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Genomic prediction (GP) has revolutionized animal and plant breeding. However, better
statistical models that can improve the accuracy of GP are required. For this reason,
in this study, we explored the genomic-based prediction performance of a popular
machine learning method, the Support Vector Machine (SVM) model. We selected the
most suitable kernel function and hyperparameters for the SVM model in eight published
genomic data sets on pigs and maize. Next, we compared the SVM model with RBF and
the linear kernel functions to the two most commonly used genome-enabled prediction
models (GBLUP and BayesR) in terms of prediction accuracy, time, and the memory
used. The results showed that the SVM model had the best prediction performance in
two of the eight data sets, but in general, the predictions of both models were similar. In
terms of time, the SVM model was better than BayesR but worse than GBLUP. In terms
of memory, the SVM model was better than GBLUP and worse than BayesR in pig data
but the same with BayesR in maize data. According to the results, SVM is a competitive
method in animal and plant breeding, and there is no universal prediction model.

Keywords: genomic prediction, SVM, GBLUP, BayesR, molecular breeding

INTRODUCTION

Breeding livestock and growing crops are the staples of agriculture. Since genomic prediction
(GP) (Meuwissen et al., 2001) was proposed in 2001, it has significantly reduced the breeding
time and costs involved with these aspects of agriculture (Resende et al., 2012). The rapid
development of genotyping technologies has improved the availability of abundant single
nucleotide polymorphisms (SNP), meaning GP is one of the most widely used methods in animal
and plant breeding (Jiang, 2013; Jonas and Koning, 2015). GP has successfully improved rates of
genetic gain (Bhat et al., 2016; Crossa et al., 2017).

Although GP has shown advantages in relation to various species such as dairy cattle (Schaeffer,
2006), pigs (Hickey et al., 2017), maize (Heffner et al., 2010; Albrecht et al., 2011), and the
hybrid breeding of crops (Kadam et al., 2016), the accuracy of GP still needs to be improved. To
predict breeding values more accurately, a variety of statistical genetics methods and prediction
models have been developed (Yang et al., 2010; Bloom et al., 2013; Desta and Ortiz, 2014;
Shigemizu et al., 2014). Most conventional models are linear as this approach is more efficient
than non-linear models in terms of the non-additive genetic effect (González-Camacho et al., 2018)
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but some studies have shown that the non-linear model may
perform better in some cases (Morota and Gianola, 2014).

The schema of predicting future breeding values based on
information on training population falls into the scope of
machine learning (ML). ML is the scientific study of algorithms
and statistical models that computer systems use to learn
from data (Samuel, 1959). ML has been used in many fields
including personality recommendation systems, financial anti-
fraud, speech recognition, natural language processing, machine
translation, and image recognition, etc. (Makridakis et al., 2018).

The Support Vector Machine (SVM) is a well-known machine
learning algorithm, which is a powerful method for classification
and regression. Compared to the other ML methods, SVM is
powerful at recognizing subtle patterns in complex data sets
(Aruna and Rajagopalan, 2011). It uses multiple feature vectors
to complete prediction by creating a decision boundary between
two classes (Noble, 2006). SVM also has a strong and flexible
ability to deal with all kinds of data due to various kernel
functions. SVM is used to analyze a variety of complex biological
data sets, including microarray expression profiles, DNA and
protein sequences, protein-protein interaction networks, tandem
mass spectra, etc. (Ahmadvand et al., 2017; Huang et al., 2017;
Zhang et al., 2017).

Based on different kernel methods, SVM can also handle the
non-linear relationship between phenotype and genome to some
extent. Ornella et al. (2014) appraised six popular algorithms
including SVM in wheat rust databases, and the authors
recommend that the classification algorithms are competitive
in plant breeding. Recently, González-Camacho et al. (2018)
evaluated linear models, and several ML methods, such as
random forest, SVM, and neural network in wheat rust data sets.
They found that SVMs with linear kernels are superior in terms
of GP (González-Camacho et al., 2018). Moreover, compared
with SVM, neural network tuning is more complicated, time-
consuming, and easy to overfit for data with more features. In
the random forest algorithm, overfitting may occur when there is
too much noise. These advantages mean SVM could be applied in
animal and plant breeding more successfully.

Although SVM and other ML methods have been applied in
many scientific and technological fields, it is still unclear whether
these methods could outperform traditional statistical models
in animal and plant breeding due to the fact that there is little
empirical evidence on machine learning in this field. In most
cases, conclusions were based on several or even single trait
data, which has led to statistical significance and generalization
of the results. Meanwhile, there were no benchmarks to
compare the performances of ML methods with traditional
methods (Makridakis et al., 2018). The performance of the
different kernel functions implemented in SVM has rarely been
compared in genomic prediction. In this paper, we compared
SVM algorithms with two popular conventional GP models,
GBLUP and BayesR, using different types of kernel functions. In
addition to comparing the accuracy of the predictions, the actual
application was also used as a standard. Therefore, the prediction
performance of these three methods was compared in eight data
sets on pigs and maize. In terms of time, memory and prediction
accuracy were used as metrics.

MATERIALS AND METHODS

Model Implementation
Genomic Best Linear Unbiased Predictor (GBLUP)
Model
The GBLUP method was previously reported by Habier (Habier
et al., 2007). It accounted for covariance between individuals
using a genomic marker-based relationship matrix. The model is
as follows:

y=Xb+Zg+e (1)

where y is a n× 1 vector of response variable; X is a n× p
design matrix relating the fixed effects to the response variable;
b is a p× 1 vector for the fixed effects. Z is a n× q design
matrix for random effects; g is a q× 1 vector of additive genetic
effects for an individual, and e is a n× 1 vector for the residual
error. Furthermore, the random effects and the residual error are
assumed to be normally distributed and mutually independent,
i.e., g ∼ N(0,Gσ2

g) and e ∼ N
(
0, Iσ2

e
)
, where σ2

g is additive
genetic variance, σ2

e is residual variance. And G is the q× q
genomic relationship matrix which can be calculated by the
VanRaden method (VanRaden, 2008):

G = WWT

2
∑m

j=1 pj(1−pj) (2)

Where each element of W is Wij = Pij − 2pj, Pij is the SNP coded
with 0, 1, 2 and pj is the allele frequency at the jth marker.

BayesR Model
Compared with the GBLUP model that assumes all effects of
markers drawn from the same normal distribution, BayesR
assumes that the SNP effects are derived from a series of normal
distributions, which are more in line with the actual situation.
Some studies have proved that BayesR can get better results than
GBLUP and other Bayes methods (Moser et al., 2015; Zeng and
Zhou, 2017). The model is as follows:

y = Xb+ Zγ + e (3)

Where y is a n× 1 vector of response variable; X is a n× p design
matrix relating the fixed effects to the response variable; b is a p×
1 vector for the fixed effects. Z is a n×m design matrix allocating
records to the marker effects; γ is a m× 1 vector of SNP effects
assumed SNP γi ∼ N

(
0, σ2

i
)
, where the variance of the ith SNP

effect had four possible values:

ρ
(
γ|π, σ2

γ

)
= π1 × N

(
0, 0× σ2

γ

)
+ π2 × N

(
0, 10−4

× σ2
γ

)

+π3 × N
(

0, 10−3
× σ2

γ

)
+ π4 × N(0, 10−2

× σ2
γ) (4)

Due to this equation, the model uses mixture distributions with
SNP variances of 0, 0.0001, 0.001, and 0.01, so that the variance
of the ith SNP has four possible values: σ2

i1 = 0, σ2
i2 = 0.0001×

σ2
γ, σ2

i3 = 0.001× σ2
γ, σ2

i4 = 0.01× σ2
γ. The unknown parameters

(b,π, γ, σ2
γ, σ

2
e ) are obtained through MCMC iterations.
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Support Vector Machine
The Support Vector Machine, which was first proposed in the
1990s by Vapnik (Cortes and Vapnik, 1995), was used mostly in
handling classification or regression problems. In this study, we
used epsilon-support vector regression (Chang and Lin, 2011). To
perform a non-linear regression, data were mapped into a higher
dimensional space by kernel function (Hastie et al., 2009). Briefly,
the model is:

y = β0 + f x (X|β)+ e
= β0 + K

(
x, xT

)
+ e

(5)

where K
(
x, xT) is an n× n kernel matrix, β is an n× 1 vector

(unknown). There are many different kernels, which are defined
as Gaussian Kernel (Radial Basis Function, RBF):

K ij
(
xi, xT

i
)
= exp

[
−γ

(
xi − xj

) (
xi − xj

)T
]

(6)

and Polynomial Kernel Function:

K ij
(
xi, xT

i
)
=

(
γxixT

j + r
)d

(7)

and Linear Kernel Function:

K ij
(
xi, xT

i
)
= xixT

j (8)

and Sigmoid Kernel Function:

K ij
(
xi, xT

i
)
= tanh

(
γxixT

j + r
)

(9)

In the process of solving SVM, eventually, it will be transformed
into an optimization problem:

min 1
2 ||ω|| + C

n∑
i=1

εi (10)

subject to yi
(
ωTxi + b

)
≥ 1− εi

εi ≥ 0, i = 1, . . . , n

Where ω is the hyperplane to be solved, εi is the regression
loss for the ith sample point, and C is the penalty coefficient,
which is the tolerance of the error. γ is a parameter of the
RBF kernel function. The optimization of hyperparameters is a
hard task to solve. We adopted a grid search which is one of
the most frequently used methods for tuning hyperparameters,
which can be found by trying all combinations and seeing which
parameters work best.

Genotypic and Phenotypic Data
In this study, three sets of data on maize, and five sets of data on
pigs were used to evaluate the performances of different genomic
prediction methods.

Pig Data Sets 1–5
One pig population used in this study from a pig farm of
the Pig Improvement Company (PIC) (Cleveland et al., 2012).
There are 3,534 samples genotyped by Illumina PorcineSNP60
chip and five traits. Phenotypes were corrected for fixed effects
or were weighted progeny mean corrected phenotypes. The

heritability (standard error) calculated by PBLUP for each trait
was: T1 = 0.0773 (0.0272), T2 = 0.414 (0.0376), T3 = 0.3846
(0.0373), T4 = 0.3784 (0.0352), T5 = 0.445 (0.0358).

We discarded SNPs with more than 5% missing values,
a minor allele frequency (MAF) < 0.01, or Hardy-Weinberg
equilibrium (HWE) test p < 10−6. Because some individuals
did not have all phenotypic data, the results in the number of
individuals for each trait was different. For T1 (data set 1), T2
(data set 2), T3 (data set 3), T4 (data set 4), and T5 (data set 5), a
total number of 45,025, 45,441, 44,190, 44,151, and 44,037 SNPs
remained and were included in this study, respectively.

Maize Data Sets 6–8
One maize population investigated in this study is the NAM_US
population. There are three flowering time traits in the NAM_US
population, including days to anthesis (DTA, data set 6), days
to silking (DTS, data set 7), and anthesis-silking interval (ASI,
data set 8). All samples were planted under eight environments
DTA, DTS, and ASI were measured and calculated as described by
Buckler et al. (2009). Samples without phenotypic records, SNPs
with MAF< 0.01, or SNPs with ambiguous position information
were removed (Zhang et al., 2019). Finally, we obtained 4,328
samples with 564,692 markers.

Method Implementation
The GBLUP method was performed by HIBLUP software1 in the
R statistical software. BayesR (Moser et al., 2015) method was
performed by BayesR software2 and SVM methods were fitted
with the scikit-learn3 in python. These three models were selected
and tested in both of the eight data sets, as described above.

It is important to select a suitable kernel function to construct
an SVM prediction model with a favorable performance. The
selection of the kernel function includes two parts: one is the
choice of the kernel function type, and the other is the choice
of the hyperparameters after the kernel function type has been
determined. To select the SVM model that is most suitable for
GS based on genomic information, we first tested the prediction
performances of eight traits using four commonly used SVM
models with different kernel functions in two populations. In
this step, all SVM models used default parameters. Next in
pig data sets, to get the best γ and C values in the SVM-RBF
model, we first ran several SVM scenarios with different tuning
parameters. Based on these runs, we implemented the grid search
method with a full factorial design for the two parameters.
For C we used 1–20 and for gamma we used 1× 10−1, 1×
10−2, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7, and
1× 10−8. Therefore, 160 combinations were run for each pig data
set. In maize data sets, to get the optimal C value in SVM-Linear,
we selected from 1, 1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1×
10−5, 1× 10−6, 1× 10−7, 1× 10−8, and 1× 10−9. The SVM-
Linear model was constructed using LinearSVR function in
scikit-learn which can greatly improve the operation speed and
reduce memory consumption.

1https://hiblup.github.io/
2http://cnsgenomics.com/software.html
3https://scikit-learn.org/stable/index.html
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Prediction Accuracy Evaluation
In this study, 10-fold cross validation was used to evaluate the
prediction performances of each method. The original sample
was randomly divided into 10 sub-samples and each sub-sample
was used as the validation set and the other 9 sub-samples
were used as the training set. The average of the 10 results
was taken as the final predicted value. The prediction accuracy
was measured with Pearson’s correlation coefficient between
corrected phenotypes adjusted for all known non-genetic factors
and predicted breeding values.

RESULTS

Prediction Accuracies of SVM Models
With Different Kernels
Pig Data Sets 1–5
Among the five traits, SVM-RBF had better performance. The
accuracies of the SVM-sigmoid and SVM-poly models were
similar. The SVM-linear model had the lowest accuracy among
all the traits (Figure 1A). Therefore, in the five pig data sets,
we choose the SVE-RBF model to further adjust the parameters
for the next test.

Maize Data Sets 6–8
Among the three traits, the SVM-linear model had better
performance, but the difference between the accuracy of the
SVM-RBF model and the SVM-linear model was small. The
SVM-Poly model had the lowest accuracy among all the traits
(Figure 1B). It can be seen that for animal data and plant data,
and even the different traits of the same species, different SVM
models may have different performances.

SVM Model Tuning
Based on the results above, we implemented the SVM-RBF model
in the five pig data sets. We implemented the grid search method
with a full factorial design with the two parameters. Of all the
results, the highest prediction accuracy was obtained when C
equals 2 and γ equals 1× 10−5 in T5. Therefore, we determined
that the SVM-RBF model cooperated with this hyperparameter
group to predict T5 traits. Using this method, we have separately
selected the optimal parameter combinations for T1 – T4
traits, which are T1: C = 8 and γ = 1× 10−8; T2: C = 2 and
γ = 1× 10−6; T3: C = 11 and γ = 1× 10−7; T4: C = 14 and
γ = 1× 10−6 .

Similarly, we implemented the SVM-Linear model in the
three maize data sets. The optimal C value was selected from
10 candidate values. Of all the results, the highest prediction
accuracy is obtained when C equals 1× 10−5 among the three
maize data sets.

The Evaluation of SVM, GBLUP, and
BayesR
Based on the parameter combinations described above, we
implemented these three prediction models for the eight traits of
pig data and maize data respectively. Meanwhile, the prediction

accuracy, memory use, and issues such as whether it was
time consuming were also evaluated and compared among
the three models.

The prediction performance of the three models in the pig
data sets across the three models generally showed similar
performance (Figure 1C). The BayesR model had better
performance in the three traits (T1, T3, T5) and the prediction
accuracy ranged from 0.071 to 0.503. Pearson’s correlation
coefficients of the GBLUP model ranged from 0.068 to 0.488
and GBLUP had the highest accuracy in T4. Under the SVM-
RBF model, the prediction accuracy ranged from 0.060 to 0.495.
Meanwhile, SVM-RBF had the highest accuracy in T2. However,
the prediction accuracy of this model ranks second in three traits
and the difference from the other models was small.

Similar to the pig data, there were nuances in performance
among the three models. GBLUP has the highest accuracy in
ASI, and the SVM-linear has the highest accuracy in DTS
(Figure 1D). Meanwhile, the accuracy of these three models is
almost the same in DTA.

In addition to prediction accuracy, we also compared the time
and memory performance of the three models. For this study,
we carried out all benchmarks on a single server equipped with
32 cores (Intel Xeon CPU E5-2620 v4 @ 2.10 GHz) and 64
GB memory, running only a single job at a time on the server.
In terms of time consumption, GBLUP has an overwhelming
advantage compared with the two data sets (Table 1). It only
takes 1–2 min to complete a prediction calculation. The SVM-
RBF model takes about 10 min to complete a prediction
calculation for the pig datasets because the size is relatively small.
Compared to the BayesR model, which takes 1.5 h, the SVM-RBF
model still has a great advantage. Similarly, in the three maize
datasets, SVM-Linear takes about 0.25 h to complete a prediction
calculation, while the BayesR takes 16.8 h. In tuning progress,
we used fivefold cross validation. In the five pig data sets, 160
combinations are equivalent to 800 predictions, but it can also
be run with multithreading. When 10 threads are taken, it takes
about 14 h. In terms of practical applications, once the tuning is
completed, it cannot be carried out in the future. Adopting the
same process for the three maize data sets, the tunning progress
needs 50 predictions. When five threads are taken, it takes about
2.5 h. In conclusion, the three methods have a special advantage
in different data sets and traits. In terms of time consumption,
both SVM-RBF and SVM-Linear models have a great advantage
over the BayesR model, but perform worse than GBLUP. In terms
of memory, the SVM-RBF model was better than the GBLUP
model but worse than BayesR. Both the SVM-Linear model
and BayesR model had the same results, which are better than
GBLUP. The results indicated that SVM is a competitive method
in terms of genomic prediction.

DISCUSSION

The objective of this study was to compare the classic machine
learning model SVM with GBLUP and BayesR. In previous
studies, most applications of SVM to animal and plant breeding
focused on the evaluation of a certain kernel function in a certain
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FIGURE 1 | The prediction accuracies of GBLUP, BayesR, and SVM model in the pig and maize data sets. (A) Prediction accuracies of SVM models with different
kernels in 5 pig data sets. (B) Prediction accuracies of SVM models with different kernels in 3 maize data sets. (C) Prediction accuracies of GBLUP, BayesR and
SVM-RBF model in 5 pig data sets. (D) Prediction accuracies of GBLUP, BayesR and SVM-Linear model in 3 maize data sets.

TABLE 1 | The performance of the three methods in terms of time and memory.

PIC NUM

Memory (GB) Time (h) Memory (GB) Time (h)

GBLUP 5 0.01 33 0.03

SVM 4.2 0.16 12 0.25

BayesR 0.6 0.67 12 16.8

trait in terms of prediction accuracy. For example, Ahmadi and
Rodehutscord (2017) applied SVM with the RBF kernel function
in predicting metabolizable energy in compound feeds for pigs.
Montesinos-López et al. (2018) evaluated the performance of
SVM-RBF in different traits of wheat data. It is important to
correctly evaluate the performance of SVM models with different
kernel functions using different animal and plant data sets and
to compare them with conventional models. In this respect,
we compared the performance of SVM with different kernel
functions in eight different traits of pig and maize and evaluated

different models in terms of prediction accuracy, the time it took
to make the calculation, and memory use. Our results support
the better application of the SVM method in animal and plant
breeding through comprehensive comparison.

Four SVM models with different kernel functions were
implemented for eight traits in pig and maize data sets. We
found that SVM-RBF has higher prediction accuracy among four
SVM models in pig data sets. The difference is that SVM-linear
had higher prediction accuracy in maize data sets. Generally, the
linear kernel function, with few parameters and a faster speed,
is mainly used in linear separability. The RBF kernel function is
mainly used in linear inseparability. It is worth noting that the
accuracy of the linear kernel function is lower in the data on
pigs, which was significantly different from that of the maize. The
reason for this result is probably that the number of SNPs in the
maize population is much larger than that in the pig population,
which is more suited to linear kernel function fitting (Hsu et al.,
2003). When the number of features is large, the linear kernel has
an obvious speed advantage.
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The main advantage of the Support Vector Machine models
in evaluating breeding are: (1) that SVM models fit different
functions and different types of data well, through different
kernel functions; and (2), that SVM is more suitable for non-
linear fitting. It can fit non-linear functions well by mapping
data to high-dimensional space, whereas GBLUP is only suitable
for a linear function. In genomic prediction, the SVM method
is supposed to be better than any linear predictor if there are
epistatic effects between markers (Morota and Gianola, 2014).
However, there are some limitations for both SVM or other
ML method modeling techniques. (1) Training an SVM model
is more difficult because we need to select one suitable kernel
function and test different combinations of hyperparameters
corresponding to C and gamma, and the results are very
dependent on these parameters (Cristianini and Shawe-Taylor,
2000). (2) Using the SVM method requires some programming
experience and statistical knowledge, which may increase the
threshold for using it. (3) The prediction accuracy of the SVM
method is closely related to the combination of hyperparameters
in different data, which makes the application of SVM in different
data increase the time cost.

Based on the above results, SVM is a very competitive method
in genomic prediction, which can bring alternative innovations
for animal and plant breeding. It must be pointed out that
SVM still has many limitations when it is applied in practice
since it is a methodology and needs to be adjusted according to
the actual situation. Researchers need to deeply understand the
principles of SVM, spend time and experience encoding data, or
optimizing the hyperparameters when applying it to a specific
problem. These opportunities and challenges coexist, and SVM
and other ML methods require further investigation in providing
new pathways for the use and exploration of biological data.

CONCLUSION

This study shows how the SVM model can be applied to genome
prediction in animal and plant breeding. The results obtained by
the SVM-RBF and SVM-linear model provide a computationally
efficient approach with good prediction performance in GS. Our
results show that RBF and linear kernel functions are suitable
for phenotypic prediction based on genomic information. The

SVM-RBF and SVM-linear model predictions produced very
similar predictions to those of the GBLUP model and BayesR
model, and, in some cases, outperformed the other two models.
The disadvantage of SVM or both machine learning methods is
that, to produce reasonable predictions they require a complex
process of fine-tuning that is challenging since it is a scientific
process that requires specialist knowledge along with qualitative
reasoning and decision-making. In conclusion, the SVM method
is a practical way of implementing genomic prediction.
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