends
strongly on the size of this set: We typically use hundreds
of thousands of structures that can be generated by thread-
ing the protein sequence on all non-redundant structures
in the PDB.

For the analytic calculation reported below, but not for
the simulations, we use an estimate of the normalized
energy gap [47] based on the Random Energy Model
[76,77]

_ (W~ /2108(m )N, -~ E(A,C)/ N,

o) [ E(A,C)/N, | (1—d0)

(15)

Here, N_is the number of contacts in the native structure,
<U>, and oy; 5 are the mean and standard deviation of all
possible contact interactions in the protein sequence A,
both native and non-native, g, = 0.1 is a parameter repre-
senting the typical overlap of unrelated structures, N is
chain length, my is the number of alternative structures
compatible with the above constraints, estimated through
the empirical formula log(my) = 0.1 x N + 4.

The above estimate may be improved considering that the
probability of contact formation decreases with sequence
distance [78]. However, this correction is small [47], and
it will not be considered here because it would not allow
us to get the analytic expression derived in the following
section.

Optimal hydrophobicity profile and the principal
eigenvector of the contact matrix

We report here for completeness the calculation originally
developed in [48] on the relationship between sequence
and structural profiles induced by stability conditions.

The contact interaction matrix can be approximated
through the main component of its spectral decomposi-
tion, U(a, b) = - h(a)h(b). Here h(a) is the eigenvector of
the matrix U(a, b) corresponding to the eigenvalue with
the largest absolute value, which is negative. This eigen-
vector is very strongly correlated with the hydrophobicity
of amino acid 4, as for typical amino acid interaction
matrices based on contacts [40,41]. We call the 20 param-
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eters h(a) obtained from the principal eigenvector of the
interaction matrix the interactivity hydrophobicity scale
(IH), and we call the N-dimensional vector h(4;) the
Hydrophobicity Profile (HP) of sequence A [48].

We use in the simulations the complete free energy func-
tion, Eq. (13), but in the analytic calculations we approx-
imate it with the hydrophobic component,

H(A,C)=-Y C;h(A)h(A;),

i<j

(16)

Using this approximation of the free energy, it is possible
to derive an analytic relationship between the protein
sequence and the protein structure. To this end, we calcu-
late the optimally stable hydrophobicity profile, that min-
imizes the approximate effective free energy Eq. (16), for
a given contact matrix, with a large normalized energy

gap.

Using the REM estimate for the normalized energy gap,
Eq. (15), we see that it depends on the protein sequence
only through three parameters: the native energy and the
mean and the standard deviation of the non-native con-
tact interactions. Therefore, in order to minimize the
native energy with a large normalized energy gap, we have
to maintain fixed <U>, and oy; ,. Within the hydrophobic
approximation of the contact interaction energy, it holds
<U> = <h?> and <U?>, = <h?>2,

In conclusion, we look for the hydrophobicity profile h;
that minimizes the effective hydrophobic energy, Eq.
(16), for a given contact matrix, and for given first and sec-
ond moment of the hydrophobicity vector, <h> = N-1
2.h(4;) and <h?> = N13h(A;)2 In the calculation, we
neglect the discretization in twenty values corresponding
to natural amino acids.

The PE vl(l) is the solution of the related minization prob-
lem in which no condition on <h> is imposed. We denote
the eigenvalues of the contact matrix C;;by 4,and the cor-
responding eigenvectors by vl(a) . These eigenvectors con-

stitute an orthonormal basis. Expressing the constraints
on <h> and <h?> through Lagrange multipliers, one finds
that the optimal HP is given by the following implicit
expression,

V¥ (o)

Pt =\/N<h2)—aA_)‘“ : (17)
w(x
2‘J‘(A—W
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where the multiplier A is obtained through the constraint

We
o Zea-g, s
a0 (19)
Jin2) y e
a(A_/l(x)z

N represents the number of residues in the protein and w,
= N<v(@)>2= <p(@)>2/<(v(®))2>, is the ratio between squared
mean and mean square of the components of eigenvector

a. Since the vl(a) constitute an orthonormal basis, it holds

2 ,w,= 1. The weight w, of the principal eigenvector is the
largest of the w,,. The projection of the optimal HP along
the direction of the PE is thus given by
1 -1/2
D S OO N R

JNG?) W g (A=A )?

For A = 4,, the optimal HP is parallel to the PE, i.e. the

(19)

coefficients of vl(a) vanish for & > 1, as for the optimiza-

tion without any constraint on <h>. In this case, 7= Jw; ,

ie. <h> = <> \l(hz)/((v(l))z) , which means that the

ratio between squared mean and mean square is the same
for the HP and for the PE, and the energy is the same as in
the absence of constraints on <h>, which is the lowest
energy for all possible values of the constraint <h>.

A structure-derived quantity that estimates the importance
of the minor eigenvectors with @ > 1 in determining the
optimal hydrophobicity profile is

n = L 2 e 7

wy a>1(2,1 _)’OC )
In the SCN model, the values of <h> and <h?>, and there-
fore of 7and A, are not fixed by stability requirements but
vary in a broad range depending on the mutation process
and on the selection parameters. Numerical results show
that, when 7, is small (smaller than, say, 0.1), the contri-
bution of minor eigenvectors can be neglected in all the
(quite broad) simulated range of parameters <h> and
<h2>. This is the case of many single-domain proteins,
since the w, corresponding to minor eigenvectors tend to
be small in these cases. On the other hand, for modular
(for instance multi-domains) structures, the w, of the
eigenvectors that correspond to the minor domains are
large, and these eigenvectors give a non-negligible contri-
bution to the optimal HP.

(20)
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For A~ 4,and 7~ Jw; , it can be easily seen that the cor-

relation coefficient between the optimal HP and the PE
deviates from unity by a term of second order in

1-r(h%P, vy = (/ Jw; —1)2.

Even for extreme mutation bias, our simulation results
yield 7 \Jw; €[0.73,0.97], which is close to one. Consist-

ently, the constribution to minor eigenvectors is small in
most of the range of parameters even for proteins for
which 7, is large.

Therefore, we consider in this work the approximation
that the correlation coefficient between the optimal HP
and the PE is one, corresponding to the zeroth order in the

7- \Jw; expansion or to a situation where 7, is very small.

For simplicity of notation, the PE will be denoted in the

following as ¢;= ul(l) . As a result, we get

()~
(=)

Mutation process

The SCN model was originally defined at the protein
sequence level, with equally probable mutations from one
amino acid to any other one [30-32]. We have modified
the mutation process in order to take into account the
genetic code and the mutation bias at the DNA level (see
also Ref. [53]). We represent each amino acid site by 3
nucleotides, and consider two mutation schemes: (1)
Independent and identical mutation processes at each
nucleotide site, each one satisfying detailed balance. (2)
Same process as in (1), but with an enhanced mutation
rate at CpG dinucleotides contained within a codon.

opt _
hi*" =

(ci =)+ ().

The mutation process (1) consists of the HKY mutation

matrix [79,80] with rates P, (n, n') = uf(n") if the muta-

tion from n to n' is a transversion and P, (n, n') =

ukf(n') if it is a transition. Transitions are changes between
the two purines A and G, or between the two pyrimidines
C and T. Transversions are changes between a purine and
a pyrimidine. Since they change less the chemical nature
of the DNA basis, transitions are far more frequent than
transversions. For convenience of notation, we define t(n)
as the nucleotide obtained from n through a transition
(t(A) = G, t(T) = C, t(t(n)) = n). The diagonal elements of
the mutation matrix are defined through the normaliza-
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tion condition PE“C (nn)=1-2,., Pﬁuc (n, n"). This

mutation process satisfies detailed balance, with station-
ary distribution given by the frequencies f(n) independ-
ently of the transition-tranversion ratio k that, therefore, is
expected to have no influence on the stationary amino
acid distribution as well.

In SCN simulations, in order to reduce the number of
parameters, we further imposed the condition that the
mutation process is the same on the two DNA strands, so
that f(G) = f(C) and f(A) = f(T). Therefore, the stationary
distributions only depend on the GC bias f{G)/f(A).

The mutation process (2) starts from the same model as in
(1), but every time a codon contains a CpG dinucleotide
the rate of the mutations from C to T and from G to A are
enhanced by a factor k¢, > 1. This model was considered

with a transition-transversion ratio k = 1, and it was only
used in calculations with the mean-field model, and not
in SCN simulations. For simplicity, only CpG dinucle-
otides within a codon were considered, so that we
obtained an independent mutation process for each
codon. From the above definition, we computed the
mutation matrix at the codon level to be used in the mas-

ter equation (8), PEOD (nynyn,, njnyns ). The matrix ele-
ment is set to zero if the two codons differ at more that
one position and to Pﬁuc (n, n') if the two codons differ at

one position where they contain respectively nucleotides
n and n'. If the mutated nucleotide is either the C or the G
of a CpG dinucleotide contained into codon n,n,n; and

the mutation is a transition (C to T or G to A), then the
matrix element is increased by a factor kg,

In the SCN model, the mutation process is simulated
extracting at random at each time step the site where a
mutation takes place. The probability that a site is
extracted depends on the nucleotide occupying it, and it is

p(n) = Ly . f(n) = (k- Df(t(n)).

Calculation of the mean-field distributions

The mean-field amino acid distributions were computed
in two steps. In a first step, we computed the site-specific
mean hydrophobicities [h;] using Eq. (5), which needs as
input the distribution of PE values, i.e. the fraction of sites
with ¢;/<c> in a given range, and the mean and standard
deviation of the hydrophobicity, which were obtained
from the protein sequences. In a second step, and for a
given mutation model, the site-specific mean-field distri-
butions were calculated as a function of £ and a value g,
was associated to each site in such a way that the mean
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hydrophobicity at the site coincides with the predicted
one (numerically, the predicted value of [h;] was bounded
between an upper and a lower bound corresponding to
two Svalues, and g, was found by interpolation).

The mean hydrophobicity was calculated as [h]f =
>h(a) 7( B, a). For mutation models fulfilling detailed bal-
ance, we used Eq. (10), (g, a) o« wy, exp [-(8 h(a)], with
weights w,,(a) obtained from the mutation model. For
mutation models not obeying detailed balance, 7(f, a)
was numerically computed as the stationary distribution
of the Markov process, Eq. (8).

Computation of the acceptance rate
The rate of acceptance of a mutation at position i in the
stationary state was calculated as

> o PP (0)POP (n, 0" min(1, exp|- B [1(A[n']) - h(A[n])]])

znn' PiCOD(n)PfOD(n, )

(22)

Pa(c,i

where we use the notation introduced previously, PiCOD

(n) is the stationary frequency of codon n in the mean-
field model, and the summations exclude stop codons.

Observed amino acid distributions

We compared our predictions to site-specific distributions
sampled from a representative subset of the Protein Data
Bank (PDB). We considered a non-redundant subset of
single-domain globular proteins in the PDB, with a
sequence identity below 25% [58]. Globularity was veri-
fied by imposing that the fraction of contacts per residue
was larger than a length dependent threshold, N/N > 3.5
+ 7.8N"1/3. This functional form represents the scaling of
the number of contacts in globular proteins as a function
of chain length (the factor N-1/3 comes from the surface to
volume ratio), and the two parameters were chosen so as
to eliminate outliers with respect to the general trend,
which are mainly non-globular structures. The condition
of being single-domain was verified by imposing that the
normalized variance of the PE components was smaller
than a threshold, (1 - N<c>2)/(N<c>2) < 1.5. Multi-
domain proteins have PE components which are large
inside the main domain and small outside it. The PE com-
ponents would be exactly zero outside the main domain
if the domains do not share contacts (see for instance Ref.
[61]). Therefore, multi-domain proteins are characterized
by a larger normalized variance of PE components with
respect to single-domain ones. We have verified that the
threshold of 1.5 is able to eliminate most of the known
multi-domain proteins and very few of the known single-
domain proteins (data not shown). We selected 404 such
structures with 200 or less amino acids. We counted the
number of each of the 20 amino acids as a function of ¢;/
<c>, where <c> denotes the average over a single structure.
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We used a bin-size of 0.05 for ¢;/<c> < 2.5 and a bin-size
of 0.1 for ¢;/<c> > 2.5.

Similarity score between observed and predicted amino
acid distributions

The accuracy of the predicted amino acid distributions
was assessed by calculating the mean correlation coeffi-
cient between observed and predicted amino acid distri-
butions for M structures, given by

I M b d
(=M Zi=1r(”2 10 e )

Optimization of the mutation parameters

The optimal values for the parameters of the different
mutation models were found by maximizing the mean
correlation coefficient <r> between observed and pre-
dicted amino acid distributions as defined in the previous
subsection. First, we discretized the possible values of the
free parameters within a reasonable range, using a step
size of 0.001, and we numerically assessed all possible
combinations. We then performed a (much faster) opti-
mization by gradient descent, finding the same results up
to relative precision of 10-3.

Hydropathy scales

In this work, mean-field distributions were obtained
using interactivity (IH, see below) as hydrophobicity scale
h(a), both for comparison with SCN simulations and with
amino acid distributions sampled from the PDB. How-
ever, for the latter case we tested eleven hydropathy scales,
finding that all other scales provide worse results. They
are: (1) The KD82 hydropathy scale, derived to identify
trans-membrane helices using diverse experimental data
[81]; (2) The L76 hydropathy scale, which was derived by
using experimental data and theoretical calculations [82];
(3) The R88 hydropathy scale, which is based on the
transfer of solutes from water to alkane solvents [83]; (4)
The augmented Whilmey-White (WWO01) hydropathy
scale, derived to improve recognition of trans-membrane
helices [84]; (5) The G98 classification of amino acids
into polar, hydrophobic, and amphiphylic classes,
adopted by Gu et al. [85] to investigate the relationship
between the hydrophobicity of a protein and the nucleo-
tide composition of the corresponding gene; (6) The
MP78 hydropathy scale, derived from statistical proper-
ties of globular proteins [86]; (7) The AV hydropathy
scale, derived by averaging 127 normalized hydropathy
scales published in the literature [87]; (8) The FP83
hydropathy scale, derived from the experimental meas-
urement of octanol/water partition coefficients [42]; (9)
The ZZ04 scale, also called buriability, proposed by Zhou
and Zhou [59]; (10) The interaction scale IH, obtained
from the main eigenvector of the interaction matrix U(a,
b) used in this work [48]; (11) The optimized interactivity
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scale, or connectivity scale CH, which maximizes the cor-
relation with the principal eigenvector of protein contact
matrices for a non-redundant set of Protein Data Bank
(PDB) structures [438].
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Note
1 Here and in the following, the angular brackets ()
denote the average over all sites in the protein.

2We also verified that, in agreement with Eq. (17), when
other eigenvectors are relevant their scalar product with
the average HP is correlated with the factor w,/(4, - 4,).
For myoglobin the correlation coefficients, for the 15
most relevant eigenvectors excluding the PE, are in the
range between 0.73 and 0.93, except for the extreme
mutation bias, for ATPE they are always larger than 0.81.
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