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Recent advances in super-resolution microscopy revealed the pre-
viously unknown nanoscopic level of organization of endoplasmic
reticulum (ER), one of the most vital intracellular organelles. Mem-
brane nanostructures of 10- to 100-nm intrinsic length scales,
which include ER tubular matrices, ER sheet nanoholes, internal
membranes of ER exit sites (ERES), and ER transport intermedi-
ates, were discovered and imaged in considerable detail, but the
physical factors determining their unique geometrical features
remained unknown. Here, we proposed and computationally sub-
stantiated a common concept for mechanisms of all ER nanostruc-
tures based on the membrane intrinsic curvature as a primary
factor shaping the membrane and ultra-low membrane tensions
as modulators of the membrane configurations. We computation-
ally revealed a common structural motif underlying most of the
nanostructures. We predicted the existence of a discrete series of
equilibrium configurations of ER tubular matrices and recovered
the one corresponding to the observations and favored by ultra-
low tensions. We modeled the nanohole formation as resulting
from a spontaneous collapse of elements of the ER tubular net-
work adjacent to the ER sheet edge and calculated the nanohole
dimensions. We proposed the ERES membrane to have a shape of
a super flexible membrane bead chain, which acquires random
walk configurations unless an ultra-low tension converts it into a
straight conformation of a transport intermediate. The adequacy
of the proposed concept is supported by a close qualitative and
quantitative similarity between the predicted and observed con-
figurations of all four ER nanostructures.

endoplasmic reticulum j membrane curvature j membrane shaping j
membrane elasticity j membrane nanostructures

Endoplasmic reticulum (ER) is the largest and one of the
central membrane-bound organelles of eukaryotic cells

(1–3) whose crucial functions include the protein and lipid syn-
thesis, exchanging the produced molecules with other intracel-
lular organelles, and wrapping the nucleus (1). Related to its
intracellular tasks, ER membrane is organized into highly intri-
cate and inhomogeneous networks of interlinked nanotubules
and sheets. ER networks exhibit a multiscale structure, which
include macroscopic and nanoscopic levels of organization.

The nanoscopic ER structures were discovered only recently
by super-resolution microscopy and are characterized by the
internal length scales in the range of 10 to 100 nm (4, 5). The
four types of the ER nanostructures are the ER tubular matri-
ces (4), the nanoholes in ER sheets (5), the internal membrane
arrangements of ER exit sites (ERES), and the ER transport
intermediates (6).

The ER matrices are arrays of tightly packed intertubular
three-way junctions connected by short tubules (4). The charac-
teristic spacing between the junctions is of the order of 100 nm
going, in some cases, down to about 50 nm (4). The ER matri-
ces undergo rapid shape fluctuations, which include fast inter-
conversions between the extremely dense and the relatively
loose packing of the three-way junctions and strong undulations
of the network plane. While, for the fluctuation reasons, the
spatial arrangements of the junctions within the matrices look

very irregular in most of the images, some snapshots reveal the
junction packing in nearly regular nanoarrays (see Fig. 2A) (4).

The sheet nanoholes are circular dynamic pores of about
100 nm diameter formed in the ER sheet plane across the 30- to
50-nm-thick sheet lumen (5, 7, 8) (see Fig. 3A).

The ERES internal nanostructures appear as about 300-nm
large grape-like ensembles of contiguous round membrane swel-
lings of approximately 60 nm diameter (6) (see Fig. 4E). Upon
transport initiation, ERES produces ER intermediate struc-
tures, which exhibit shapes of micrometer long, few tens of
nanometers thick, pearled membrane tubes with periodic vari-
cosities (6) (see Fig. 4G).

Due to the major effort of biological research over the last
decade, the key proteins responsible for the generation of
local curvatures of ER membranes have been largely identi-
fied (2, 9–11). Yet, the physical mechanisms determining the
unique architecture of ER nanostructures have never been
considered and represent the subject of this study.

Here, we proposed a common mechanism of shaping of all
four ER nanostructures based on the homogeneous intrinsic cur-
vature of the membrane as the major factor determining the
membrane configurations. Our computations revealed a common
structural motif underlying the architecture of most of ER nano-
structures and having the origin in the geometry of surfaces of
constant mean curvature. The ultra-low membrane tensions are
suggested to serve as a shape-modulating factor. We obtained,
computationally, the membrane shapes reproducing the experi-
mentally observed geometrical features of the ER matrices, ER
sheet nanoholes, ERES internal membranes, and ER transport
intermediates. We predicted the existence of the energetically
degenerated conformations of the ER matrices and described
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their architecture. We proposed the ultra-low tensions to support
the most compact configuration of ER matrices, to promote for-
mation the ER sheet nanoholes, and to drive the transformation
of ERES membranes into the ER transport intermediates.

Model
We model the configurations of ER nanostructures as equilibrium
membrane shapes corresponding to minima of the membrane
elastic energy FE. We define this energy as the thermodynamic
work, which has to be performed for pulling the necessary amount
of the membrane area A out of an effective membrane reservoir
and shaping the pulled membrane into the conformation of the
nanostructure.

The reservoir represents the ER membrane surrounding the
nanostructure and is characterized by the elastic properties typ-
ical for the cylindrical ER tubules: the curvature in the elasti-
cally relaxed state referred below to as the intrinsic curvature J0
(12), the bending modulus κ (13), and, generally, a tension γ.
The intrinsic curvature J0 accounts for the membrane-shaping
effect of the curvature inducing proteins bound to the mem-
brane surface, which in the case of ER are represented by the
proteins of the reticulon and REEP families (14). We assumed
the J0 values to be in the range 0.1 to 0.01 nm�1, corresponding
to the assessments by different methods of the ER tubule radii
(5, 15, 16). We assume κ ¼ 20kBT � 10�19Joule (in which kBT is
the product of the Boltzmann constant and the absolute tem-
perature) typical for lipid bilayers (17). The reservoir tension γ
will be taken as either vanishing or having ultra-low values up
to 10 μN/m as can be deduced from the analysis of the ER
tubule dynamics (18) and fluctuations (19).

The elastic energy FE consists of the energy of membrane
bending FB and of membrane tension FT

FE ¼ FB þ FT : [1]

The bending energy per unit membrane area is given by

fB ¼ 1

2
κ J � J0ð Þ2, [2]

where J is the total curvature (doubled mean curvature) of the
membrane. Eq. 2 can be seen as Helfrich model (13) with account-
ing for a difference in the physical meaning between the intrinsic
curvature J0 and Helfrich’s spontaneous curvature JS (12).

The total bending energy FB is obtained by integration of fB
over the surface of the nanostructure membrane

FB ¼
þ
fBdA: [3]

The energy of the membrane tension FT is given by

FT ¼ γA: [4]

The elastic energy minimization and computation of the nano-
structure conformations are performed by the finite element
method using Brakke’s Surface Evolver program (20).

Results
ER Tubular Matrices. ER tubular matrices are polygonal networks
of membrane tubules interconnected by three-way junctions (4).
To understand the major features of the network architecture, we
start with analyzing the equilibrium configurations of one polygo-
nal unit cell connected directly to a reservoir and then extend the
computations to an ensemble of several unit cells.
Single polygonal unit cell. Since the real ER tubular networks
are irregular, we examine the unit cells of hexagonal, pentagonal,
quadratic, and triangular symmetries. For an illustration of the
notations, we use one of the computed configurations (Fig. 1A).

A unit cell is linked to the reservoir along border lines whose
number is equal to that of the three-way junctions (Fig. 1A). The

border lines are circles with radius 1
J0

corresponding to the

cross-section of the reservoir’s tubules (Fig. 1A). To guarantee
the smoothness of transition between the unit cell membrane
and that of the reservoir, the former must be perpendicular to
the border line plane (Fig. 1A), which serves as a boundary
condition. In order to minimize the possible effects of the
boundary conditions on the calculated configurations, we took
the distance R between the border lines and the unit cell center to
substantially exceed the internal scale 1

J0
and equal R¼ 18

J0
or 24

J0
.

First, we considered the case of vanishing tension γ ¼ 0 and
determined the equilibrium configurations of a unit cell with
hexagonal symmetry. Taking the distance between the three-way
junctions, L (Fig. 1A), as a parameter setting a constraint on the
possible configurations, we minimized the bending energy for
different values of the parameter L and found the corresponding
energies, FE Lð Þ (Fig. 1B). The equilibrium unit cell configura-
tions are those for which FE Lð Þ has local minima (Fig. 1B). For
R¼ 24

J0
, we found four equilibrium configurations (Fig. 1A)

with practically equal energies (Fig. 1 B, Inset) such that they
can be treated as energetically degenerated states of the system.

The size differences between the equilibrium configurations of
the hexagonal unit cell are calibrated by a specific length, λP.
Indeed, as demonstrated by Fig. 1A, the shapes of tubules con-
necting the junctions in the equilibrium configurations can be
seen as composed of standard units, each consisting of a region of
a widening followed by a narrowing. We will refer to such a unit as
the peristaltic block characterized by the peristaltic length λP. The
second, third, and fourth configurations in Fig. 1A have one, two,
and three peristaltic blocks between the junctions, respectively.
The most compact unit cell configuration in Fig. 1A, which has the
size of λ0�3 1

J0
, does not accommodate any peristaltic block. The

origin of the peristaltic length, λP, is related to a fundamental geo-
metrical feature of periodic axially symmetric surfaces of constant
total curvature called unduloids (21) whose peristaltic block
length can vary in a narrow range between 4

Js
and 2p

Js
(SI Appendix,

Unduloids as axially symmetric shapes of constant mean curvature ).
Based on the super-resolution images, in addition to the hex-

agonal unit cells, the ER matrices contain unit cells of other
symmetries (4). To account for this, we computed the equilib-
rium configurations of the pentagonal, quadratic, and triangular
unit cells (Fig. 1C). The computations demonstrated that, inde-
pendently of the symmetry, all network unit cells are con-
structed according to the same principle as described for the
hexagonal case.

Generalizing, a polygonal unit cell upon a vanishing tension
can adopt a discrete series of the equilibrium configurations
characterized by the interjunction length

Ln ¼ λ0 þ n λP, [5]

where n is the number of the peristaltic blocks between the
junctions, and λ0 is the size of the most compact configuration
(Fig. 1D).

The results obtained for vanishing tension γ ¼ 0 enable a pre-
diction of the effects of ultra-low tensions. Tensions substantially
smaller than the characteristic value of κ � J20 practically do not
change the membrane shapes determined by the intrinsic curva-
ture J0. At the same time, they substantially contribute to the
system energy because of the area difference between the equi-
librium configurations (Fig. 1B, red curve). The results for the
equilibrium configuration energies accounting for the tension
contribution (Eq. 4) for γ ¼ 1

100κ J
2
0 ffi 1 μN/m are presented in

Fig. 1 B, Inset, which shows that the shape of the smallest unit
cell becomes the most energetically favorable. Hence, the model
predicts that ultra-low tensions existing in ER tubules (18, 19)
can remove the effective energy degeneration of the equilibrium
network configurations in favor of the most compact one.
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Network fragment of several unit cells. Using the same approach,
we computed the equilibrium configurations of a tubular network
fragment consisting of several hexagonal unit cells. The examples
of the resulting configurations are presented in Fig. 2 B and C.
While the membrane shapes and energies of the unit cells in this
case slightly differ from those obtained for a single unit cell, these

variations can be neglected compared to the accuracy of the
experimental observations of the ER matrices. The major archi-
tectural principle described for single unit cells is valid also for
the unit cells within networks: the equilibrium states can be pre-
sented as discrete conformational modes differing by the number
of the peristaltic blocks between the three-way junctions.

Fig. 1. Equilibrium configurations of a single unit cell of a polygonal network of membrane tubules. (A) The minimal energy configurations of a hexago-
nal unit cell corresponding to the minima of the energy profile presented in B. The numbers (I to IV) set the correspondence between the energy minima
in B and conformations in A. (Scale bar, 8 � J�1

0 .) (B) The left axis and black curve represent the bending elastic energy of a hexagonal unit cell as a func-
tion of the distance between the neighboring junctions, L. The local minima correspond to the equilibrium configurations presented in A. The right axis
and red curve represent the surface area of the configurations in dependence on L. The dots show the computed area values, whereas the dashed curve
is an interpolation. (Inset) The effect of ultra-low membrane tension, γ ¼ 1

100κ J
2
0, on the energy of the equilibrium conformations. The solid and open

squares represent the energies of the equilibrium conformations for γ ¼ 0 and γ ¼ 1
100κ J20, respectively. (C) Equilibrium configurations of the pentagonal,

quadratic, and triangular unit cells. (Scale bar, 8 � J�1
0 .) (D) The dimension of the equilibrium unit cell configurations as a function of the junction number

and the number of the peristaltic blocks between the junctions.
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The computed conformation of the most compact equilib-
rium configuration of the hexagonal network fragment (Fig. 2B)
closely resembles the one observed for ER tubular matrices (4)
(Fig. 2A). A quantitative agreement between the experimental
and computed configurations was reached for the intrinsic cur-
vature value J0 ¼ 0:025 nm�1, which is in a good agreement
with the curvature of the surrounding ER tubules.

The conformations of other computed configurations could
not be compared with the observed configurations because of
strong fluctuations (4) of the network planes of the latter.
Hence, the calculated interjunction distances of the extended
conformations of the network unit cells represent the model
predictions for future experiments.

Nanoholes in ER Sheets. The ER sheet nanoholes are located
within flat regions of ER sheets (Fig. 3A), but their formation
is essentially dependent on the curvature generating proteins of
the reticulon family (5), which are otherwise responsible for
formation of ER tubules and sheet edges. This implies that the
nanohole rims originate directly from the tubules as a result of,
for example, the shrinking of the tubular loops adjacent to the
sheet edges (5). Therefore, we analyze a scenario in which
nanoholes form as a result of collapse of the tubular network
unit cells connected to the ER sheet edge (5). As stated in the
previous sections, the effects of reticulons are accounted for by
the intrinsic curvature J0 of the tubules and the nanohole rims.

We consider the interface region between an ER tubular net-
work and a sheet, which includes one network unit cell adjacent
to the sheet edge and the associated boundary region of the
sheet. We address two states of the system. In one state, the unit
cell has a shape of a two-tined tubular fork whose ends are
merged with the sheet edge (Fig. 3 B, 1 and 3). In the alternative
state, the fork is converted into one tubule connected directly to
the sheet edge, whereas the space between the fork tines is
transformed into a nanopore within the sheet (Fig. 3 B, 2 and 4).
The experimental image (Fig. 3 A, Right) obtained in ref. 5 exhib-
its these two system states.

The computed configurations of the two states are presented
in Fig. 3 B, 1 and 2 for vanishing tension γ ¼ 0 and in Fig. 3 B, 3
and 4 for an ultra-low tension, γ ¼ 2:5 μN

m . The nanopore, whose
typical computed shape is shown in Fig. 3C, is predicted to vary

Fig. 2. Equilibrium configurations of a fragment of hexagonal tubular net-
work. (A) Image of ER matrix showing a regular hexagonal lattice with typi-
cal unit cell size of ∼ 50 nm as shown by the white bar within one of the
unit cells. (Scale bar, 100 nm.) Adopted from ref. 4. (B and C) The computed
configurations of an element or hexagonal tubular network for zero (B) and
one (C) peristaltic blocks between neighboring junctions. Scale bars are rep-
resented by the box sides and are equal. (Scale bars, B, 16 � J�1

0 ; C, 40 � J�1
0 .)

Fig. 3. Generation and structure of ER sheet nanoholes. (A) ER sheet nano-
hole image from Schroeder et al. (5) showing confocal (Left) and zoomed-in
stimulated emission depletion microscopy (STED) (Right) images of ER
sheets and tubules in mammalian cells with ∼ 100 nm diameter nanoholes
within the sheets. (B, 1–4) Computed equilibrium configurations of the inter-
face region between a tubular network and a sheet: 1 and 2 for vanishing ten-
sion γ ¼ 0, 3 and 4 for the ultra-low tension γ ¼ 2:5 μN

m . The sheet thickness and
the tubule intrinsic curvature are taken equal, respectively, to 50 nm
and J0 ¼ 1

50 nm�1 according to data from Schroeder et al. (5), and the
membrane-bending rigidity is κ¼ 20 � kBT. Scale bars are represented by the
box sides. (Scale bars, 16 � J�1

0 .) (C) Computed shape of a nanohole for vanish-
ing tension γ ¼ 0 with the luminal diameter ∼ 65 nm (for J0 ¼ 1

50 nm�1). (D)
Left axis and blue graph represent the difference in the elastic energy between
the equilibrium configurations without and with nanohole as a function of
tension, γ. Right axis and red graph represent the luminal diameter of the
nanohole as a function of the tension. The parameter values are κ ¼ 20 � kBT
and J0 ¼ 1

50 nm�1, and the sheet thickness is 50 nm.
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its diameter as a function of the system parameters. For J0 ¼
0:02 nm�1 and the sheet thickness of 50 nm, which correspond
to the measurements by Schroeder et al. (5), the computed pore
diameter is close to the experimentally observed value of about
100 nm (5) as presented in Fig. 3D. The shape of the nanopore
rim under vanishing tension can be also expressed in a cumber-
some but analytical form (22).

The computed difference of the energies of the two states
(Fig. 3D) demonstrates that, for vanishing tension γ ¼ 0, the

state with and without the nanopore have equal energies, whereas
an application of ultralow tension strongly favors the nanopore
state (Fig. 3D).

ERES Internal Structure and Transport Intermediates. The super-
resolution images of the grape-like ERES infrastructures (Fig. 4E)
(6) reveal a large curvature of their constituent membranes but
leave a question open about the topological properties of this mem-
brane organization, which may be interpreted as an interwoven

Fig. 4. ERES internal membrane organization and ER transport intermediate. (A) Bead chain–like equilibrium shape of a continuous membrane whose
area, A, strongly exceeds the internal length scale set by the intrinsic curvature A > J�2

0 ; the edge is constricted to a circle of a small radius, r ¼ 0:5 J�1
0 , and

the tension vanishes, γ ¼ 0. In the computations, the radii of the membrane necks were assumed to exceed the membrane thickness, which corresponds
to r ≥ 0:1 J�1

0 . The dashed shape represents the possible continuity of the chain to any arbitrary number of beads. (B) Schematic representation (solid line) of one
chain element consisting of a bead with the necks connecting it to the adjacent beads (dashed lines). The angle ϕ characterizes a kink of the chain axis mediating
the chain bending. (C) The chain-bending energy per one chain element as a function of the kink angle ϕ. The black dots are the calculated energies. The red
curve is a fit of Eq. 6 to the computational results in the angle range between 0 and 53°, which corresponds to the assumption of small curvatures, J < l�1. (Insets)
Computed shapes of the chain elements with different kink angles. (D) An example of a high-probability random orientation of a bead chain–like membrane
configuration consisting of 15 elements and corresponding to a self-avoiding randomwalk. (Scale bars, 20 � J�1

0 .) Quantitative agreement with the observed con-
figurations (E, Left and Right) is reached for J0 ¼ 0:05nm�1. (E) Observed configuration of ERES internal structure fromWeigel et al. (6). (Left) The box dimension
is ∼ 1:2 μm. (Right) The mean dimension of a chain element is ∼ 60 nm, and the mean size of the entire ERES is ∼ 360 nm. (F) Bead chain–like configurations
under different membrane tensions. The chain length equals 26 � J�1

0 . (Scale bar, 5 � J�1
0 ð100 nm for J0 ¼ 1

20 nm�1.) (G) Focused ion beam scanning electron micros-
copy (FIB-SEM) and three-dimensional rendering of transport intermediate fromWeigel et al. (6).
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tubular network of contiguous lipid bilayers (6) or, possibly, a
spawn-like pile of densely interlinked but separate vesicles. Here,
we propose a simple model for ERES internal architecture, which
recovers its peculiar appearance and, in addition, provides a
straightforward explanation of ERES transformation into the
pearl chain–like transport intermediates (Fig. 4G) (6).
ERES internal structure. We propose ERES to be formed by a
single continuous membrane patch with intrinsic curvature J0
and a sufficiently large area A such that A� 1

J2
0

. The edge of the

patch is constricted into a little circle with radius r < 1
J0
(Fig. 4A)

corresponding to the cross-section of a membrane nano-neck,
which connects, according to the observations, the ERES mem-
brane to the surrounding ER (6). Under normal conditions, we
assume no tension to be imposed on the membrane γ ¼ 0.

The shape of the membrane patch with minimal bending
energy FB is presented in Fig. 4A and has a character of a chain
of nearly spherical membrane beads connected by thin mem-
brane necks. In order to avoid the violation of the applicability
of the continuous elastic model of membrane elasticity, in the
numerical computations, we put a limit on the cross-sectional
radii of the necks between the beads, rn, which prevented them
from adopting values smaller than the membrane thickness.
The obtained detailed shapes in the narrow vicinity of the neck
waists must be seen as having a semiquantitative character.

This type of configuration could be expected based on the ten-
dency of the membrane to acquire a shape with total curvature, J,
as close as possible to the constant intrinsic curvature J0 at every
point of the membrane surface as required by the minimization
of the bending energy (Eqs. 2 and 3). A well-known family of
periodic tubular surfaces of constant total curvature, J ¼ const,
called unduloids includes the bead chain–like configurations (SI
Appendix, Unduloids as axially symmetric shapes of constant mean
curvature). The obtained membrane configuration (Fig. 4A) is
close to the bead chain–like unduloid but slightly deviates from it
because of two conflicting requirements imposed on the shape:
the sealing of the chain end and the abovementioned constraint
of the minimal possible radius of the interbead neck cross-
section rn (SI Appendix, Fig. S2A). The total curvature J of the
computed shape (Fig. 4A) only marginally deviates from the
constant values of J0. Based on these results, a bead chain–like
unduloid is a very good approximation for the computed shape.

The membrane bead chain (Fig. 4A) must be extremely flexi-
ble with respect to bending. Such bending occurs through the
generation of kinks of the chain axis, which results from the slid-
ing of the necks connecting the beads along the bead surfaces
(Fig. 4B). To evaluate the chain flexibility, we assessed its effec-
tive flexural rigidity kf . To this end, we performed an approxima-
tive computation of the shape and energy changes of a bead
resulting from a relative shift of its two necks characterized by a
kink angle ϕ(Fig. 4B). The computed kink energy change per
bead fKðϕÞ, presented in Fig. 4C, can be expressed as a function
of an effective bead chain curvature JC, defined as the curvature
of a circular arc of length, lB, connecting the ends of the bead’s
necks (SI Appendix, Fig. S2B). The graphical definitions of and
relationships between JC, lB, and the effective bead diameter l
are presented in SI Appendix, Approximative computation of kink
energy of a membrane bead chain and Fig. S2B. Assuming the
bead chain curvature to be small, JCl< 1, the kink energy can be
presented in a quadratic approximation as

fK ¼ 1

2
kf J

2
ClB, [6]

where the values of JC and lB are related to the kink angle ϕ
and the bead diameter l by

JC ¼ 2

l
tan

ϕ

2

� �
, and lB ¼ ϕ

JC
: [7]

We fitted the computed energy fKðϕÞ (Fig. 4C) to the function
Eq. 6, accounting for Eq. 7 and using the flexural rigidity kf as
a single fitting parameter, which resulted in

κf ≅ 0:5 � l � kBT: [8]

The conformation of a flexible bead chain has a statistical char-
acter since the chain is subject to strong thermal fluctuations
and, similarly to a flexible polymer, is expected to adopt, on
average, a folded conformation [see, for example (23)]. The
average size of an effective globule formed by the folded chain
can be best characterized by the rms distance between the chain
ends, RN . To estimate RN , we consider the bead chain as an
effective polymer consisting of elementary segments of length
l0. The l0 value is determined by the largest between two intrin-
sic scale lengths of the bead chain. The first scale length is
structural and equal to the bead diameter l. The second scale
length is set by the chain flexural rigidity and represented by
Kuhn length lK of the effective polymer, which can be related
to the polymer persistence length lP by lK ¼ 2lP (23). Using the
relationship between lP and the chain flexural rigidity lp ¼ κf

kBT
(23) and accounting for Eq. 8, we obtain lp � 1

2 l and, hence, the
Kuhn length lK � l. Since the two intrinsic scale lengths have
similar values, we consider the bead chain as a self-avoiding
polymer with an elementary segment length equal to the bead
diameter l0 ¼ l and the segment number N equal to that of the
beads. In this approximation, the end-to-end distance of the
bead chain can be estimated according to (23):

RN ≈ l �Nν, [9]

where ν� 0:6 (23).
A typical high-probability conformation of the bead chain we

obtained by computational simulations is presented in (Fig. 4D).
Qualitatively, it agrees with the observed grape-like configurations
of ERES infrastructure, two of which are given in Fig. 4E (6).

For a quantitative description of the system, we chose the
value of the membrane intrinsic curvature J0 ¼ 0:05nm�1 such
that the computed bead cross-sectional diameter l corresponds
to that of the observed average bulges composing the grape-
like surface of ERES with lffi 60nm (6) (SI Appendix,
Approximative computation of kink energy of a membrane bead
chain). Taking, based on the images (6), a typical number of
beads in the chain N ¼ 15, the effective ERES size estimated
according to Eq. 9 is RN � 300nm, which is in a good agree-
ment with the measurements (6).

Importantly, due to their flexibility, the ERES membrane
bead chains are expected to exhibit persistent strong fluctua-
tions around the average conformation.
ER transport intermediate. We propose that the pearl chain–like
transport intermediates (6) (Fig. 4G) form directly from the ini-
tial bead chain–like ERES structures upon application to them
of ultra-low pulling forces generated by the molecular motors
running along the cytoskeletal microtubules (6).

The application of a pulling force has two effects on the
bead chain. First, it straightens the initial folded chain confor-
mation. Second, it generates membrane tension, γ, which may
result in some degree of the bead stretching with respect to
their tension-free shape.

We computed the bead chain conformations for membrane

tension varying in the range γ ¼ ð0� 9Þ μN
m2 , for the membrane

intrinsic curvature J0 ¼ 0:05nm�1 (Fig. 4F). The lowest tension
configurations in Fig. 4F account for the chain straightening
without any noticeable deformation of the membrane beads.
This happens already for almost vanishing tensions produced

by pulling forces, which can be estimated as kBT
l and, for the

bead size of l¼ 60nm, are of the order of 10�2pN. For tensions

close to 10μNm , the beads undergo some stretching, but the chain
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retains its varicosities (Fig. 4F). Such tensions are generated by
about 1-pN large pulling forces typical for the upper limit of a
force produced by one molecular motor (24, 25). The bead

chain–like shapes obtained for the tensions in the range ð3 7Þ μN
m2

(Fig. 4F) are the closest to the observed shapes of ER transport
intermediates (Fig. 4G).

Discussion
Here, we proposed and computationally substantiated the physi-
cal mechanism of formation and stabilization of the membrane
structures recently found at the nanoscopic level of organization
of the peripheral ER: the ER tubular matrices (4) (Fig. 2A), the
ER sheet nanoholes (5) (Fig. 3A), the ERES infrastructures (6)
(Fig. 4E), and the pearl chain–like ER transport intermediates
(6) (Fig. 4G).

Our analysis revealed a common structural motif underlying
the geometry of most of the observed ER nanostructures. In
the case of ER matrices, it is represented by the peristaltic
blocks, which compose, as mosaic elements, the various matrix
conformations characterized by different distances between the
intertubular junctions. The basically same structural motif rep-
resents the bead elements of ERES structures and the repeat-
ing sections of the shapes of ER transport intermediates. The
shape of this structural motif originates from the geometry of
surfaces of constant nonzero mean curvature and more specifi-
cally from the periodic elements of unduloids.

According to our results, the geometry of all these ER nano-
structures, which are characterized by the 50- 100-nm intrinsic
length scales, is determined by a single factor, the intrinsic cur-
vature of ER membranes. The intrinsic curvature can be gener-
ated by the dedicated proteins and/or protein complexes such
as reticulon/REEP family proteins (2, 5, 9, 14), COPII or COPI
coats (6, 26), or combinations between them.

The membrane tension, a second mechanical factor involved
generally in intracellular membrane shaping, must either vanish
in these nanostructures or have ultra-low values up to 10 μN/m.
Ultra-low tensions have been suggested to exist in ER (18, 19).
They can be generated by the elements of cytoskeleton interact-
ing with ER membranes (6) or result from such generic factors

as membrane thermal undulations or local fluctuations of the
intratubular pressure (19).

We proposed ultra-low tension to play the role of modulator of
the membrane configurations. The ER matrices are predicted to
have, upon a vanishing tension, a discrete series of energetically
degenerated conformations as shown by the low and nearly equal
energies of the local equilibrium states represented by the energy
minima (Fig. 1A). The application of an ultra-low tension is
shown to favor the smallest unit cell configuration. We predicted
ultra-low tensions to affect the structure of the interface region
between the ER tubular network and ER sheet favoring forma-
tion of nanoholes within the sheet plane (Fig. 3B). For ERES,
ultra-low tensions are proposed to drive the transformation of an
entropically folded bead chain–like structure of the ERES inter-
nal membrane (Fig. 4D) to a stretched pearl chain–like shape
(Fig. 4F) modeling the ER transport intermediates.

Materials and Methods
Numerical computations of the membrane conformation of the ER matrices,
ER tubules and tubular loops adjacent to and merged with the sheet edges,
the ER sheet nanoholes, the ERES bead conformations, and the ERES transport
intermediates were performed by using a combination of MATLAB and the
finite element method–based freeware the Surface Evolver. TheMATLAB pro-
gram controlled all parameters of each calculation. The elastic energy minimi-
zation was performed by the finite element approach using Kenneth Brakke’s
Surface Evolver. The computation efficiency was increased by accounting for
the shape symmetry. The obtained minimal energy shape data were imported
into MATLAB for further analysis and graphical output. For computations of
the randomly folded conformations of the ERES bead chain, a MATLAB pro-
gram randomly generated for each chain bead a kink angle and a rotation
angle around the bond axis, picked the computed bead shape, and joined it
to the bead chain. These steps were repeated N times according to the
required total number of the beads. The fitting of Eq. 7 to the kink energy
data of Fig. 4Cwas made using aMATLAB app. Also, the analytical shapes and
their associated features were calculated usingMATLAB.

Data Availability. All study data are included in the article and/or SI Appendix.
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