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Abstract: Recently, we have shown that the residue folding degree, a network-based measure of
folded content in proteins, is able to capture backbone conformational transitions related to the
formation of secondary structures in molecular dynamics (MD) simulations. In this work, we focus
primarily on developing a collective variable (CV) for MD based on this residue-bound parameter to
be able to trace the evolution of secondary structure in segments of the protein. We show that this CV
can do just that and that the related energy profiles (potentials of mean force, PMF) and transition
barriers are comparable to those found by others for particular events in the folding process of the
model mini protein Trp-cage. Hence, we conclude that the relative segment folding degree (the newly
proposed CV) is a computationally viable option to gain insight into the formation of secondary
structures in protein dynamics. We also show that this CV can be directly used as a measure of the
amount of α-helical content in a selected segment.

Keywords: protein folding; secondary structure; networks; collective variables; molecular dynamics

1. Introduction

The prediction and analysis of folding pathways of proteins with atomistic models and
molecular dynamics (MD) is presently, despite recent progress in AI aided predictions [1],
perhaps still the best approach to the folding problem [2–4]; in particular, the identification
of the folding pathway and local minima corresponding to partially folded (transition)
states. Since the conformational space accessed during the MD simulations is typically
multidimensional, the use of specialised coordinates—collective variables (CV)—is indis-
pensable to make the analysis more tractable to humans. CVs are often used in various MD
protocols to either extend the sampled part of the conformational space [5] and/or to select
rare events and use these to speed up the simulation [6]. Traditionally, root-mean-square
displacement (RMSD), the radius of gyration, and/or some eigenvectors from principal
component analysis (PCA) are often used to capture the complex conformational changes
and reduce them to a one or few parameter CVs. These, however, are incapable of pro-
viding qualitative and, in particular, quantitative insight into the formation of secondary
structure (SS). Some CVs are designed to detect and quantify the amount of specific SS, for
example, the (alpha) helical content CV as defined in NAMD [7] and beta strand content [8].

Recently, we have presented some findings about the relationship of the (residue)
folding degree and protein dynamics [9]. In particular, we focused on the perspectives of
the use of the folding degree to qualitatively and quantitatively measure the amount of
folded content in proteins in molecular dynamics (MD) simulations of protein folding.

First, let us recall the origins of the folding degree. Introduced by Estrada [10,11],
the folding degree was conceptualised as a one-parameter descriptor characterizing the
compactness of a molecular structure. It was later re-defined as a metric relatable to the
amount of folded structure in proteins [12,13]. The idea is quite elegant and relies on the
fact that the backbone dihedral angles ψ, ω and ϕ, are confined to certain intervals in folded
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native structures. For rigorous definition, see the original works [10–13] or our paper [9].
For the sake of brevity we reproduce only the basic facts and definitions; however, a very
recent review paper by Estrada uncovers the many facets of the use of this, and related,
metrics [14].

The (global/average) folding degree is a parameter characterising the whole protein.
It is defined via the spectrum of the adjacency matrix A, representing the third line graph
of the (path) graph in which nodes correspond to the sequence of backbone atoms N,
Cα, and C. The diagonal elements of the adjacency matrix, which are normally zeros, are
replaced by the cosine of the respective dihedral angle ψ, ω or ϕ. This is because the
vertices in this third line graph correspond to these dihedral angles. The adjacency matrix
is a square matrix of size 3(N − 1) for a N residue protein. The average folding degree
〈CS〉 is calculated like the subgraph centrality [15], albeit for the weighting of A.

〈CS〉 =
1

3(N − 1)

3(N−1)

∑
i=1

Ci
S , where Ci

S =
3(N−1)

∑
j=1

(
vi

j

)2
eλj . (1)

The quantities Ci
S are contributions of the ith vertex defined via the ith component of

the 3(N− 1) eigenvalues and eigenvectors of A; λj and vj, respectively. Since typically both
ψ and ϕ can be defined for non-terminal amino acids, the residue folding degree [13] RCS of
these amino acids can be defined as the sum of the corresponding Ci

S values. If k = 1, . . . , N
is labelling the residues, and i = 1, ..., 3(N− 1) is labelling the vertices (backbone dihedrals),
as in Equation (1), then RCk

S = C3(k−1)
S + C3(k−1)+1

S , see also Figure S1 in the supporting
information.

This work can be considered a follow up on our first paper concerned with this
topic [9]. In particular, we shall briefly revisit the scaling issue of calculating the residue
folding degree from the whole matrix A or its sub blocks. Next, we try to establish a
connection between RCk

S values and categories of protein secondary structure such as
defined by the DSSP and STRIDE algorithms. Finally, we define the segment folding degree
RCκ

S values for protein segments κ (parts of the sequence) and explore its use as collective
variables to study potential energy surfaces from molecular dynamics simulations.

2. Results and Discussions
2.1. Calculation of the Residue Folding Degree

We have shown in our previous paper on this topic [9] that the residue folding degree
RCk

S is well defined by the backbone dihedral angles ϕ and ψ at residue k. Hence, we
have shown that it is not necessary to calculate the eigenvalues and eigenvectors of the
full adjacency matrix A, rather the calculation from its 4× 4 sub blocks is sufficient and
introduces an error <1% compared to the calculation from the large matrix A. Equation (2)
demonstrates this idea. The 4× 4 sub blocks are in the larger blue rectangles and the
corresponding ϕ, ψ angles in the smaller red ones.

cos ψ1 1 0 0 0 0 0 0

1 cos ω1 1 0 0 0 0 0

0 1 cos ϕ1 1 0 0 0 0

0 0 1 cos ψ2 1 0 0 0 . . .

0 0 0 1 cos ω2 1 0 0

0 0 0 0 1 cos ϕ2 1 0

0 0 0 0 0 1 cos ψ3 1

0 0 0 0 0 0 1 cos ω3

...
. . .





A =

(2)
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What we did not discuss in our previous paper is the computational time savings
related to this block-wise calculation of the residue folding degree. To do so, we performed
a series of calculations with varying size n of a fictional protein with up to 104 residues;
(3(n− 1) is the size of the square matrix A). The results are displayed in Figure 1.

Figure 1. Time scaling for the calculation of RCk=1...n
S values either from the 3(n − 1) × 3(n − 1)

matrix A (blue dots) or from its’ 4× 4 sub blocks (red squares). Notice that the plotted time for the
former is divided by 1000 to fit the figure nicely.

Evidently, the block-wise calculation is significantly more time saving. The absolutely
dominant factor in this calculation is the evaluation of the spectrum of the adjacency matrix.
We used the implementation of the python/numpy function like this: e_vals, e_vecs =
np.linalg.eigh(A). As expected, the time costs rise linearly for the block-wise calculation,
as it is essentially repeating n times the calculation of the spectrum of a 4× 4 matrix. On
the other hand, the calculation on the large matrix scales much faster than linearly. Some
power law scaling can be anticipated based on the figure. Therefore, we recommend the
calculation via the sub block method and do so for the remainder of this work.

Since the RCk
S value for the kth residue is so well defined by the ϕ, ψ at this residue, it

makes sense to draw a Ramachandran-like plot of the residue folding degree, see Figure 2.

Figure 2. Theoretical RCS values as a function of ϕ, ψ calculated at a grid with step size of 0.75°. The
contours show the numerical value.
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2.2. RCS and SS Categories

As we could see in Figure 2, the RCS values form characteristic patterns in a
Ramachandran-like plot. It is well known that different SS categories also tend to have
characteristic ϕ, ψ distributions in such plots. We have previously shown that, for these
reasons, RCS can be used to differentiate between some of the SS categories; we used it to
distinguish helical and β sheet/loop [9]. We did not however consider all the different SS
categories and we did not use statistically significant samples to verify this. We attempt to
do so now.

As mentioned in the Methods section, we used the database PolyprOnline with some
>24,000 entries. We used the Bio.PDB [16] package to download and read them into
our code. After each structure was successfully read we employed the DSSP, DSSP 4
and STRIDE algorithms to obtain the SS for residues in the structure. Additionally, we
calculated the RCk

S values for the residues. The statistics of RCk
S corresponding to the

SS categories were subsequently performed only if all the calculations finished without
errors. The total number of such calculations/structures was 5392 with a total number of
1,299,653 residues of which 1,287,287 were standard, non-terminal amino acid residues. We
considered this sample size sufficient for our purposes. A list of the PDB ID’s used in our
analysis can be found at the end of the supporting information file.

First, as a side note, we consider the agreement of the SS categorisation between the
three methods of choice. One can notice that the agreement between the “newer” DSSP 4
and the original DSSP is exceptionally high—besides the difference in the P category that
is not defined in DSSP, only three of the remaining residues are classified differently. The
agreement to STRIDE is also good, although there is a difference of some 4.3% in H, 4.6%
in G, 96% in I, 2.8% in E, 0.6% in B, 79% in T, and 1.1% in the C category, when DSSP 4
is considered the reference. These findings, based on the last column in Tables 1 and S1,
seem to be in agreement with other published results [17–19]. Apparently, STRIDE severely
underestimates the π-helix conformation (I) compared to DSSP/DSSP 4 (visible also in
Figures S7–S9). In addition, the category T in STRIDE seems to comprise the T, S, C, and P
categories of DSSP 4. A more detailed breakdown can be found in Equations (1) and (2) in
the SI file. Therein, one can see which SS categories of DSSP and STRIDE correspond to
DSSP 4 categories and vice versa. Finally, we show the statistics of amino acid distribution
for each SS category. As expected, the category P, as defined by DSSP 4, is clearly dominated
by proline, which can be viewed as both a test of the algorithms and our code correctness,
see Figures S3–S5.

The concluding message of this short analysis is that we (should) try to find character-
istic RCS for both DSSP 4 and STRIDE categories, as they differ form each other.

Table 1. Typical RCS values for SS categories as defined by the DSSP 4 algorithm (i.e., incl. category
P). The mean values with (sample) standard deviations in parentheses are given for RCS and the ϕ, ψ

values. Count indicates how many residues these numbers were based on.

SS Cat. ϕ ψ RCS Count

H −64.70 (11.84) −39.56 (11.39) 7.273 (0.421) 412,071
G −66.05 (34.16) −15.55 (29.33) 7.523 (0.840) 51,822
I −79.15 (25.74) −41.63 (20.41) 6.516 (0.999) 7086
E −110.89 (42.62) 122.38 (58.10) 2.730 (0.966) 282,196
B −96.98 (49.29) 122.90 (67.45) 2.976 (0.898) 15,416
T −39.33 (70.25) 6.23 (51.49) 6.923 (1.223) 151,631
S −69.26 (73.32) 44.16 (97.63) 4.850 (2.166) 113,536
P −72.33 (13.05) 144.79 (13.85) 3.660 (0.498) 24,764
C −82.97 (55.81) 97.00 (83.52) 3.835 (1.574) 218,948

Next, let us take a look at some typical RCS and ϕ, ψ values corresponding to the
DSSP 4 categories compiled in Table 1. Similar data for all three algorithms are in Table S1
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of the supplementary information (SI) file. Figures 3 and S2 show us that defining the
secondary structure solely by RCS is rather impossible (at least to the categories commonly
used by DSSP and/or STRIDE) . We could relatively easily distinguish between helical
structure (H, G, I) and beta structure (B, E for bridge and extended parts), as we did
previously [9]. The hydrogen bonded turn (T) attains similar RCS values to the values
for helical structures. This is however less clear/evident for the STRIDE category T, as it
probably also contains part of the structures classified as S by DSSP. This can be seen from
Figures 3 and S2, where the distribution probability is (almost) unimodal for T defined
by DSSP/DSSP 4, but is bimodal for STRIDE. For DSSP/DSSP 4, a part of the S (bend)
structures attains RCS values very similar to the helical ones and T. Interestingly, the
probability distributions (see violin plots) are close to centre-unimodal for H, G, I (and P).
The probability distribution is not unimodal for the I category in STRIDE. Bear in mind
that this category is the least populous of all. The probability kernel for E is also unimodal,
but with the mode shifted to one side. The remaining ones, B, S, and C are multimodal.
Neglecting the C category on the basis of not being a real category, rather a grouping of
all those structures not fitting in the other categories, we can say that only the S category
has three separate modes. Based on this, we can say that, if desired, the RCS could be
used as an additional parameter to introduce a finer subdivision to the S category. One
discriminating value for the residue folding degree could be close to the median value if
two subcategories to S would be defined. More accurately, it should be at RCS = 5 if we
look at the histogram in Figure S6 in the SI file. The values below the median can be further
divided roughly at Q1, or around RCS = 2.6. However, this second subdivision is less clear
than the first one.

Figure 3. Typical residue folding degree values for SS categories from DSSP 4. The mean value and
the standard deviations are shown in (a) and the densities and box plots in (b). The box plot also
indicates the mean (orange line), the lower and upper quartiles Q1, Q3 and the whisker ends indicate
statistical outliers at Q1 − 1.5(Q3 −Q1) and Q3 + 1.5(Q3 −Q1).

In conclusion, residue folding degree by itself is not suited to identifying classical
SS categories. It can, however, be useful for discriminating between roughly what we
could call bend and straight conformations. Into the bend we can more or less assign the
categories H, G, I (helices), T (turns) and part of S (bend). The straight conformation would
comprise E, B (β-sheet), P (PPII helix) and part of S. The majority of C would also fall
here but, as mentioned, it is not a well defined category. The reason for only this rough
classification of conformation via RCS is the same reason algorithms, such as DSSP and
STRIDE, do not rely solely on the ϕ, ψ values in defining their respective categories. Several
of the various SS categories share the ϕ, ψ space they occupy and therefore additional
criteria had to be considered. To emphasize this point, we have drawn Ramachandran-like
probability density histograms for each of the SS categories and relate them to typical
RCS values, Figures S10–12. These demonstrate quite clearly that H, G, I, T and part of S
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conformations occupy the same or a very similar subspace to that of ϕ, ψ values. It also
explains the bimodal nature of the distribution of RCS for the S category. Additionally, it
visually supports the fact that category H has the narrowest RCS distribution of all the
SS categories as it apparently occupies the narrowest interval of ϕ, ψ. Similarly, the P
category has a narrow distribution of RCS as it occupies the most confined ϕ, ψ subspace
per definition [20].

2.3. RCS and Helical Content

It is well known that protein structure has several levels, most notably the primary,
secondary, tertiary and quaternary. The formation of all of these can be observed via
molecular dynamics. One can use specialised collective variables such as the (alpha) helical
content as defined in NAMD [7] and/or beta strand content [8] to measure the progress of
secondary structure formation.

We used the α-helical content in the past [9] to characterise the folding process of
deca-alanine (Ala10). Typically, these CVs can be applied to a smaller part/segment of the
protein. Let us define the segment κ as a consecutive series of amino acids in the protein
sequence. A motif shall be a segment with uniform SS category, that is, all residues in
a motif fall under one SS category, but in a segment not necessarily. Motivated by the
narrow distribution of RCS values associated with the H category, we attempt to define the
relative (alpha) helical content of a protein segment by this quantity. Inspired by the NAMD
formula we calculate the relative value for each residue k ∈ κ within the segment as:

RCk,rel
S =

1−
[(

RCk
S − RCre f

S

)
/RCtol

S

]m

1−
[(

RCk
S − RCre f

S

)
/RCtol

S

]n , SCκ,rel
S =

1
|κ| ∑

k∈κ

RCk,rel
S . (3)

We use the exponents m = 2, n = 4, as these are also default in the NAMD equation
to calculate alpha helical content, although one can use other values as well. The reference
value is RCre f

S = 7.273 and the tolerance is RCtol
S = 0.421, which is the average residue

folding degree value and its’ standard deviation for the H category as per the DSSP 4 rules,
see also Table 1. The relative helical content in the segment κ is then calculated as the mean
of the relative residue folding degree valuesRCk,rel

S . We can denote this quantity as SCκ,rel
S .

To test our proposed measure of (alpha) helical content, we calculate these quantities
for the trajectory of our MD simulation of folding for Ala10 published in [9]. Figure 4
depicts the comparison of the helical content calculated via Equation (3) and the NAMD
equations. We can see that the general agreement is quite good for the snapshots and both
values follow the same/a very similar pattern. The helicality content based on the RCκ,rel

S
seems to (almost systematically) attain somewhat lower values compared to the ones based
on the NAMD formula. To confirm this we present the correlation of the two values in
Figure 4b. Clearly, the correlation is satisfactory (R > 0.9) and the systematic shift seems to
be just under 0.1 (a = −0.0958).

Hence, we can conclude that the helical content calculated via Equation (3) can be
used as a substitute for the NAMD collective variable.

One possible critique of this approach could be the fact that the residue folding degree
interval, see Figure 3a, for α-helix (H) overlaps with those for 3–10 helix (G), partially π-
helix (I), turn (T) and a part of bend (S). Hence, it can be argued that the identification of the
H category may not be reliable/exclusive enough as it may include any of the mentioned SS
categories. While strictly speaking, this argument is valid, it is not unique to the helicality
CV based on the residue folding degree. The NAMD CV is defined by the angle of three
consecutive Cα atoms (Ck

α, Ck+1
α , Ck+2

α ) and the distance between Ok, Nk+4. One possible
counterargument may be that sensible selection of the segments may avoid such a problem.
Firstly, the selected segment should probably not be too short, as it is known that α-helix is
characterised by the backbone interactions of residues k + 4, k via the H-bond between NH
and CO groups. The 3–10 helix is characterised by such k + 3, k interactions and the π-helix
by k + 5, k H-bonds. Hence, to expect and quantify helical content in segment shorter than
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say 4 or 5 residues is atypical and the segment will more likely consist of turns an/or bends.
To support this assumption, we present a statistical breakdown of motif lengths found in
the studied reference set of PDB structures. It can be seen in Figure S13 of the SI file in the
form of histograms. The most frequently occurring length of H motifs is 4 residue long
with 10 being the second most frequent. On the other hand, turns (T) and bends (part of S)
are considerably shorter with maxima at 2 and 1 residue length, respectively. This confirms
our assumption. The G motif seems to be mostly of length 3 residues. Therefore, for longer
segments it should be far more likely to quantify one of the helical SS categories H or I. The
I motifs tend to be most frequently of length 5 and 6 residues. Let us look at whether the
relative segment folding degree as defined by Equation (3) can differentiate between H and
I. The mean value of the residue folding degree for I, RCS = 6.516, is outside the boundary
of the interval defined as RCS = 7.273± 0.421 which is used as reference in Equation (3).
Ergo, a segment of say length 5 or 6 residues that would be an I motif would not attain
SCκ,rel

S values close to 1, however a H motif would. In fact, the relative residue folding
degree for a residue conforming to the "ideal" I motif (i.e., its’ RCS = 6.516) is only about
RCk,rel

S = 0.24. Of course, for a pure I motif of any length this would also be its SCκ,rel
S

value. Table 2 contains such theoretical values for all pure motifs as classified by DSSP 4 SS
categories. Therefore, the concluding remark of this discussion is that the helicality content
defined via the relative segment folding degree is a viable alternative to the similar NAMD
collective variable.

Figure 4. Helical content in (Ala10) calculated via Equation (3) and the NAMD equations (see the
NAMD document COLLECTIVE VARIABLES MODULE Reference manual for NAMD, or [9]). Part
(a) shows the values for recorded snapshots of the MD trajectory. Part (b) shows the correlation
between the two quantities.
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Table 2. Typical SCκ,rel
S values for ideal SS motifs as defined by the DSSP 4 algorithm, when the H

category is the reference state. The “ideal” motif means that all residues in it attain mean RCk
S values

for given SS category, see Table 1.

SS Cat. H G I E B T S P C

SCκ,rel
S 1.00 0.74 0.24 0.01 0.01 0.59 0.03 0.01 0.01

2.4. SCκ,rel
S as a General Collective Variable

We have shown so far that we can quantify the helical content in a segment by
SCκ,rel

S . We used the mean residue folding degree of the secondary structure category H

(as by DSSP 4) as RCre f
S and the associated standard deviation as RCtol

S in Equation (3)
for that purpose. We shall examine the possibility of whether the concept of relative
segment folding degree SCκ,rel

S can be generalised with the use of other (arbitrary) values

for RCre f
S and RCtol

S in the following section. We will use the MD folding trajectory of the
tryptophan cage (Trp-cage) as our model. The segment definition, as used in our work,
and their correspondence to motifs in one (the first) of the experimental conformations of
the structure with PDB ID: 1l2y [21] are depicted in Figure 5. Overlooking the fact that
the motifs do not agree perfectly across the different SS categorisation algorithms, we
see that neither the segments do not coincide with any of the motif ideally. This is done
intentionally and is to no detriment to our purpose, as the presented structure is only one
of the published snapshots.

Figure 5. Secondary structure categories in Trp-cage (model 1 in PDB ID: 1l2y) as defined by various
algorithms. The categories are designated a color and summarised in the table. The assignment of
residues to segments, ergo to collective variables used in this work is also defined. The last column
contains residue folding degree values for each residuum in the given structure. The averages of
RCS for the segments are 7.450 for seg. 1 (res. 2–9), 5.521 for seg. 2 (res. 10–11), 7.270 for seg. 3 (res.
12–15), and 3.262 for seg. 4 (res. 16–19).

The idea to generalise the use of SCκ,rel
S is rather straightforward. First we should

acknowledge that we use this quantity as a similarity measure between a given structure
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and a reference structure (as was the SS cat. H for helicality). We still continue to use
Equation (3) to calculate the similarity. However, here we can also use different reference
structures via different RCre f

S and RCtol
S values. The first step is to select a reference

structure and a residue sequence(s) within the structure as our segment(s), see Figure 5.
Next we must select the reference values. Several options come to mind. One of the
simplest is to calculate the RCk

S for the residues in the segment and take their mean
as the reference value within the given segment. The results for this kind of analysis
are depicted in Figure 6. To calculate the RCS values you can use, for example, our
program [22] pyProGA (https://gitlab.com/Vlado_S/pyproga, accessed on 24 July 2021).
Since we take the difference of RCre f

S and RCk
S for each residue k in the segment (see

Equation (3)), this approach should work best if the residues in the segments have similar
RCk

S values to begin with. This is to assure that SCκ,rel
S → 1 when the conformation

of the segment is similar to the conformation of the reference structure. In other words,
RCk

S− RCre f
S → 0 for each residue in the segment. For a better picture, how RCk,rel

S depends
on RCk

S see Figure S14 in the SI file. This figure also shows that, as expected, the larger RCtol
S

values lead to a less sharp peaks. For the helicality content, we used the RCtol
S = 0.421,

which is the standard deviation of the mean RCS value associated with the H category
as by DSSP 4. There is no reason to use this value for structures with arbitrary reference
RCre f

S . Hence, we explored the effect of setting RCtol
S = 0.5 and 1.0 on the energetic surfaces

representing folding processes in the Trp-cage mini protein. Figure 6 shows that the choice
of RCtol

S = 1 leads to clearer PMF plots with better separation of local minima and the
folded/unfolded structures. Figure S15 yields to similar conclusions for the remaining CVs.
We will come back to how to read these plots.

Figure 6. Potential of mean force (PMF) surfaces (a.k.a. free energy landscape, FEL) at 300 K for

the folding process of the Trp-cage protein captured by two CVs; SC(2−9),rel
S , and SC(12−15),rel

S . See

Figure 5 for CV and RCre f
S definition. In part (a) we used the tolerance RCtol

S = 0.5 and in part
(b) RCtol

S = 1 was used. The resulting minimum energy path (MEP) connecting the unfolded (A),
partially folded (B) and folded (C) states (c) relates to the latter surface. The energy profile along the
MEP coordinate is shown in part (d). All energies in kcal mol−1.

https://gitlab.com/Vlado_S/pyproga
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There are alternative ways to define the reference values RCre f
S . Previously, we used

one value for each residuum within the segment (the average RCS within the given seg-
ment). We can use also omit the average and use the RCS for each residuum as in the
reference structure. PMF plots for this case are shown in Figure S16. Lastly, in a similar fash-
ion, we can use the characteristic RCS value (see Table 1) associated with the SS category of
the residuum in the reference structure. Such PMF plots are shown in Figure S17 in the SI
file. In both cases, we can achieve better resolution of the states when looser RCtol

S values
are applied. We conclude this on the basis of Figures S16 and S17, where we compare the
PMFs with RCtol

S being either the standard deviation of the characteristic RCS value (see
Table 1) associated with the SS category of the residuum in the reference structure or a fixed
value of RCtol

S = 1. Figure S18 compares the individual SCκ,rel
S values for three different

reference RCre f
S values. This is done mainly to check whether the numeric value of the

CV depends on the particular choice of the reference for each snapshot. We see that they
do largely follow the same major trends, albeit with some differences. In our particular
application, the SC(2−9),rel

S seems to be a useful CV with consistent values regardless of the

choice of the reference values. On the other hand, SC(10−11),rel
S seems to work when we

use the average segment RCS and/or the RCS of each residuum, but is less useful if one
chooses the characteristic RCS for the SS category of the residue in the reference frame. All
in all, our data suggest that with the variety of reference choice one can probably select
such CV, which can competently describe the evolution of secondary structure in the MD
simulation. The choice of RCtol

S remains somewhat arbitrary as we do not see any rigorous
way how to find some “optimal” value. Nonetheless, RCtol

S = 1 seems to yield PMFs
with energy barriers comparable to barriers of partial folding processes found by other
researchers as we show in the next part.

This brings us to the last point—the interpretation of these plots along with some
concluding remarks. To do this, it is advantageous to pinpoint what the residue and
segment folding degrees actually tell us. Firstly, it is a “data reduction” technique in
the sense that, for each residuum, one can reduce the information about the backbone
conformation from two parameters (ϕ, ψ) to one parameter with certain degree of accuracy.
Secondly, the segment folding degree can be viewed in two ways, albeit, in both ways
it acts as further data reduction in so far as individual residue folding degrees (multiple
parameters) are replaced with the segment folding degree—a single parameter. On one
hand, it can be used to asses/categorise the secondary structure. We have shown that
it cannot (and is not intended to) replace the established SS categorisation algorithms
such as DSSP and/or STRIDE. It can, however, be used for a basic differentiation between
helical/turn and extended/β-strand-like conformations. On the other hand, the relative
segment folding degree SCκ,rel

S can be used effectively to quantify the amount of α-helical
content in a segment. This is mainly due to the tight standard deviation of the characteristic
residue folding degree corresponding to α-helices. In other words, SCS can measure
the similarity of a given structure to α-helices rather accurately. By choosing another,
arbitrary reference structure, one can quantitatively measure the similarity between the
reference and other structures. Hence, in this sense SCκ,rel

S can act very similarly to the
root-mean-square displacement (RMSD) collective variable. Yet, SCS is more specific, as it
compares the similarity in secondary structure. With this in mind, if we look at, for example,
Figure 6b,c, we see that there are several local minima. One (C) with SC(2−9),rel

S ≈ 0.9 and

SC(12−15),rel
S ≈ 0.7. This one corresponds to the folded structure with formed secondary

structure (in the two respective segments). Of course the particular numeric values of SCS
depends on the choice of the reference structure. We know that this minimum belongs
to the folded structure because in our case we took the reference to be one of the NMR
snapshots of the folded Trp-cage structure (model number 1 in the PDB ID 1l2y [21]). The
minima at SC(2−9),rel

S ≈ 0.3 and SC(12−15),rel
S ≈ 0.05 (A) as well as at SC(2−9),rel

S ≈ 0.3

and SC(12−15),rel
S ≈ 0.3 (B) correspond to structures with secondary structure unformed
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or partially formed. This tells us also that the formation of the helix in the segment
(2–9) is quite simple in so far as there are only two majorly populated states along the
SC(2−9),rel

S axis (both minima A and B have approx. the same SC(2−9),rel
S values). Along the

SC(12−15),rel
S axis we encounter three noteworthy minima, suggesting that the residues in

the respective segment adopt multiple backbone conformations in the folding process. We
can analyse the other plots in Figures S15–S17 in a similar fashion. For example, we see
that the secondary structure in the segment (16–19) adopts the close-to reference structure
rather early in the process and remains stable. In particular, Figure S16 confirms this with
SC(16−19),rel

S & 0.8.
The concept of relative segment folding degree lends itself rather well to the creation

of minimum energy paths (MEP), as can be seen in Figures 6 and S15. We calculated the
MEP with the MEPSA tool [23,24]. The energetic barriers separating the states (secondary
structure unfolded and folded) are as much as 1.8, 1.7, and 1 kcal mol−1. Streicher and
Makhatadze report experimental overall (un)folding free energy of Trp-cage at 25 °C of
some ∆G = 0.76± 0.05 kcal mol−1 [25], stating that the mini protein is marginally sta-
ble at that temperature. Other experimental studies exist [26]. Computational assays
on the Trp-cage folding report various free energy barriers for particular/partial pro-
cesses/coordinates; for example, Zhou [27] finds a salt bridge stabilised intermediate state
with a barrier ≈1 kcal mol−1. Juraszek and Bolhuis find transition barriers up to ≈3–4 kT,
with kT corresponding to some 0.596 kcal mol−1 at 300 K, see also Figure 6b for compari-
son. Other researchers have found similar results [28–30]. In this respect, our trajectory
and the associated PMFs seem sensible and the analysis of the process via the relative
segment folding degree seems to bring additional insight into the stages of secondary
structure formation. Recent findings have shown that (partial) formation of secondary
structure in the early stages of protein folding may play important roles in the overall
folding process [31]. We would like to emphasize that the residue/segment folding degrees
are not meant to be a universal CV that can describe all structural transitions at liberty.
Folding models, including the concept of the so-called molten globule state/phase [32],
assume that the native secondary structure is partially formed in the earlier stages of
folding. Subsequent processes involve the emergence and rearrangement of domains into
the native tertiary structure. These processes often involve transitions over slow degrees
of freedom with distinct structural intermediates. For a proper description of these, more
involved MD simulation strategies are required (beyond one long continuous simulation)
and the analysis of the trajectories via so-called Markov state models (MSM) [4,33] is
a viable strategy. Specialised tools may be used for that purpose [34–36]. The work of
Sidky et al. [28] presents such an analysis of the Trp-cage protein using state-free reversible
VAMPnets (SRVs). These present an alternative to the time-lagged independent component
analysis (TICA) commonly associated with MS models for protein folding [37,38]. This
technique allows the identification of the slow degrees of motion that are subsequently
used for clustering, and hence the identification of transition states. The authors state
that [28] “TICA has all but superseded structural clustering based on metrics such as minimum
root-mean-square distance (RMSD) that tend to capture motions of high structural variance as
opposed to the desired slowest motions”. In this sense, we expect our CV to perform similarly
to RMSD, as it is also based on the comparison of the secondary structure between a refer-
ence and the structures in the MD trajectory. That is, our CV is likely to capture motions
with greater variance in the secondary structure. This may be considered a drawback
if one wants to capture the slow transitions [39]. Such problems are often encountered
in MD simulations of intrinsically disordered proteins (IDP) (in absence of their natural
“partner” molecules) [39]. They can attain several “folded” conformations with similar
(global) folding degrees, whereas the "true" folded state is based on crystal structures.
Our proposed CV can differentiate the intermediates if they differ in secondary structure,
that is, it would, as mentioned, identify structurally varied conformers, much like RMSD,
although SS transitions will be more targeted. It should be noted that, in cases of IDPs, the
selection of suitable CVs is problematic in general and one cannot (should not) rely on the
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simplest selection, for example, RMSD. Perhaps an advantage of our CV is that, unlike the
RMSD, which has no upper bound, our CV spans the interval between zero and one. As
our goal is to demonstrate a CV for the analysis of formation of SS, the analysis of slow
modes is beyond our current scope. The usefulness of the relative segment folding degree
as a coordinate to be used with TICA and/or SRV is a question open for further detailed
analysis. In conclusion, we recommend the use of the SCκ,rel

S for similar analyses, in the
hope that they may prove useful for proteins other than these example cases as well.

3. Materials and Methods
3.1. Selection of the Protein Structure Database

In the fist part, we investigate the relationship between RCk
S values and secondary

structure (SS) categories. Perhaps, the best known algorithms that define SS are the
DSSP [40] and STRIDE [17] protocols, although others exist (e.g., SECSTR [41], DEFINE [42],
P-CURVE [43], P-SEA [44], XTLSSTR [45], PSSC [18], VoTAP [46]). A good review on this
subject is by Martin et al. [19]. We used both DSSP (from Ubuntu repo via sudo apt
install dssp) and STRIDE (http://webclu.bio.wzw.tum.de/stride/, accessed on 24 July
2021). Typically, the categories in both DSSP and STRIDE are quite similar, although the
agreement between the assignment to each category may differ [17,19]. The helical SS cate-
gories are H (α helix), G (3–10 helix), and I (π helix). The strands comprise the categories
B (β sheet) [47,48] and E (extended). The remaining ones are T (turn), and C (coil). These
categories are identical in both DSSP and STRIDE; however, in STRIDE, the category C is
assigned to coils and “none of the remaining ones”, whereas DSSP assigns a blank to an
undefined/irregular structure. Additionally, the DSSP protocol defines also the S (bend)
category. In recent years, it became evident that neither DSSP nor STRIDE are able to distin-
guish the polyproline helix II (PPII) [49,50]. This was corrected in the latest iteration DSSP
4.0 protocol https://github.com/PDB-REDO/dssp (accessed on 24 July 2021), which de-
fines the PPII helix as category P and it is a subset of the category C, meaning that PPII is as-
signed only to structures which in the older DSSP protocols would fall under C (blank) [20].
The algorithm was implemented into a code as part of the PDB-REDO project [51]. Since
we also wanted to make use of this latest method, we chose the database compiled by
the authors of the algorithm [20], which can be accessed from https://webs.iiitd.edu.
in/raghava/ccpdb/collect.php (accessed on 24 July 2021) under the name PolyprOnline,
or their web page https://www.dsimb.inserm.fr/dsimb_tools/polyproline/about.php
(accessed on 24 July 2021). This database contains some 24,761 folded protein structures.

In this first part, where we focus on the relationship between RCk
S values and SS

categories, we use only static protein structures from the PolyprOnline database. We would
like to declare upfront that we do not intend/propose to use the residue folding degree
as a substitute for SS defining algorithms. The dynamical aspects of stabilising effects of
proteins SS are studied elsewhere [52–54].

3.2. Molecular Dynamics

In the later part, we investigate the use of the residue and segment folding degrees
as collective variables to investigate molecular dynamics (MD) trajectories. We use two
MD trajectories of the simulated protein folding of deca-alanine (Ala10, ten consecutively
joined alanines) and the tryptophan cage (Trp-cage). Extended linear strands were taken as
the starting structures. The peptide was solvated with TIP3P waters [55] in a rectangular
box with an appropriate number of Cl− ions added to neutralize the system. The chemical
bonds were treated as rigid bodies with the LINCS algorithm [56]. Peptide termini were
capped with ACE and NME groups in deca-alanine and with hydrogens in the Trp-cage.
The water molecules were treated as rigid bodies with the SETTLE algorithm [57]. The
temperature of the system was controlled with the modified Berendsen thermostat [58].
The pressure of the system was controlled with the Parrinello–Rahman method [58,59].
The electrostatic interactions were calculated with the particle mesh Ewald method using a
real space cutoff of 10 Å [60]. The cutoff value for van der Waals interactions was set to

http://webclu.bio.wzw.tum.de/stride/
https://github.com/PDB-REDO/dssp
https://webs.iiitd.edu.in/raghava/ccpdb/collect.php
https://webs.iiitd.edu.in/raghava/ccpdb/collect.php
https://www.dsimb.inserm.fr/dsimb_tools/polyproline/about.php
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10 Å. To equilibrate the solvated system, a 100 ps MD simulation was initiated from the
extended strand under NVT constraints (T = 300 K) and 1 µs and 10 µs MD simulation was
sequentially performed under NPT constraints (T = 300 K and P = 1 bar) for Ala10 and
Trp-cage, respectively. Snapshots were recorded each 100 ps, so in total we analyzed 104

snapshots for Ala10 and 105 for Trp-cage. We observe the reversible folding and unfolding
of the structures in this time frame. All the MD simulations were performed with the GPU
version of the GROMACS 2018 package [61] using the AMBER ff14SB force field [62].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222313042/s1.
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