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While both human and animal trypanosomiasis continue to present as major human

and animal public health constraints globally, detailed analyses of trypanosome wildlife

reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both

livestock and wildlife carrying a significant risk of spillover and cross-transmission

of species and strains between populations. Increased human activity together with

pressure on land resources is increasing wildlife–livestock–human infections. Increasing

proximity between human settlements and grazing lands to wildlife reserves and game

parks only serves to exacerbate zoonotic risk. Communities living and maintaining

livestock on the fringes of wildlife-rich ecosystems require to have in place methods

of vector control for prevention of AAT transmission and for the treatment of

their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense,

Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans,

and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma

brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma

elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini,

Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma

godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts

for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae,

Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae,
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and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome

infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is

influenced by age, sex, species, and physiological condition and parasite challenge.

Cyclic transmission throughGlossina species occurs for T. congolense, T. simiae, T. vivax,

T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi.

T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting

flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection,

but the delicate acquired balance between trypanotolerance and trypanosome challenge

can be disrupted by an increase in challenge and/or the introduction of new more

virulent species into the ecosystem. There is a need to protect wildlife, animal, and

human populations from the infectious consequences of encroachment to preserve and

protect these populations. In this review, we explore the ecology and epidemiology of

Trypanosoma spp. in wildlife.

Keywords: trypanosomes in wildlife, human-wildlife interactions, wildlife-livestock interactions, human African

trypanosomiasis, sleeping sickness, Trypanosoma brucei gambiense, Trypanosoma brucei rhodesiense

INTRODUCTION

The African and American trypanosomiases present significant
global health challenge in human, domesticated animal, and
wildlife communities. Spillover of parasites from wildlife to
domestic livestock and humans and from domestic animal
species to wildlife compromises health (1, 2). Most trypanosome
infections in wildlife do not cause obvious damage to their
host (3, 4), but some wildlife species are highly susceptible
to trypanosome infections, including Rattus nativitatis and
Macleay’s rats (Rattus macleari) (5).

Trypanosoma are primarily transmitted by vectors (6)
within which they undergo complex development cycles.
Trypanosomes, which develop in the posterior section of the
digestive tract in insects, are called stercorarian, for example,
Trypanosoma cruzi the causal agent of Chagas disease, common
in Latin America (7). Salivarian trypanosomes develop in the
anterior part of the insect gut tract and include the causal agents
of African animal trypanosomiasis (AAT) or nagana and for
human African trypanosomiasis (HAT) caused by Trypansoma
brucei rhodesiense and Trypansoma brucei gambiense that are
present across Sub-Saharan Africa (8).

Animal trypanosomiasis is endemic in tropical regions
of Africa, parts of Asia, and South America (9). T. brucei
s.l., Trypanosoma congolense, Trypanosoma simiae, and
Trypanosoma uniforme are transmitted within the tsetse belts of
Africa and cannot be transmitted by mechanical vectors (9). T.
vivax and Trypansoma evansi can be transmitted mechanically
and occur within and outside tsetse fly-infested zones (10).

EPIDEMIOLOGY OF ANIMAL
TRYPANOSOMIASIS

Trypanosomiasis is one of the most important diseases affecting
livestock, equines, and dogs within the Sub-Saharan region
(11, 12). Cross transmission of parasites between livestock and

wildlife hosts has been reported, especially in areas in close
proximity to game parks and wildlife reserves. Wildlife species
can survive within the tsetse belts across the Sub-Saharan region,
despite being reservoir hosts for multiple species of trypanosome.
The high prevalence of trypanosomiasis within protected areas
traditionally has rendered these areas unattractive for livestock
keeping and agricultural production (13).

Phylogenetic analysis shows a remarkable complexity
of trypanosome species, subspecies, and strains in tsetse
flies, human, domestic, and wildlife hosts. Examining the
trypanosome species circulating within an ecosystem is a key to
identifying the wildlife reservoirs of infection and transmission
parameters to other animal hosts, including livestock within
the ecosystem (3). Understanding the various trypanosome
species harbored in wildlife hosts can guide preventive and
control measures of trypanosomiasis in communities living at
the livestock–wildlife interface. A wide variety of trypanosome
species are circulating among wildlife hosts including T. brucei
s.l., T. congolense, T simiae, T. godfreyi, and T. theileri (3).

Hosts and Species of Trypanosomes
Apart from T. cruzi, present in South America, and T. theileri,
present worldwide, trypanosomes infect a large number of wild
and domestic ungulate species (6). Infection in the wildlife
is influenced by species and habitat (12). Wildlife hosts for
trypanosomiasis are numerous and include antelope species,
warthogs (Paecocherus aethiopicus), elephants (Loxodanta
africana), hippopotamus (Hippopotamus amphibius), lions,
hyenas, jackals, caracals, and wild ruminants (14–16).
Trypanosome species commonly found in wildlife species
include T. vivax, T. brucei s.l., T. congolense, and T. evansi
(14). T. vivax, a pathogen affecting cattle, has been identified
in waterbucks and giraffes, but the strains of T. vivax in these
two host species were unique (3). Multiple wildlife hosts
carry the human-infective zoonotic trypanosome strain T.
b. rhodesiense, including bushbucks (Tragelaphus scriptus),
impala (Aepyceros melampus), lion (Panthera leo), zebra (Equus
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quagga boehma), warthog (Phacocoerus africanus), and duiker
(Sylvicapra grimmia) (12). Trypanosoma conglense, Trypanosoma
simiae, and Trypanosoma godfreyi were identified in Rhinocerus
posttranslocation (16).

Infection with trypanosomes can predispose infected animals
to other infections (17), and concurrent and opportunistic
bacterial infections in wildlife can hasten the onset of clinical
trypanosomosis (17).

There are significant associations between taxonomic groups
of wildlife hosts and the prevalence of trypanosomiasis. Wildlife
hosts from the bovinae group show a high prevalence of
trypanosomiasis, especially T. vivax and T. congolense as well
as human infective T. brucei (Table 1). Infection is attributed to
their grazing habits, taking them into contact with tsetse and
other biting flies.Wildlife hosts from the Pantherinae group show
a very high prevalence of mixed trypanosome infections, as do
those from the Suidae (12). A summary of trypanosome species
in wildlife hosts and host taxonomy is shown in Table 1.

Transmission to Wildlife
Transmission of trypanosome species is generally by biting
vectors including Tsetse flies, Tabanids, Stomoxys, Heamatopota,
and Hippobosca (15, 30, 31). Infection in carnivores is
additionally from consumption of infected meat as documented
in the Felidae and Canidae (31, 32).Desmodus rotundus (Vampire
bats) also transmit trypanosomiasis (32).

Trypanosomes engage in two patterns of transmissions:
Cyclical transmission in which trypanosomes undergo active
multiplication within the vectors (tsetse flies) as is common for T.
congolense, T. simiae, T. vivax, T. brucei, and the human infective
trypanosome species (T. rhodesiense and T. gambiense); and
mechanical transmission through tsetse and alternative vectors
including biting flies of the Tabanidae family (horse flies) as well
as Stomoxys species. T. evansi and T. vivax can be mechanically
transmitted (33).

Distribution of Reservoir Hosts
Preservation of natural resources including game parks and game
reserves has led to an expansion of wildlife populations that
serve as reservoirs for AAT andHAT (34). Human encroachment
on the game parks and forests has increased AAT transmission
between wildlife and domestic livestock, due to increased tsetse–
human and tsetse–livestock contacts (34). The distribution of
host populations within these areas determine vector and parasite
survival. Wildlife hosts including monkeys and warthogs live
in less restrictive habitats, unattractive to poachers with limited
trophy hunting leading to increased reservoir host multiplication
rates. They are widely distributed in the ecological environment
and are favorable reservoirs formultiple trypanosome species due
to their availability to vectors. Crocodiles and hippopotamus are
limited to specific habitats, limiting access of vectors.

Distribution of Tsetse Flies
Trypanosomiasis affects one-third of Africa’s land mass (35–37).
Tsetse are found across most of West, Eastern, Central, and
Southern Africa (38). The different species and subspecies of
tsetse are shown in Table 2. Tsetse populations require moderate

temperatures (23–25◦C), high relative humidity (75–90%) with
weak saturation deficit and shade (47–49). Temperatures above
34.1◦C limit survival of tsetse and trypanosomes (35).

Food Source—Activity and Migration
Differences in wildlife food sources, particularly for wild bovidae,
influence their exposure to trypanosomiasis. Among ruminant
wildlife hosts, browsers are more at risk of trypanosomiasis
compared with grazers; semi-browsers are moderately
susceptible. Eland, Waterbuck, Kudu, and Bushbuck are
more heavily infected, associated with their preference for
inhabiting thickets during tsetse feeding hours, predisposing
them to more bites (13, 18).

Diurnal wildlife hosts are more susceptible to trypanosome
infection compared with the nocturnal species. Warthogs are
most active in the morning and late afternoon and show high
infection rates for trypanosomiasis in correlation to vector
feeding hours (20). Lions are more infected in areas of high
tsetse challenge than low challenge (50). The movement of large
numbers of animals within wildlife ecosystems also influences
infection. Animals will migrate in the dry season toward water
sources that are also tsetse habitats (20).

Pathogenesis of Trypanosomosis
Trypanosome infection leads to erythrophagocytosis and heme
catabolism resulting in iron accumulation in tissues and
hyperbilirubinemia, liver dysfunction, and multiple organ
failure (51). At necropsy, atrophy of body fats, pulmonary
edema, hepatomegaly, lymphadenopathy, and hemorrhages are
observed. Trypanosomes are found in tissues and body organs,
and enlarged periarteriolar sheaths have been observed in
wildlife (52).

Clinical Signs
Trypanosomiasis is a chronic progressive disease, and clinical
signs may become obvious in advanced stages of the disease
(53). Bovines affected by T. vivax present with severe anemia,
lethargy, photophobia, lacrimation, and inappetence (17, 54, 55);
pyrexia fluctuates with the fluctuating parasitemia. Leukopenia,
thrombocytopenia, and degenerative and inflammatory
lesions are observed in most organs (56). Body condition
scores deteriorates gradually, and animals are dehydrated and
debilitated before death. Superficial lymph nodes are enlarged
and conspicuous. Corneal opacity may be observed with
lacrimation (57). Young animals are stunted even with proper
feeding, and productivity is impaired by abortions (32, 38).
Animals may show localized or generalized edema (58). Except
for T. equiperdum, other Trypanosoma species include similar
clinical signs, but variations in intensity may happen in the
various species. Trypanosoma brucei s.l. infection shows limited
clinical signs in bovines of indigenous species but is highly
pathogenic in exotic species (59).

Diagnosis of Trypanosomiasis
Trypanosomiasis is characterized by the intermittent presence of
parasites in the blood and intermittent fever (54). Parasitological
examinations are relatively sensitive during the acute phase
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TABLE 1 | Trypanosome species and taxonomy of wildlife hosts.

Taxonomic group Wildlife host (scientific name) Trypanosome species References

Bovidae Waterbuck (Kobus ellipsiprymnus) T. vivax, T. congolense, T. brucei, T. evansi (12)

Girrafidae Girraffe (Giraffa camelopardalis) T. vivax, T. evansi, T. brucei (12)

Bovidae African buffalo (Syncerus caffer) T. b. rhodesiense, T. congolense, T. brucei (12)

Bushbuck (Tragelaphus scriptus) T. b. rhodesiense, T. congolense, T. vivax, T. evansi (12)

Greater kudu (Tragelaphus strepsiceros) T. congolense, T. vivax (12)

Red lechwe (Kobus leche) T. theileri (18)

Hartebeest (Alcelaphus buselaphus) T. godfreyi, T. brucei, T. godfreyi (18)

Sable antelope (Hippotragus niger) T. brucei, T. theileri (18)

African buffalo (Syncerus caffer) T. theileri, T. godfreyi (18)

Eland (Taurotragus derbianus) T. vivax, T. congolense, T. brucei (12)

Impala (Impala impala) T. godfreyi, T. brucei (18)

Elephantidae Elephant (Loxodanta africana) T. vivax, T. congolense, T. evansi, T. elephantis (19)

Hippopotamidae Hippopotamus (Hippopotamus amphibius) T. vivax, T. brucei, T. evansi, T. congolense (20)

Suidae Warthog (Phacocoerus africanus) T. b. rhodesiense, T. vivax, T. congolense, T. evansi (20)

Warthog (Phacochoerus africanus) T. godfreyi, T. brucei, T. simiae (18)

Feral pig (Sus scrofa) T. evansi and T. cruzi (21)

Pantherinae Lion (Panthera leo) T. brucei, T. evansi, T. congolense, T. congolense (12, 18)

Leopard (Panthera pardus) T. brucei, T. congolense, T. evansi (12)

Equidae Zebra (Equus quagga boehma) T. b. rhodesiense (12)

Cephalophinae Common duiker (Sylvicapra grimmia) T. b. rhodesiense, T. vivax, T. congolense (12)

Aepycerotinae Impala (Aepyceros melampus) T. b. rhodesiense, T. congolense, T. evansi (20)

Rhinocerotidae Rhino (Diceros bicornis) T. brucei (20)

Alcephinae Wildebeest (Connochaetes taurinus cooksoni) T. brucei, T. congolense, T. vivax (20)

Hartebeest (Alcephalus buselaphus) T. evansi, T. brucei (20)

Hyaenidae Hyena (Hyaena hyaena) T. evansi, T. congolense (12)

Cercopithecinae Vervet monkey (Cercopithecus species) T. gambiense (12)

Baboon (Papio cynocephalus) T. congolense (12)

Crocodilinae Crocodile (Crocodylus niloticus) T. vivax (12)

Hippotraginae Roan antelope (Hippotraggus equinus) T. vivax, T. congolense (12)

Pteropodidae Megabat/fruit bat (Chiroptera) Trypanosoma dionisii, T. cruzi (22, 23)

Phalangeridae Brushtail possum (Trichosurus vulpecula) Trypanosoma spp. (17)

Muridae Brush-tailed rabbit-rat (Conilurus penicillatus) Trypanosoma spp. (5)

Potoroidae Brush-tailed bettong (Bettongia penicillata) T. vegrandis, T. copemani (24)

Dasyuridae Northern quoll (Dasyurus hallucatus) Trypanosoma spp. (5)

Peramelidae Northern brown bandicoot (Isoodon macrourus) Trypanosoma spp. (5)

Phascolarctidae Koalas (Phascolarctos cinereus) Trypanosoma irwini, T. copemani (25)

Koalas (Phascolarctos cinereus) T. gilletti (25)

Cervidae Marsh deer (Blastocerus dichotomus) Trypanosoma theileri, T. evansi (26)

Canidae African wild dog (Lycaon pictus) T. godfreyi (18)

Potoroidae Boodie (Bettongia lesueur) Trypanosoma spp. (27)

Tayassuidae White-lipped peccary (Tayassu pecari) Trypanosoma evansi and Trypanosoma cruzi (21)

Mustelidae Wild European badger (Meles meles) Trypanosoma (Megatrypanum) pestanai (28)

Meliphagidae Regent honeyeater (Anthochaera phrygia) Trypanosoma thomasbancrofti (29)

of the disease. Wet blood film examination is used to
detect the presence of motile trypomastigotes but has low
sensitivity. Blood is taken from the tail or ear veins (55).
Fluorescence microscopy can improve sensitivity for thin and
thick smears (60). Parasitic concentration by centrifugation and
examination of the buffy coat is more sensitive than the wet and
thick smears (61). Dark ground or phase-contrast microscopy

increases sensitivity at low parasitemia (62). Anion exchange
chromatography is also sometimes deployed for detecting low
parasitemia (54, 63, 64).

Molecular tests and serological tests are more sensitive than
the usual parasitological tests for Trypanosoma (3, 63–68).
Common serological tests include CFT, ELISA, and IFAT, while
the common molecular tests are PCR, LOOP/LAMP, and LFA.
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TABLE 2 | Tsetse species, geographical distribution, and wildlife spp. affected by trypanosomiasis.

Subgenus Glossina species Glossina subspecies Country Wildlife animal spp. References

Nemorrhina (Palpalis) Glossina palpalis G. p. palpalis Nigeria, Angola Cameroon, Bushbuck, primates, warthogs (36)

G. tachinoides Nigeria (37)

G. p. gambiesis Gambia, Senegal, Republic of

Guinea

Baboons, monkeys, chimps (39, 40)

G. fuscipes G. f. fuscipes Uganda, Sudan, Ethiopia, Kenya,

DRC

Buffaloes, antelopes (41)

G. f. martini Uganda, Tanzania, DRC Buffaloes (42)

G. f. quanzensis Uganda, Tanzania Buffaloes, antelopes (42)

G. pallicera G. p. pallicera Cameroon, Ivory coast, Liberia Antelopes (43–45)

G. p. newsteadi DRC Lions, leopards (46)

G. tachinoides Nigeria, Ghana, Cameroon Buffaloes, lions, buffaloes (46)

G. caliginea Nigeria, Congo Brazaville Cheetah, lions, leopards (46)

Glossina (morsitans) G. morsitans G. m. morsitans Nigeria, Uganda, Tanzania,

Zambia

Buffaloes, rhinoceros, antelopes (46)

G. m. submorsitans Uganda, Tanzania Buffaloes, bushbuck, antelopes (46)

G. m. centralis Uganda, Tanzania Buffaloes, bushbucks, antelopes (46)

G. swynnertoni Nigeria, Congo Brazaville Lions, cheetahs (46)

G. longipalpis Ivory Coast, Senegal, Mali Buffaloes, lions (46)

G. pallipides Ethiopia, DRC, Uganda, Kenya,

Zambia, Tanzania

Buffaloes, lions, antelopes (46)

G. austeni Kenya, Tanzania, Mozambique Bushbucks, antelopes, lions (46)

G. vanhoofi DRC Lions (46)

G. tabanformis Nigeria, DRC Buffaloes, lions (46)

G. severini DRC Lions, bushbucks (46)

G. schwetzi Togo. Congo Brazaville Wild ruminants (46)

G. nigrofusca Ivory Coast, Nigeria, CAR, DRC Elephants, lions, monkeys (46)

G. nashi Cameroon, Nigeria, Togo Monkeys, baboons, wild cats (46)

G. medicorum Ghana, Gambia, Nigeria Lions, buffaloes (46)

G. longipennis Tanzania, Sudan, Kenya Antelopes, bushbucks, lions (46)

G. hanningtoni Nigeria, Cameroon, Gambia Bushbucks, buffaloes (46)

G. fuscipleuris CAR, DRC Cameroon Lions, bushbucks (46)

G. brevipalpis Kenya, DRC, Tanzania Buffaloes, antelopes (46)

Low-flow assay (LFA) is cheaper with 96.3% sensitivity and 93.9%
specificity (69). Approved tests for AAT are shown in Table 3.

TRYPANOSOMES IN WILDLIFE

The majority of trypanosome species require multiple obligatory
hosts to complete their life cycles (heteroxenous), and the
transmission of the parasites is mainly via hematophagous
invertebrate vectors (2, 88). Trypanosomes are found in blood
and tissues; blood-borne protozoan trypanosomes (Trypanosoma
vegrandis) have been identified in wild animals including,
but not limited to, the northern brown bandicoot (Isoodon
macrourus), common brushtail possum (Trichosurus vulpecula),
northern quoll (Dasyurus hallucatus), and brush-tailed rabbit-
rat (Conilurus penicillatus) (5). Trypanosoma cruzi, Trypanosoma
dionisii, and an insect trypanosome (Blastocrithidia) have been
found to infect bats and other mammalian wildlife in Europe and
South America (22). Bats, possums, and rats act as reservoirs of
trypanosomes for domestic and wild animals, as well as humans
(5, 22). T. cruzi (Chagas) has been identified in kidney tissue,

heart muscle, and blood, urine, and peritoneal fluid of wild
spp. including foxes, opossums, raccoons, and striped skunks
(89, 90), and parasites can be transmitted from animal-to-animal
by contamination of animal wounds with blood, urine, and
peritoneal fluid (89, 90).

Trypanosome–Host Relationships
Hosts are classified according to their role as a definitive host
[if the mature sexual stage(s) of the parasite occurs within
them] or intermediate hosts when the more mature sexual stages
of the parasite only aid part of the life cycle (91). Transfer
(paratenic) hosts are not vital for the completion of parasitic
development cycles butmaintain the parasite before it reaches the
obligatory/definitive host (92, 93). Invertebrates (vectors) acting
as hosts and carriers of parasites facilitate the completion of
parasitic life cycles by transmitting parasites (94–96).

Trypanosomes can infect many hosts, transmitted by
hematophagous insect vectors mainly the tsetse fly and
triatomid kissing bugs (subfamily: Reduviidae) (13, 97).
Salivarian trypanosomes, Trypanosoma brucei, T. rhodesiense,
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TABLE 3 | Approved laboratory tests for trypanosomiasis according to OIE (70).

Test criteria Objective Methods References

Clinical signs Categorize

presentation

Observations (32, 53, 71)

Microscopy Direct

examination

Wet blood films (72)

Thick blood films (60, 61)

Thin blood smear films (72)

Parasitic

concentration

Microhematocrit

centrifugation

technique

(61)

Dark ground or

phase-contrast buffy

coat technique

(62)

Anion exchange

technique

(73–75)

Cultivation

technique

Animal inoculation (76–78)

Molecular

detection

Antigen assays Trypanosome antigen

detection assays

(79)

Trypanosome

DNA

Monospecific PCR (80)

Multi-specific PCR (81, 82)

LOOP (68)

LFA (69, 83)

Serology Antibodies Indirect

immunofluorescence

test

(84)

IgG antibody ELISA (85)

IgG antibody detection (86, 87)

T. equiperdum, T. vivax, and T. congolense are transmitted in
tsetse fly (Glossina spp.) saliva to the host spp. Hosts are as
follows: T. brucei s.l. (domestic mammals and humans), T. vivax
(ruminants, horses, and camels), T. equiperdum (equines), T.
simiae (pigs), and T. congolense (dogs and cats) causing T. evansi
(domestic mammals), and other numerous wildlife hosts such
as monkeys, guinea pigs, rabbits, rats, etc., are also affected
(91, 98). Stercorian trypanosomes are transmitted through the
fecal matter of the insects (Triatominae, e.g., Triatoma infestans)
to host skin where they gain access to tissues. Other vectors of
transmission for stercorians include Tabanid flies, stable flies,
ticks, and mosquitoes. Stercorians include Trypanosoma cruzi,
T. lewisi, T. melophagium, T. nabiasi, T. rangeli, T. theileri,
T. theodori, T. lewisi, T. cruzi, bat spp. (Trypanosoma cruzi
marinkellei, Trypanosoma dionisii, Trypanosoma erneyi,
Trypanosoma livingstonei, and Trypanosoma wauwau), and
others: Trypanosoma conorhini and Trypanosoma rangeli
(94, 95, 98, 99). Among wildlife, T. cruzi is found in armadillos,
dogs, possums, foxes, bats, raccoons, and striped skunks
(5, 22, 89, 90). In addition, T. melophagum and T. theileri are
found in Europe infecting cattle, buffaloes, and antelopes (98).

Trypanotolerance
Trypanotolerant animals show a few clinical signs (96, 97), and
trypanosomes are able to evade the host immune responses
(100). Trypomastigotes penetrate a variety of host cell types and

multiply intracellularly as amastigotes—which eventually infect
host cells and differentiate into BFT, which eventually invade the
lymphatic and circulatory systems (50, 101). Trypanosoma cell
membranes are covered with dense variable surface glycoprotein
(VSG) homodimers—immunodominant antigens that trigger
infected host B- and Th-cell-mediated immune responses. Over
1,000 different VSG genes and pseudogenes are present in
the trypanosome genome that can undergo segmental gene
recombination to encode an estimated 10,000 different VSG
surface coats. High antigenic variability in VSG molecules
hinders vaccine development (102).

Wildlife, while generally immunotolerant to trypanosomes
(103) can, however, develop clinical trypanosomiasis (104) and
show varying levels of trypanotolerance among species (105,
106). Trypanotolerance is influenced by multiple host intrinsic
and extrinsic factors and can develop from previous exposure
(106). Intrinsic factors include age, sex, species, physiological
state, and state of nutrition, while extrinsic factors include
temperature, humidity, nature of vegetation, and the nature of
wildlife communities (107).

A study in the Serengeti National Park, Tanzania, showed age-
dependent infection with T. congolense in lions (Panthera leo);
however, the same animals appeared to have developed cross-
immunity following infections to multiple trypanosome species
including T. brucei rhodesiense (101). Lions are exposed to high
challenge from trypanosomes, both from tsetse and also from
infected prey, becoming exposed to extremely high numbers of
VSGs. This work suggests that animals within a closed exosystem
can control infections and, in this case, eliminate the human
infective parasite T. b. rhodesiense from the infection pool.

Development of Resistance
Trypanotolerance can enable the regulation of parasite levels in
the blood (parasitemia) and body tissues. Resistance in wildlife
species has been associated with serum xanthine oxidase and
catalase and other trypanolytic molecules (108, 109). Stress
can affect trypanotolerance in wildlife (71). Trypanotolerance
has been investigated in mice and cattle, although these have
differences in immune response, i.e., more pronounced B-cell
activation in mice than in cattle (50). In cattle, antibody (IgG
and IgM) and complement activity against parasitic VSGs leads
to protection (110), through antigenic neutralization and IL-4
production (111) (Figure 1).

In Cape buffalo, resistance has been associated with non-
specific trypanocidal activity in serum, which helps to lower the
parasitemia following action of xanthine oxidase (XO), which
generates reactive oxygen species (ROS). Since trypanosomes
cannot metabolize XO, this cripples parasitic binding and
endocytosis (111), trypanosomes are starved of ATP, and
death follows (Figure 1). An increase in catalase activity is
associated with increased parasitemia (112). Some wildlife spp.
including the black rhinoceros have significant deficiencies
for ATP, catalase, and glycolysis enzymes (conditions that
favor trypanosome parasitemia) leading to adaptive evolutionary
changes, which help to protect the animals against the
parasites (113).
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FIGURE 1 | Vectors carrying epimastigotes infect wildlife host species. Epimastigotes transform into trypomastigotes in blood. Host enzymes [e.g., xanthine oxidase

(XO) and superoxide dismutase (SOD)] increase production of reactive oxygen species (ROS) such as hydrogen peroxide, which helps clear the parasites, while

antioxidant enzymes such as catalase (CAT) lead to increased parasitemia. Immune system activation leads to production of antibodies and cytokines, which

neutralize trypanosomes. Inhibition of glycolysis (ATP) leads to deprivation of energy in the parasite for cellular activities. Furthermore, host defenses activate the innate

immunity leading to hematopoiesis and an increase in blood cells, thus, leading to trypanotolerance. Wildlife host species subsequently get infected with

trypanosomes but rarely succumb to infection.

Wild animals show varying levels of trypanotolerance; the
Thomson’s gazelle, dikdik, blue forest duiker, jackal, bat-eared
fox, ant bear, hyrax, serval, and monkey are all susceptible
to T. rhodesiense and T. brucei, whereas the common duiker,
eland, bohor reedbuck, spotted hyena, oribi, bushbuck, impala,
warthog, bushpig, porcupine, and baboon are considered
resistant (or less susceptible) to T. b. rhodesiense and T. brucei
infection (114, 115). Animals most susceptible are usually found

in areas of high tsetse challenge, while those least susceptible
(resistant) animals within the population may have acquired
resistance through low exposure and challenge over time (116).

The clinical course of trypanosomiasis has been examined in
native African buffalo (Syncerus caffer), oryxes (Oryx beisa), eland
(Taurotragus oryx), and waterbuck (Kobus defassa) following
infection with T. congolense, T. vivax, or T. brucei. These
animals showed resistance in the form of negligible parasitemia
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and minimal anemia (115). Wild and domestic animals have
been observed to develop resistance to trypanosomiasis after
being subjected to prolonged continuous trypanosome infections
(117, 118), and as previously mentioned, indigenous bovines are
resistant to T. brucei within endemic foci in Uganda (114, 115).

TRYPANOSOMIASIS AT THE WILDLIFE,
DOMESTIC ANIMAL INTERFACE

Diversity of Trypanosomes in Wildlife
Multiple Trypanosoma species and genotypes contribute to a
large reservoir of parasite diversity. This presents major problems
in the management of trypanosomiasis at the wildlife–domestic
animal interface, with the risk of virulent strains emerging
that impact both wildlife and domestic populations (5). A
review of Australian animal trypanosomes found a huge variety
of parasites: T. pteropi, T. thylacis, T. hipposideri, T. binneyi,
T. irwini, T. copemani, T. gilletti, T. vegrandis, T. lewisi, T.
melophagium, T. theileri, T. nabiasi, T. evansi, T. cruzi, T. pteropi,
T. hipposideri, T. binneyi, T. thylacis, T. copemani, T. Irwin, and
T. gilleti. Such biodiversity may have negative impacts on the
wildlife and national parks, and is associated with biosecurity
concerns (88, 119). Newly identified genotypes of wildlife animals
include Trypanosoma vegrandis G6 and T. vegrandis G3 (5).
Furthermore, a study in bats found three Trypanosoma spp.
(T. cruzi, T. dionisii, and Blastocrithidia spp.) (22) demonstrating
the great diversity in several wildlife species.

Infection at the Wildlife, Domestic Animal
Interface
Climate change, population pressure, and incentives to end
poverty through farming have forced humans to encroach
into land previously occupied by wildlife (108, 120). Human
encroachment in protected zones runs the risk of parasite
transmission from wildlife to domestic animals and zoonotic
transmission (108, 109, 121). Synanthropic zoonotic infections
are spread from livestock to humans, and exoanthropic infections
are spread by wildlife and feral animals to humans—contributing
to the increasing gene pool of anthroponoses (98). The cross-
species (interspecies) transmission, also known as host jump or
spillover, means the potential of an external parasite to invade
a new host and infect them to ultimately spread to the whole
population of the new host. About 63% of host jumps are
responsible for interspecies diseases (109, 122, 123).

Endemic zones are created by encroaching on places of
game parks. This has caused a wildlife and livestock interface,
and development of the trypanosome parasite reservoirs (117).
Wildlife is often implicated as the reservoir of parasites especially
trypanosomes (37, 124, 125). It is common for the high
incidences of trypanosomiasis in the wildlife to spillover to the
domestic cycle in the tsetse fly-infested zones (71). Domestic
animals pose a risk to wildlife, particularly the great apes,
especially if the domestic carriers are present, for example, cattle
and dogs (32).

Infection with T. b. rhodesiense is common in communities
living proximal to, or that are dependent on, wildlife or eco-
tourism (126, 127). In the Luangwa Valley, Zambia, considerable
efforts are made to keep domestic animals away from the national
park, for biosecurity of livestock keepers, the national parks,
and game conservancies (128). In Zambia, HAT infections have
been associated with young children attending school and older
women demonstrating in the homestead (129, 130).

A study in Australia failed to find T. cruzi and T. evansi in
native domestic and wildlife animals; however, a spillover for
exotic Trypanosoma spp. was expected that would affect humans,
domestic, and wild animals (88). Wildlife (Clyomys laticeps,
Thrichomys pachyurus, and Oecomys mamorae) can be reservoir
hosts for Trypanosoma spp., e.g., T. evansi and T. cruzi that could
infect humans and other wildlife populations without affecting
the rodent spp. (131).

Factors That Could Influence
Trypanosomiasis Epidemiology in Wildlife
Areas
Host species that are widely distributed and with fewer
restrictions on habitat have proved to be of more importance to
trypanosome diversity due to their unlimited breeding potential
and less risk for poaching and trophy hunting. Such hosts include
warthogs, bushbucks, kudus, buffaloes, and giraffes (20). More
habitat-restricted host species have minimal contribution to the
epidemiology of trypanosomiasis in wildlife communities due to
their relative safety from trypanosome vectors like Glossina and
Tabanids, e.g., crocodiles and hippopotamus.

Differences in feeding patterns of the trypanosome hosts
influence the distribution of trypanosomiasis in wildlife areas.
Certain preferences maintained by certain hosts like bovines
(bushbuck, waterbuck, eland, kudu, etc.) to bushy areas and
thickets have predisposed them to higher exposure rates to tsetse
and other biting flies, intensifying the spread of trypanosomes
(20). Trypanosome diversity among the host species has
facilitated the cross-transmission of various trypanosome strains
and variants among the hosts, increasing infection rates among
wildlife communities at both clinical and subclinical levels. For
example, the discovery of three different variants of T. vivax in
three different host species including a buffalo, a waterbuck, and a
giraffe not similar to any published strain, demonstrating genetic
diversity, provides insights on pathogen epidemiology (3).

Furthermore, the introduction of new host species from
a different geographical location into a wildlife reserve can
greatly influence the trypanosome species diversity in a wildlife
community. This way, new variants and species of trypanosomes
are spread from one host to another by tsetse and other
biting flies, resulting in devastating effects on wildlife health
and livestock health in the area, for example, the discovery
of T. melophagium, T. nabasi, T. theieri, and T. evansi in
Australia following the introduction of various mammals into
their wildlife populations, which had a great impact on the native
marsupials (9).
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Wildlife Encroachment and the
Epidemiology of Trypanosomiasis
Encroachment to wildlife and the increasing human and
livestock density as well as the altered patterns in land use are
key parameters that govern the transmission of trypanosomes
(132). It is expected that understanding how the encroachment
to wildlife affects the epidemiology of trypanosomes will
inspire practical approaches to improve the understanding of
epidemiological characteristics of trypanosome transmission in
the context of ecological factors. Encroachment to wilderness
areas of Africa increases the epidemiology of trypanosomes,
hence, increasing the transmission of HAT. Primarily, wildlife are
trypanosome reservoirs; however, growing human and livestock
numbers around or in wildlife areas increase the significance
of livestock in the transmission cycles thereby increasing the
epidemiology of trypanosomes pertinent to human health (132).

Understanding undercurrents associated with the
transmission of trypanosomes and in relationship with the
encroachment of livestock and humans to wildlife areas are vital
to developing robust control measures. This would help identify
important parameters on host distributions, tsetse populations,
epidemiology of trypanosomes, infection and mortality rates,
the significance of livestock, humans, and livestock as hosts in
wildlife areas, hence, promoting the progress of models to help
in the evaluation and application of control measures (132).
Parameters that determine the dynamics in encroachment levels
to wildlife areas such as protected area, wildlife density, livestock
density, human density, and location according to space and
time, would help determine the foci of HAT. This is important
since increased human and livestock populations and their
distribution may lead to land-use pattern changes in fragmented
tsetse habitats, and this inevitably affects the distribution of
wildlife species. These ultimately result in increased tsetse
abundance and distribution, host selection, and tsetse mortality,
which are indicators of increased vector competence (132).
Host population density is a key factor in determining the
dynamics of tsetse populations, i.e., a decline in host density
through encroachment to wildlife areas influences tsetse
population changes in space and time. This, in turn, influences
the transmission of trypanosomes, and although low host density
decreases trypanosome transmission as a consequence of tsetse
mortality, the low host density may also be associated with an
increased level of trypanosome transmission arising from the
hungrier flies that bite humans through increased host-seeking
efficiency of tsetse flies (133).

INFECTION CONTROL AT THE
WILDLIFE–LIVESTOCK–HUMAN
INTERFACE

While communities fail to understand the value of wildlife
ecosystems, continued wildlife–human conflict presents an
increased risk of infection spillover to humans (18, 118, 134,
135). Game parks, the natural habitats for tsetse species, pose
risks to livestock and human populations (136, 137), and
parasitic infestations among the livestock and humans equally

pose a risk to wildlife. Wildlife reservoirs make approaches
of trypanosomosis control at the wildlife–livestock–human
interface more complicated (30, 31). There is a need to limit
the interaction between livestock and wildlife by preventing
encroachment into wildlife-protected zones. Mitigation of risk to
prevent trypanosome (and other) infections circulating among
livestock and wildlife demands a holistic One Health approach
(108, 138, 139). Top–down, approaches, shooting games and
radical bush clearing, and insecticide spraying in protected
zones are neither practical nor acceptable (140). Stakeholder
and community-derived solutions are likely to be sustainable
options to explore. Approaches to infection control require to
be nuanced in these zones, with communication, education,
and interventions embedded within the affected communities.
Integrated insect control approaches including the use of
insecticide-impregnated targets can protect livestock and game
(141). Application of insecticides to cattle, using livestock as live
baits, can offer sustainable solutions (138, 142, 143); however,
challenges remain on the sustainability of this approach especially
in low–middle income countries (LMICs). Insecticides are a
reliable method for tsetse control and can be improved by
deploying an integrated insecticide approach (139, 141). Routine
prophylaxis among livestock can protect livestock and offer
collateral benefits for humans and wildlife (144, 145). There is
also a need to limit the interaction between livestock and wildlife
by stopping encroaching on gazetted wildlife zones to lower the
trypanosome prevalence in domesticated livestock (108).

Animal and Human Health for the Environment and
Development (AHEAD), launched in 2003, comprises a
One Health team of socioeconomic scientists, ecobiologists,
veterinarians, agriculturalists, wildlife, and public health
specialists that address issues at the wildlife, human, and
domestic livestock interface. This includes efforts to monitor
parasitic diversity in wildlife species to assist in the strengthening
of disease surveillance in LMICs (146). Management and
communication with regard to wildlife is key to the One Health
approach; in pastoral communities, retaliatory persecution
through poisonings of predatory wildlife continues to
challenge conservation efforts (147). Conflicts associated with
competition for natural resources between livestock-keeping
communities and wildlife can be mitigated by a combination
of communication and control strategies to promote peaceful
coexistence of wildlife and humans as promoted by AHEAD.

Management of Spillover of
Trypanosomiasis Among the
Human–Wildlife Areas
Communities in the wildlife zones sometimes agree on
coexistence with wildlife and the creation of buffer zones (148).
However, the coexistence of human communities and wildlife
poses risks of outbreaks of various zoonoses (149). In the gazetted
wildlife zones, there should be no mixing of domestic animals
with wild trypanosomiasis reservoirs. Proper fencing can be
used to control the spillover in wildlife borders (150) as part
of the integrated trypanosomiasis control strategy. Restrictive
models need to be developed by engaging the communities
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such that they understand these objectives (151). There is a
need for legislation on fencing to have restricted movement of
livestock and wildlife. The laws need to address the challenges
of wildlife biodiversity (152) and penalize encroachers and
poachers. This requires an appropriate land tenure system and
robust enforcement teams.

Renowned trypanosome hosts like bats need to be removed
from urban centers and human dwellings. Bats also live in
human dwellings in ceilings and other dark points. African
bats are hosts of trypanosomes (153). It is not known whether
the African bats are associated with virulent chronic and acute
human African trypanosomiasis. However, bats are associated
with trypanosomes in central and South America (22, 154, 155).

Research on possible vaccine candidates has not broken
through despite emphasis on the VSG pathway (102, 156).
This, however, does not translate that research on trypanosome
vaccines has reached a dead end since in all the failures, better
innovations can transform science to improve understanding
in this field (157, 158). This is important since drugs that are
used to treat domestic animals have been used to treat wildlife
with success (159, 160), although this has not been done against
infections with the zoonotic trypanosomes.

Wildlife are usually in contact with insects other than
the tsetse flies. It is known that lice can transmit T.
cruzi (161). The possibility of lice transmitting the zoonotic
trypanosomes is not known. Zoonotic trypanosomes have been
found in fleas (162), and it is speculated that fleas may
transmit trypanosomes among wildlife (163–165). The possible
transmission of trypanosomes by other biting arthropods
among wildlife needs further investigation. The possibility of
transmission along the food chains for carnivores needs further
investigation. Wild Canidae that feed on fresh blood from
trypanosomiasis reservoirs may acquire infections from the
fresh blood. No studies have ever been proposed among at-
risk carnivores.

There is a need to study the interactions of trypanosomes
with other blood parasites. Trypanosomes interact with babesia
especially to worsen the stress conditions of translocation
(166–168). The effect of trypanosomes on the immune system
likely predisposes the animals to opportunistic infections and
tick-borne diseases. The presence of other parasites is possibly a
contributing factor to the trypanosomiasis spillover.

CONCLUSION

Trypanosomiasis continues to be a major global challenge,
particularly so at the wildlife–domestic livestock interface.
Multiple wildlife species serve as maintenance hosts promoting
infections at the livestock–wildlife interface. There is a high
risk of infection spillover from game parks and conservation
areas where parasites and vectors are concentrated in high
numbers, and domestic livestock pose risks to wildlife-protected
species. The basis of trypanotolerance in wildlife species is
not well-understood. The wide genetic diversity exhibited by
Trypanosoma spp. is a challenge, both exacerbating the risk
of increased virulence and making the development of a
vaccine unlikely. One Health strategies that are community and
environmentally friendly are needed to support stakeholders to
mitigate risk. There is a need to strengthen trypanosomiasis
research, particularly in LMICs, especially at the human–
domestic–wildlife interface to prevent cross-species infection.
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