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Abstract: Neurotransmission between neurons, which can occur over the span of a few milliseconds,
relies on the controlled release of small molecule neurotransmitters, many of which are amino acids.
Fluorescence imaging provides the necessary speed to follow these events and has emerged as a
powerful technique for investigating neurotransmission. In this review, we highlight some of the
roles of the 20 canonical amino acids, GABA and β-alanine in neurotransmission. We also discuss
available fluorescence-based probes for amino acids that have been shown to be compatible for live
cell imaging, namely those based on synthetic dyes, nanostructures (quantum dots and nanotubes),
and genetically encoded components. We aim to provide tool developers with information that may
guide future engineering efforts and tool users with information regarding existing indicators to
facilitate studies of amino acid dynamics.

Keywords: amino acids; neurotransmission; fluorescence; imaging; biosensors; neurotransmitters;
indicators

1. Introduction

Neurons communicate to each other by the release of chemicals stored in synaptic vesicles across
specialized gaps known as synapses. These chemicals diffuse across the synapse and bind to their
target receptors on adjacent neurons to modulate their physiological states. While these messenger
chemicals are collectively referred to as neurotransmitters, there can be confusion regarding the
difference between neurotransmitters and neuromodulators. Classically, neurotransmitters are defined
as molecules that meet the following criteria (adapted from Werman [1]):

• Presence of the molecule in neurons,
• Stored in synaptic vesicles and released in a Ca2+-dependent manner from neurons as a result

of depolarization,
• Exogenous application of the molecule must elicit the same response from postsynaptic neurons

as endogenously-released molecules due to binding to specific receptors, and
• The molecule must have a mechanism for its removal from the synapse.

Molecules that meet some, but not all, of these criteria can be referred to as neuromodulators.
However, the term “neuromodulator” has also been used to refer to known neurotransmitters whose
primary mode of action is to bind G protein-coupled receptors (GPCRs) to trigger a longer-lasting
second messenger signaling cascade. To minimize confusion, we will confine the use of the term
“neurotransmitter” for molecules that have met the criteria for classical neurotransmitters and refer to
other molecules that can still modulate neuronal activity as “neuromodulators” from this point onward.
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As a class of compounds, amino acids are most commonly recognized as the building blocks of
proteins. However, strictly speaking, amino acids are defined as compounds that contain an amine
group (-NH3

+) and a carboxylic acid group (-COO−) (represented here in their physiologically most
relevant ionization states; Figure 1A), and not all amino acids are proteinogenic. In addition to serving
as protein building blocks, amino acids, for example, function throughout the body as key metabolites,
precursors to other metabolites and lipids, and regulators of gene expression and cell signaling [2].
Within physiological systems, amino acids may also have specialized roles. In the nervous system alone,
several amino acids, most famously glutamate, are known to be small molecule neurotransmitters and
neuromodulators or precursors for other small molecule neurotransmitters [2]. With the prominence
of several canonical amino acids in the nervous system, a review summarizing the roles of all the
canonical amino acids, as well as some of the most predominant non-canonical amino acids, within the
nervous system may prove to be beneficial.
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Figure 1. Stereochemistry of amino acids and their side chains. (A) Stereoisomers of amino acids
are classified as D or L. The amino acids in proteins are the L stereoisomers according to the D/L
system and are in the S configuration of the R/S system (except for cysteine which is actually in the R
configuration due to the presence of a sulfur atom in the side chain and naming conventions). Unless
stated otherwise, amino acids referred to in this review should be assumed to be the L stereoisomer.
(B) The 22 amino acids reviewed in this paper with boxes classifying them based on their main
functions. Non-proteinogenic amino acids are indicated by an orange box. The red boxes denote
excitatory amino acids, while the ones in green boxes are inhibitory. Amino acids in blue boxes serve
primarily as precursors for neurotransmitters, and the ones in black boxes have neuromodulatory
effects. The aromatic amino acids are grouped together in a yellow box, while the branched-chain
amino acids (BCAAs) are grouped in a purple box.

In recent decades, fluorescence imaging has revolutionized our understanding of
neurotransmission. Neurotransmission events can begin and conclude within milliseconds, and
unlike classical methods such as microdialysis or cyclic voltammetry [3], fluorescence imaging enables
the study of both single neurons and populations of neurons while maintaining high spatial and
temporal resolution. Ideally, fluorescent probes (also interchangeably referred to as sensors, biosensors,
reporters or indicators) will be bright, fast, specific to their target and show large intensity changes
upon its detection. They should also be stable, non-toxic and be easily delivered to their target location
with minimal off-target labelling. Additionally, for any analyte, sensors should be available in a
palette of colors to enable simultaneous imaging of different analytes. Fluorescent probes have been
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synthesized using a variety of materials and strategies, each of which have their own advantages
and drawbacks.

This review aims to provide a brief overview of some of the most important roles the twenty
canonical amino acids, along with β-alanine and γ-aminobutyric acid, have within the nervous system.
We will focus on their immediate (i.e., not their derivates’) roles in modulating neurotransmission and
we will highlight the lesser known amino acids (Figure 1 and Table 1). We will also review various
fluorescence-based probes for detecting endogenous amino acids in live cells and tissue. Due to the
complexity and interconnectedness of neurotransmission and space limitations, this review is not
meant to be exhaustive, and many relevant papers are not included.

2. Amino Acids

2.1. Glutamic Acid

Since Curtis and colleagues first reported its excitatory effects in the late 1950s, l-glutamate has
been established as the main excitatory neurotransmitter in the central nervous system (CNS), with
glutamatergic synapses accounting for 80 to 90% percent of the brain’s synapses and at least 60% of all
the synapses in the CNS [4–8]. Glutamate is recycled in synapses through the glutamate–glutamine
cycle [9,10]. While we aim to provide sufficient information to orient the reader for the rest of
this review, due to the volume of knowledge, a thorough discussion of glutamate’s importance in
neurotransmission is beyond the scope of this review and we refer readers to other reviews, such as
those by Featherstone [9], Meldrum [11] and Zhou and Danbolt [12].

Glutamate concentrations in the synapse can range from less than 20 nM to 5 mM and a
recent study found that glutamate concentration in isolated synaptic vesicles was approximately
700 mM [13–15]. Glutamate binds to three ionotropic receptors (i.e., N-methyl-d-aspartate (NMDA),
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), and kainate receptors), which are all
channels that allow the passage of Na+, K+ and sometimes Ca2+. Of these, NMDA receptors uniquely
function as a coincidence detector as their activation requires the binding of a co-agonist, such as
glycine or d-serine, and is also voltage dependent due to a Mg2+ block in the pore [16,17]. Moreover,
NMDA receptors conduct Ca2+, which acts as a secondary messenger to trigger signaling cascades.
Thus, NMDA receptors are critical for synaptic plasticity and learning [18], and it has been implicated
in many neurological disorders, such as addiction [19], Alzheimer’s disease [20] and others that will be
mentioned in this review. Glutamate also binds to three classes of metabotropic glutamate receptors,
all of which are GPCRs, that trigger different signaling cascades. Excessive activation of glutamate
receptors is called excitotoxicity and leads to neuronal death and degeneration [21]. Additionally,
glutamate released into the synapse can diffuse out of the synapse (“spillover”) and activate receptors
outside of synapses and in other synapses [22–24].

2.2. Aspartic Acid

Aspartate is a structural homologue of glutamate, with one fewer methylene (-CH2) group in
the sidechain. l-Aspartate was first reported to excite neurons along with l-glutamate [6,8] and is
generally considered as the secondary excitatory neurotransmitter in the CNS, with some studies
suggesting that aspartate and glutamate may be co-released [25–27]. However, unlike l-glutamate,
whose role in the brain as the main excitatory neurotransmitter is well characterized and undisputed,
there is still some controversy regarding the status of l-aspartate as a neurotransmitter [28–30].

Stimulus-dependent release of l-aspartate has been observed in different brain regions, such as
the visual cortex [31], hippocampus [25,32,33] and cerebellum [34]. It was detected in the rat brain with
a concentration of approximately 2.7 µmol/g wet weight, though concentrations may vary depending
on the brain region (e.g., the hippocampus has 0.6 nmol/mg tissue) [35,36]. It is mostly formed from an
l-aspartate transaminase-catalyzed reaction between oxaloacetate and glutamate. Storck et al. [37]
demonstrated that excitatory amino acid transporter 1 (EAAT1), also known as the glutamate aspartate
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transporter 1 (GLAST-1), transports l-aspartate out of the extracellular space, providing a mechanism
for its removal. However, the mechanism for vesicular transport remains unclear as the transporters
responsible for packaging l-glutamate do not transport l-aspartate [38] and reports of a possible
transporter (such as sialin) are still inconclusive [39,40]. l-Aspartate is known to be a selective agonist
for NMDA receptors, but a study by Herring et al. [28] showed that l-aspartate release is insufficient
for activation of NMDA receptors in the hippocampus. Furthermore, a recent profile of synaptic
vesicles from cortical neurons showed no enrichment of aspartate [30]. However, a report by Richards
et al. [41] found higher concentrations of aspartate than glutamate in motoneuron synapses, suggesting
the possibility for physiologically relevant aspartate-evoked activation of NMDA receptors in the
spinal cord. No other receptors for l-aspartate have been identified. Consequently, the significance of
l-aspartate signaling remains unclear.

d-Aspartate, the enantiomer of l-aspartate, is found in the brain in significant quantities, although
at concentrations ~100× lower than l-aspartate, and meets most of the criteria to be considered a
classical neurotransmitter [36,42] (also reviewed by Ota et al. [43]). Found in different endocrine
tissues and throughout the brain with higher levels occurring during development, d-aspartate’s roles
include being an agonist for NMDA receptors, and regulating hormone release (e.g., prolactin and
luteinizing hormone) and neurogenesis in developing and adult brains [44–48] (for a review on its
neuroendocrine function, see D’Aniello et al. [49] and for a deeper discussion on its role in learning and
memory, see Errico et al. [50]). Additionally, d-aspartate has been reported to activate metabotropic
glutamate receptor 5 (mGluR5) [51]. The existence of specific d-aspartate receptors has also been
demonstrated [42]; however, these receptors have not yet been identified. Moreover, contrary to the
long-standing belief that NMDA is not endogenous in mammals, d-aspartate was also suggested to be
a precursor to NMDA in rats [44]. Although serine racemase, to a degree, is able to produce d-aspartate
from l-aspartate, the main synthetic pathway for d-aspartate remains an open question since reports of
an aspartate racemase have been questioned [36,45,52–54]. However, to the best of our knowledge, like
l-aspartate, the transporter responsible for loading d-aspartate into vesicles has not been identified.

2.3. Glutamine

Glutamine’s main role in neurotransmission is through its participation in the
glutamate/GABA–glutamine cycle [9,10,54]. For a deeper discussion of the glutamate/GABA–glutamine
cycle, as well as glutamine’s other roles in neurotransmission, we refer readers to the reviews by Bak et
al. [10] and Albrecht et al. [55].

In glutamatergic synapses, most of the released glutamate is taken up by astrocytes, where it is
converted to glutamine by glutamine synthetase. Glutamine is then exported to the extracellular space,
where it is taken up by neurons and converted back into glutamate by phosphate-activated glutaminase
and packaged into vesicles. Some of the synthesized glutamate may also be metabolized to aspartate.
Reflecting this cycle’s importance, glutamine is found with concentrations of ~2–8 nmol/mg tissue in the
brain, with the highest levels in the hippocampus and higher concentrations in the extracellular fluid
(up to 1 mM) [55,56]. Glutamine metabolism is also linked to arginine/nitric oxide (NOx) metabolism,
as glutamine synthetase both regulates, and is regulated by, NOx [55,57]. Altered expression or activity
of glutamine synthetase in the brain has been implicated in epilepsy [55,58], depression [59], and
suicidal behavior [60], among others.

The glutamate/GABA–glutamine cycle is a key player in regulating ammonia homeostasis because
one molecule of ammonia is consumed or released during the production and metabolism of glutamine,
respectively. Ammonia levels must be carefully regulated as excess ammonia can trigger oxidative
and nitrosative stress, which lead to increased levels of free radicals and detrimental signaling
cascades [61,62]. Additionally, Albrecht and colleagues have proposed that the effects of oxidative
and nitrosative stress are exacerbated by excessive glutamine synthesis, a process that consumes
ammonia but is proposed to impair mitochondrial function (“the Trojan horse” hypothesis) as the
excess glutamine is transported to the mitochondria as an excessive source of ammonia [61,63,64].
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Evidence suggests that millimolar concentrations of glutamine can trigger currents carried
by ionotropic glutamate receptors, including NMDA receptors, and induce increases in synaptic
potential [65,66]. However, Luengo et al. [66] observed a decrease in field excitatory postsynaptic
potential for the first 30 min upon glutamine application. The physiological relevance of this
phenomenon remains unclear.

2.4. Cysteine and Methionine: Sulfur-Containing Amino Acids

The presence of a nucleophilic thiol group bestows cysteine and its derivatives with unique
chemical properties that enable them to serve specialized functions within cells. l-Cysteine is most
broadly recognized as a precursor for glutathione, the body’s main antioxidant (for more thorough
discussions on the roles of glutathione in the nervous system, see the reviews by Dringen and
colleagues [67–69]). However, despite lacking the carboxylic acid-containing side chain characteristic
of excitatory neurotransmitters, l-cysteine possesses many of their characteristics. Specifically, cysteine
can: (1) be released by neuron depolarization in a Ca2+-dependent manner, (2) activate NMDA
receptors, and (3) be taken up by neurons and glia [70–72]. However, while l-cysteine is able to trigger
synaptic activity and is a known excitotoxin, its exact mechanisms of action remain unclear (reviewed
by Janàky et al. [73]). Beyond excitatory targets, Gonzáles and colleagues recently showed that
l-cysteine antagonized GABAAρ1 receptors [74]. l-Cysteine also acts as scavenger for acetaldehyde,
the first metabolite of ethanol, reducing acetaldehyde-induced activation of the mesolimbic dopamine
pathway and dampening its motivational properties indirectly [75–78]. Additionally, in the extracellular
space, cysteine can be oxidized into cystine (i.e., two cysteines connected by a disulfide bond) and
taken up by astrocytes through cystine/glutamate antiporter system xc

− (for a comprehensive review,
see Lewerenz et al. [79]), where this extrasynaptic release of glutamate has been shown to activate
extrasynaptic NMDA receptors [80]. Lastly, cysteine can be metabolized into other neuroactive
compounds, such as taurine, l-cysteine sulfinic acid, l-cysteic acid and hydrogen sulfide [81–84].
Notably, taurine, an aminosulfonic acid found at a high concentration (second only to glutamate)
in the brain, was shown to have an inhibitory effect on neurons by acting on GABA and glycine
receptors and was consequently considered as a neurotransmitter [6,85–89]. More recently, however,
this classification has been questioned due to the apparently lack of taurine in synaptic vesicles [30].
Regardless, a non-traditional neuromodulatory role for taurine remains a possibility with work
suggesting that taurine can induce potentiation by increasing synaptic efficacy and axon excitability
through intracellular accumulation [90,91].

Besides cysteine, methionine is the other sulfur-containing proteinogenic amino acid, albeit with a
methylated thiol group. As an essential amino acid, methionine is transported into the CNS using the
same systems used by the branched-chain and aromatic amino acids [92,93]. Methionine serves as
the precursor to homocysteine, which, like cysteine, can activate glutamatergic receptors and excite
neurons, even to the point of excitotoxicity through an NMDA receptor-mediated pathway [94–96]. In
addition to activating neurons by itself, evidence also suggests that homocysteine can trigger release of
other excitatory amino acids [97]. Homocysteine has been implicated in anxiety [98], alcoholism [99],
Alzheimer’s disease [100] and schizophrenia [101].

2.5. Proline

l-Proline is a non-essential amino acid that can be synthesized from l-glutamate [102].
Hyperprolinemia, a genetic condition causing excessive levels of proline due to impaired proline
metabolism, is associated with seizures, hypolocomotion, learning and other cognitive deficits, and
an increased risk for schizophrenia [103–105]. l-Proline is a known neuromodulator in the brain and
fulfills many of the criteria of a classic neurotransmitter [102,106–108], arguably even more so than
l-aspartate, which is generally considered to be a neurotransmitter. For example, unlike l-aspartate,
a vesicular transporter for l-proline, NTT4, has been identified [109]. Although a proline-specific
receptor has not been identified, l-proline is a weak agonist for glycine receptors, as well as the
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glutamate-responsive NMDA and AMPA/kainate receptors [110]. The lower limit of the extracellular
concentration of l-proline was estimated to be 10 nM [111,112]. Regardless, physiological extracellular
concentrations of l-proline have been shown to modulate glutamate transmission with the ability to
induce excitotoxicity [113–115]. Behaviorally, activation of NMDA receptors by l-proline has also
been shown to mediate stress responses in chicks under acute stress by altering the stress-induced
metabolism of dopamine and serotonin [116,117].

Multiple transport systems, such as the PROT transporter, have been identified for l-proline, and
the specific contribution of each transport system with respect to regulating l-proline levels and their
physiological importance remains unclear [118–121]. A recent study by Schulz and colleagues [122]
showed that PROT−/− mice lost more than 70% of l-proline uptake in brain regions where PROT is the
most strongly expressed transporter such as the cortex, hippocampus, thalamus and striatum without
resulting in extreme increases in extracellular l-proline concentration. However, PROT was previously
shown to be more highly localized in synaptic vesicles than plasma membrane but is not considered to
participate in loading l-proline into synaptic vesicles [111,112]. These vesicles were instead believed
to act as a reserve pool of transporters that can then be moved to the plasma membrane to regulate
l-proline uptake and neuronal activity [112]. Instead, B0AT2, another l-proline transporter, was
proposed to be the major transporter responsible for uptake of extracellular l-proline [93]. Behaviorally,
these mice showed deficits in memory extinction and locomotion, in line with the observed reductions in
PROT activity and downstream effectors important in learning and memory in some regions [122–124].
At the same time, this study also reported that the reduction in PROT activity did not cause changes in
the levels of the downstream effectors in the hippocampus, a region with one of the highest levels of
PROT expression, suggesting possible compensatory mechanism in some regions.

Furthermore, l-proline has been demonstrated in rats to induce oxidative stress in the cerebral
cortex, reducing the total radical-trapping antioxidant potential and increasing lipid peroxidation [125].
This proline-induced oxidative stress has been linked to proline’s inhibitory effects on both Na+/K+

pump and acetylcholinesterase activity [126,127]. Despite these advances, our understanding of
proline’s role in neurotransmission and the CNS is incomplete, even more so when we consider the
implications of glycine receptor activation by l-proline.

2.6. Asparagine

Evidence to date suggests that l-asparagine is present in the brain at low concentrations and,
outside of protein synthesis, is limited to serving as a precursor l-aspartate production by asparaginases
like the astrocyte-exclusive Gliap [36,128]. Asparagine can be synthesized from aspartate by asparagine
synthetase, and deficiencies in this enzyme have been reported to cause brain structural abnormalities
and cognitive impairments [129,130]. Asparagine is transported into the brain in competition with
glutamine and histidine [92]; however, despite this competition, l-asparagine supplementation was
not reported to significantly reduce glutamine levels in the brain and did not affect the levels of
related neurotransmitters (i.e., glutamate, aspartate or GABA levels) in the cerebellum and medulla
oblongata [131], unlike the case with BCAAs and aromatic amino acids-derived neurotransmitters
(discussed below). This lack of effect is likely because asparagine can be endogenously synthesized.

2.7. γ-Aminobutyric Acid

γ-Aminobutyric acid (GABA) is known as the major inhibitory neurotransmitter in the brain.
Although it is an amino acid, GABA is not used in proteogenesis, but functions as a signaling molecule,
with the ability to induce changes in signal transduction in both presynaptic and postsynaptic
neurons [132]. It is synthesized from the decarboxylation of glutamate by glutamate decarboxylase
and is recycled through the GABAergic synapses in a process analogous to the glutamate–glutamine
cycle [10]. GABA, upon binding to its receptors GABAA and GABAC, causes chloride channels in
neurons to open [132]. This can lead to depolarization in immature mammals and hyperpolarization
in mature mammals [133]. Therefore, abnormal levels of GABA are commonly implicated in many
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psychiatric disorders, most commonly in epilepsy [134]. Other psychiatric diseases have aberrant
GABA signaling. For example, late stages of Alzheimer’s disease are associated with decreased GABA
levels as well as aberrant GABAA receptor presence [132]. GABAergic transmission is also implicated
in anxiety disorders, schizophrenia [134], Huntington’s [135] and pharmacological manipulation of
GABA levels is a therapeutic strategy.

2.8. Lysine

l-Lysine is an essential charged amino acid transported into the CNS by multiple amino acid
transporters [92,118]. l-Lysine is metabolized by either the saccharopine pathway or the pipecolic acid
(PA) pathway, which ultimately converge (Figure 2) [136]. While the PA pathway was long believed to
be the dominant pathway in the brain [136,137], an initial report by Papes et al. [138] challenged this
view and reopened the discussion. Almost a decade later, an enzyme was discovered that converts
piperideine-6-carboxylic acid back to pipecolic acid, which was initially believed to be a metabolite
exclusive to the PA pathway [139,140]. Subsequent work by Pena et al. [141] and Crowther et al. [142]
have since shown that the saccharopine pathway is the major pathway for lysine metabolism. The
distribution of lysine metabolism was of particular interest because l-lysine, through the saccharopine
pathway and separate from the glutamate/GABA–glutamine cycle, is a precursor for l-glutamate, with
the initial report by Papes et al. [138] estimating that approximately a third of glutamate in the CNS is
from l-lysine. On the other hand, piperideine-2-carboxylic acid is an inhibitor of d-amino acid oxidase,
which regulates levels of d-serine, a co-agonist of the NMDA receptor, and thus implicating lysine
metabolism in schizophrenia (see review by Hallen et al. [136]).
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pathway (purple arrows) or the pipecolic acid pathway (green arrows). The two nitrogen atoms from
lysine are colored in purple and green to enable atom tracing, but this distinction is lost in metabolites
accessible to both pathways (i.e., pipecolic acid to α-ketoadipic acid). Adapted from Crowther et
al. [142].

One of the earliest discovered neuromodulatory effects of l-lysine is its effect on GABAergic
transmission. In a series of works, Chang and colleagues showed that l-lysine, but not necessarily
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its metabolites, delayed the onset of seizures induced by pentylenetetrazol and increased seizure
protection by acting through GABAA receptors in a barbiturate-like manner to increase the affinity of
benzodiazepines to its receptor [143–145]. d-Lysine was also able to delay seizure onset and confer
seizure protection but with a different time course [143]. However, chronic administration of l-lysine
was found to cause tolerance, with maximum protective effects peaking at 10 days of administration and
decreasing when treatment time was extended to 20 days [146]. However, a clinical study by Ebrahimi
and Ebrahimi [147] reported that oral administration of lysine did not reduce seizure frequency in
uncontrolled epilepsy patients, suggesting that in addition to bioavailability, the type of seizure is
probably relevant.

l-Lysine has also been shown to ameliorate stress-induced anxiety, likely by inhibiting serotonin
(5-HT) binding to the 5-HT4 receptors found in the CNS and in intestines [148,149]. It was also found
to be a ligand for the orphan GPRC6A receptor, which has been implicated in the endocrine system
through insulin and testosterone functions [150]. l-Lysine, by itself and in conjunction with l-arginine,
has also been shown to protect against ischemic insults resulting from suppression of glutamate-induced
neuronal activity [151]. Recently, l-lysine was shown to affect pain-induced behavior in rats [152].

2.9. Arginine

l-Arginine is a semi-essential amino acid that is transported in the brain by a multitude of
systems [92,118,153]. In the extracellular space of the rat brain, its resting concentration was estimated
to be 17 µM [154]. Its metabolism is closely related to two other amino acids, l-citrulline and l-ornithine
(reviewed thoroughly by Wiesinger [155,156]). Briefly, l-arginine can be metabolized to produce
l-citrulline or l-ornithine, and it can also be recycled back from l-citrulline through the citrulline- NOx

cycle in neurons and glia. The main role of l-arginine in the nervous system is to serve as a precursor
for NOx, producing citrulline as a by-product, via the activity of nitric oxide synthases. NOx possesses
many physiological functions, and in the brain, it plays roles in development, protection against brain
injury, and learning and memory [151,157–160]. Additionally, while l-arginine’s effect on ameliorating
stress-induced anxiety is likely due to NOx production [148,161], evidence of l-ornithine, either directly
administered or administered as l-arginine, having an ameliorating effect on stress responses suggests
the possibility of a NOx -independent pathway [162–164]. l-Arginine is also a precursor for creatine,
and deficiencies in creatine synthesis have been related to different neurological conditions, such as
speech impairments and movement disorders [165].

2.10. Glycine

Glycine is primarily synthesized from l-serine but is also metabolized to produce l-serine [166].
Glycine is the main inhibitory neurotransmitter in the spinal cord, brainstem and cerebellum, where it
binds to glycine receptors (ionotropic Cl- channels) when released [6,167–169]. A subset of synapses
co-release glycine and GABA, leading to a mixture of variable cytosolic concentrations and an effective
tuning of the degree of inhibition [170–173]. Released glycine is removed from the extracellular
space by glycine transporters. GlyT-2 is a transporter that is mostly involved with synaptic glycine
reuptake into presynaptic terminals for recycling [168,174]. GlyT-1 is involved in glycine clearance
from the synapse but is also involved in the release of glycine from astrocytes in glutamatergic
synapses [175]. Accordingly, it can regulate extrasynaptic glycine levels through both release and
removal. Extrasynaptic GlyT-1 has an increased sensitivity to glycine [175]. It is involved in pain
perception and movement, and its dysfunction has been implicated in neuropathic pain [167,176] and
several startle conditions (reviewed in [177,178]). During embryonic and early postnatal development,
the activation of glycine receptors is involved in cell migration and synaptogenesis with their activation
causing depolarization due to the Cl- gradient (reviewed by Avila et al. [179]). During development,
glycine receptors tend to be expressed in the cortex though these channels would be primarily activated
by taurine due to insufficient levels of glycine [179–181].
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Glycine is also a co-agonist required for the activation of NMDA receptors [16]. At glutamatergic
synapses, glycine released into the synapse is reported to spill over and activate extrasynaptic NMDA
receptors preferentially (due to increased sensitivity relative to synaptic NMDA receptors) [182].
Ahmadi et al. [183] reported that, in the spinal cord, glycine released in the synapses of inhibitory
interneurons can spillover out of the synapse and activate nearby NMDA receptors. This rate of glycine
spill over is influenced by GlyT-1 [175,182].

2.11. Serine

Both enantiomers of serine are neurologically active. l-Serine acts as an important developmental
and signaling molecule as well as a precursor for neuroactive molecules. l-Serine is synthesized in
the brain by astrocytes using four different pathways, and deficiencies have been linked to many
developmental disorders and neuropathies [184,185]. A case study has noted various developmental
deficiencies such as retardation in growth, ichthyosis, polyneuropathy, and delayed puberty in one
female patient [186].

A study by Buratta et al. [187] found that l-serine may be involved in the extracellular release
of glutamate and aspartate through a signaling intermediate, ethanolamine. Further in vitro studies
have observed that l-serine administration increased growth of the cerebellum’s Purkinje fibres and
enhanced growth of dendrites in hippocampal slices [188,189]. In addition to aiding growth and the
release of other amino acid neurotransmitters, l-serine also serves as a precursor to the synthesis of
both glycine and d-serine, the latter of which is synthesized by serine racemase [56,166,190,191].

Although d-serine is a known neuromodulator, it does satisfy the conditions to be a
neurotransmitter. Though initially reported to be a glial enzyme, serine racemase is present in
significant quantities in neurons [192,193]. d-Serine competitively binds to the glycine co-agonist
binding site, evoking ~90% of the glycine response [16,194]. Indeed, Papouin et al. reported that
d-serine is the co-agonist for NMDA receptors [182]. Unlike most neurotransmitters, d-serine is also
released by glia (reviewed by van Horn et al. [195]). Its role in NMDA modulation has implicated
functions in Alzheimer’s disease and alcohol addiction, where elevated levels of d-serine were positively
correlated with increased symptoms for Alzheimer’s disease on the Alzheimer’s Disease Assessment
Scale, as well as to decreased dependency on alcohol use [196,197]. Comprehensive reviews by Mustafa
et al. [194] and Wolosker [198] can provide detailed information on d-serine function in the brain.

2.12. Alanine

d-Alanine is present in brain tissues, with the highest concentration in the anterior pituitary gland
(~86 nmol/g wet tissue) [36,199]. It is a known ligand for glycine receptors and can act as a co-agonist for
NMDA receptors, albeit only evoking 62% of the glycine response [6,16]. Its enantiomer is also a weak
agonist of NMDA receptors (evoking 12% of the glycine response) as well as glycine receptors [6,16].
d-Alanine is believed to be sourced, in part, from intestinal bacteria, with antibiotic-induced psychosis
hypothesized to be caused a by a reduction in d-alanine-producing bacteria in the gut [200,201].
However, the systems involved in transporting d-amino acids through the blood–brain barrier (BBB)
remain unidentified [202]. Like other d-amino acids, it is metabolized by d-amino acid oxidase [203].

Amphetamines are stimulants long known to induce hyperlocomotion through aberrant
dopaminergic transmission. In 1971, Iversen et al. [204] reported that lesions on the frontal cortex,
whose projections excite neurons in the caudate nucleus that inhibit motor functions, enhanced
amphetamine-induced hyperlocomotion without affecting dopamine levels. This observed connection
suggests that a reduction in glutamatergic transmission may be upstream of amphetamine-induced
hyperlocomotion. Atsushi et al. [205] then demonstrated that d-alanine, but not l-alanine, could inhibit
methamphetamine-induced hyperlocomotion, suggesting that NMDA receptor hypofunction may be
responsible for the observed hyperlocomotion. Further studies identified the dopamine D3 receptor to
be a major downstream target for these NMDA receptor-mediated locomotor effects [206].
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In addition to understanding the effects of stimulants in the brain and on behavior, animal
models with drug-induced manipulations of the nervous system (e.g., methamphetamine-induced
hyperlocomotion or psychosis) are useful in understanding schizophrenia (reviewed by Jones et
al. [207]). The initial hypothesis that schizophrenia is caused by excessive dopaminergic transmission
(“dopamine hypothesis”) has since expanded to be the NMDA receptor hypofunction hypothesis,
where decreased NMDA receptor function may lead to aberrant signaling, such as in dopaminergic
pathways (reviewed by Olney et al. [208] and Hashimoto [209]). In line with this hypothesis, studies
have demonstrated that supplementing antipsychotic drugs or d-amino acid oxidase inhibitors with
d-alanine shows promise for treatment of schizophrenia [210,211].

2.13. Threonine

Originally probed as a possible amino acid neurotransmitter in the 1980s, threonine is a proteogenic,
essential amino acid that is transported into the brain by multiple transport systems [92,118]. However, no
neurotransmitter-like function has been reported, and the main non-proteinogenic role for threonine in the
brain may be to a precursor for glycine [212,213]. Oral administration of threonine for those with spinal
spasticity, a disorder related to aberrant peripheral nervous system (PNS) signaling, led to alleviation of
spastic symptoms [214]. However, a systematic review of oral treatments for spasticity as a symptom of
multiple sclerosis found that threonine administration generally did not relieve symptoms [215].

2.14. β-Alanine

β-Alanine is a non-proteinogenic amino acid neurotransmitter found in the CNS that is a structural
intermediate of α-amino acids (e.g., alanine) and γ-amino acids (e.g., GABA). For a comprehensive
review of the biochemistry of β-alanine and its role as a neurotransmitter, we refer readers to the
review by Tiedje and colleagues [216].

Expanding on the evidence presented by Tiedje et al. [216] suggesting that β-alanine is a
neurotransmitter, vesicular GABA transporter (VGAT) was reported to be capable of transportingβ-alanine,
providing a possible mechanism for β-alanine transport into vesicles [208,217]. In 2004, over forty years
after the first reports of β-alanine’s inhibitory effects on neurons, Shinohara and colleagues identified
β-alanine, out of over 1500 compounds, as a specific ligand for the orphan GPCR, MrgprD [218–220].

MrgprD belongs to the Mas-related genes, a subfamily of GPCRs expressed mostly in sensory
neurons of the dorsal root ganglia. It is co-expressed with major nociceptors in a subset of small
diameter neurons that exclusively target a specific layer of the epidermis, suggesting an involvement in
pain modulation [218,219,221]. Early reports regarding MrgprD function found that silencing MrgprD
expression reduced the sensitivity of mice to noxious mechanical stimuli by inhibiting a specific type of K+

current and thereby enhancing the excitability of MrgprD-expressing neurons [222,223]. MrgprD activation
also opened Ca2+-activated chloride channels through the phospholipase C pathway [224]. Consistent
with its proposed role in pain modulation, upregulated MrgprD expression caused enhanced mechanical
hypersensitivity in mice models for neuropathic pain induced by chronic constriction injury [218,225].
MrgprD has been reported to play a role in the perception of noxious thermal stimuli [222,225].

MrgprD has also been implicated in histamine-independent itch mechanisms. Liu and colleagues
showed that intradermal or oral β-alanine supplementation triggered an itch response in humans and
confirmed with animal models that this response is mediated by MrgprD activation [226]. They also
observed thatβ-alanine induced itch response only in a subset of MrgprD-expressing neurons, and that these
neurons were also activated by heat. Taken together, these findings suggest a possible functional division
between MrgprD-expressing neurons, with some neurons mediating itch and others mediating pain.

2.15. Aromatic Amino Acids

The aromatic amino acids consist of phenylalanine, tryptophan, tyrosine, and histidine. All
but tyrosine are essential amino acids, while tyrosine is considered semi-essential because it can
be synthesized by hydroxylation of phenylalanine. Therefore, tyrosine must only be consumed if
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insufficient phenylalanine is consumed or if the conversion of phenylalanine to tyrosine is deficient,
such as in patients suffering from phenylketonuria [227]. These amino acids are transported into the
CNS through the BBB, which occurs via the same transporters (and thus in competition) with other
amino acids, such as the branched-chain amino acids (BCAAs) [92,118,228]. Notably, unlike the other
aromatic amino acids, histidine is also transported by system N (prefers amino acids with nitrogen in
the side chain), which also transports asparagine and glutamine [92]. To our knowledge, the main role
of these amino acids in neurotransmission is as precursors for the synthesis of key neurotransmitters.

Tryptophan is converted into 5-HT through a two-step synthesis catalyzed first by tryptophan
hydroxylase as the rate-limiting step followed by 5-HTP decarboxylase [229]. Under normal conditions,
tryptophan hydroxylase is not saturated by tryptophan, thus changes to tryptophan levels in the brain,
such as those caused by dietary changes, can affect the rate of 5-HT synthesis and release [229]. Indeed,
the (highly variable) effects of tryptophan levels on mood (which is well known to be modulated
by 5-HT) have been extensively studied (for a recent review, see Jenkins et al. [230]). Furthermore,
patients with hypertryptophanemia have presented with neurological deficits such as mood swings,
reduced IQs and impaired memory [231]. The kynurenine pathway, the other metabolic pathway for
tryptophan, has been linked to the pipecolic acid pathway for lysine metabolism on account of shared
enzymes, and this connection has been implicated in different neurological conditions (for a more
thorough discussion, we refer readers to Hallen et al. [136]).

Dopamine, norepinephrine and epinephrine are sequentially synthesized from tyrosine (either
taken up from diet or synthesized by phenylalanine hydroxylation) with the initial step being
rate-limiting and catalyzed by tyrosine hydroxylase [229,232]. The hydroxylation of phenylalanine
can also be catalyzed by tyrosine hydroxylase in the brain [233]. Acute phenylalanine and tyrosine
depletion has been used to temporarily reduce dopamine synthesis with some demonstrated effects
on mood and cognition [234–236]. Although these conditions can be controlled by a combination of
dietary restrictions and/or drugs, patients suffering from hypertyrosinemia or phenylketonuria were
found to have cognitive deficits relative to healthy controls [237,238].

Histidine decarboxylase converts histidine to histamine, a neurotransmitter most known for its
role in regulating sleep and wakefulness but also involved in other important functions like arousal,
feeding, motivation and endocrine regulation (for a comprehensive review of histamine and its roles
and actions in the nervous system, we refer readers to Haas et al. [239]). Histidine decarboxylase is not
saturated under normal conditions, and changes in plasma histidine levels can lead to changes in brain
histidine and histamine levels [240]. However, unlike with the other aromatic amino acids, where their
acute depletion is an established paradigm for manipulating neurotransmitter levels, there has been
little investigation of the effects of histidine depletion on cognition [241].

2.16. Branched-Chain Amino Acids

Isoleucine, leucine and valine have similar biochemical properties, and are collectively referred
to as the BCAAs. BCAAs are essential and must be transported into the CNS through the BBB
in competition with the aromatic and other large neutral amino acids [92,118,228]. Consequently,
fluctuations in BCAA levels affect the synthesis and concentrations of these aromatic amino acid-derived
neurotransmitters, indirectly modulating the synthesis and release of these neurotransmitters [227,229].
For example, rats on diets supplemented with BCAA exhibited anxiety-like behaviors that can be
reversed by tryptophan supplementation [242]. This relationship between BCAAs and aromatic amino
acid precursors have been explored as a possible avenue for treatment of serotonin or catecholamine
imbalance-related symptoms for different neurological conditions such as phenylketonuria, bipolar
disorders, and anorexia, with increased BCAA intake leading to some improvements (reviewed by
Fernstrom et al. in [227]). In healthy humans, there is some debate regarding the use of BCAAs
to combat central fatigue, where changes in levels of serotonin and catecholamines in the CNS are
believed to reduce muscle function and exercise performance, with evidence both favouring and
rejecting the benefits of BCAAs (see the review by Meeusen et al. [243] for a discussion on the central
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fatigue hypothesis, as well as the reviews by Fernstrom et al. [227] and Newsholme et al. [244] for
examples of studies analyzing the benefits of BCAAs and their possible mechanisms).

In the brain, BCAAs can also be converted into glutamate through branched-chain amino acid
transaminases, replenishing the more commonly known glutamate–glutamine cycle [245]. LaNoue and
colleagues [246] found that approximately 30% of de novo glutamate synthesis came from transamination
of BCAAs in the retina, and the ubiquity of the branched-chain aminotransferase in the CNS suggests that
BCAA transamination is a significant contributor to de novo glutamate synthesis in the rest of the CNS as
well [247]. High concentrations of BCAAs, such as those found in patients with maple syrup urine disease,
were found to be neurotoxic due to increased excitotoxicity and oxidative stress [248–250].

3. Fluorescence Imaging

Fluorescent probes generally consist of two components: a sensing domain that interacts with the
ligand and a fluorescent reporter domain that shows a change in fluorescence intensity upon ligand
binding. In this review, fluorescent sensors will first be categorized by their component scaffolds’ type
(i.e., synthetic dye based, genetically encoded single fluorescent protein (FP) based, quantum dots (QDs)
based, nanotubes based, or hybrids), consisting of single or non-interacting fluorophores, with the last
section focusing on Förster Resonance Energy Transfer (FRET)-based sensors, which require transfers of
energy between two fluorophores, using these different scaffolds. Additionally, although there is an array
of fluorescent sensors available for visualizing amino acids, especially for synthetic dye-based sensors, we
will confine our review to sensors that have been demonstrated in live cells with limited toxicity.

For the sake of this review, we will be summarizing the past work in the area and stating the
various sensors that have been reported. However, it is important to consider that not all of the
reported sensors provide the same degree of performance and some only possess small signal changes
that may render them impractical for many applications. In addition, the quality of the reported
data is also highly variable, with some sensor characterization data seeming to be of questionable
quality [251–263]. More specifically, in the course of preparing this review, we found that the data
(such as the spectra, affinity titrations, or specificity tests) for some reported sensors did not appear to
be internally consistent within a single publication. We caution that researchers using these sensors
perform their own validation and run parallel experiments with a non-responsive control construct.

3.1. Synthetic Dye-Based Indicators (Excluding FRET-Based Sensors)

Synthetic dye-based indicators can be employed for the detection of amino acids (Table 2).
Generally speaking, synthetic dye-based indicators can provide a convenient method for imaging
the concentration of their respective analytes, often showing large responses due to their turn on/off

nature and fast response kinetics, though many designs involve an irreversible reaction to detect their
target, and are not applicable to imaging dynamic reversible changes. Unlike simpler ions, (such
as metal cations, non-metal anions and small polyatomic ions), which have more readily available
synthetic sensors using a range of different recognition moieties (often referred to in the literature as
“synthetic receptors”) [264–267], amino acids have a common backbone and different (yet typically
quite flexible) side chains, which complicates efforts to design synthetic receptors for amino acids with
high specificity. This difficulty is because synthetic receptors require precise spatial organization of
small organic and inorganic molecule building blocks, which are not significantly larger than amino
acids, to form complexes with their targets. Thus, because of the limited availability of synthetic amino
acid receptors, many of the available synthetic dye-based sensors require a reaction to detect their
targets, though significant strides have been made in recent years in designing synthetic amino acid
receptors [268]. In addition, synthetic dye-based indicators may show poor photostability and be toxic
to cells [269,270]. For a review of synthetic dyes and a comparison with quantum dots, we refer readers
to the review by Resch-Genger et al. [270]. Table 1.
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Table 1. Amino acids and their roles in neurotransmission. See main text for complete references.

Amino Acid Excitatory or
Inhibitory

Neurotransmitter,
Neuromodulator, or Precursor Receptor Function

Glutamic acid (Glu) Excitatory Neurotransmitter

Ionotropic (AMPA,
NMDA, and kainate)

metabotropic glutamate
receptors

Main excitatory neurotransmitter in CNS [9,11,12].
Can spill over for extrasynaptic activation [22–24].

Excesses can cause excitotoxicity [21].

Aspartic acid (Asp) Excitatory Neuromodulator,
neurotransmitter

NMDA and mGluR5 (d-asp
only) [51]

l-Asp—neuromodulator (proposed
neurotransmitter) [28,29].

d-Asp—neuromodulator (proposed
neurotransmitter) [42,43]; involved in hormone

release, neurogenesis, learning and memory [49,50].

Glutamine (Gln) N/A Precursor
Ionotropic glutamate receptors

(but requires millimolar
concentrations) [65,66]

Generation of glutamate, GABA, and aspartate [10,55].
Involved in regulating ammonia homeostasis [63,64].
Unclear physiological relevance of glutamine-induced

activation of ionotropic glutamate receptors.

Cysteine (Cys) Excitatory Neurotransmitter, precursor NMDA [71,73]

Physiological relevance of NMDAR activation is
unclear.

Excitotoxin—unknown mechanism [73].
Precursor to glutathione, taurine, l-cysteine sulfuric

acid, l-cysteic acid and hydrogen sulfide [81–84].

Methionine (Met) N/A Precursor N/A
Precursor to homocysteine, which is an excitatory

neuromodulator that binds to NMDA
receptors [94–96].

Proline (Pro) Excitatory Neuromodulator Glycine, NMDA, and
AMPA/Kainate [110]

Excess leads to hyperprolinemia
(seizures, hyperlocomotion, learning and other

cognitive deficits) [103–105].
Stress response [116,117].

Asparagine (Asn) N/A Precursor N/A
Precursor to aspartate [36,128].

Deficiencies in synthesis leads to structural
abnormalities in brain and cognitive deficits [129,130].
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Table 1. Cont.

Amino Acid Excitatory or
Inhibitory

Neurotransmitter,
Neuromodulator, or Precursor Receptor Function

GABA
Inhibitory (adult);

excitatory
(developing)

Neurotransmitter Ionotropic (GABAA) and
metabotropic (GABAB)

Major inhibitory neurotransmitter in the brain.
Co-released with glycine in some synapses [170–173].

Lysine (Lys) Inhibitory Neuromodulator, precursor GABAA and GPRC6A [150]

Precursor for l-glutamate [138].
Modulator of GABAergic transmission [143–146].

Indirect regulation of d-serine [136].
Stress response and pain [148,149].

Arginine (Arg) N/A Precursor N/A Precursor to NOx species and creatine [155,156].
Reduces stress-induced anxiety [148,161–164].

Glycine (Gly) Inhibitory Neurotransmitter Glycine receptors and NMDA

Main inhibitory neurotransmitter in the spinal
cord [6,167–169].

Co-released with GABA in some synapses [170–173].
Co-agonist of (extrasynaptic) NMDA

receptors [16,182].
Involved in cell migration and synaptogenesis [179].

Serine (Ser) Both Precursor,
neurotransmitter NMDA and glycine (d-ser)

l-Ser—precursor to glycine and
d-serine [56,166,190,191]; facilitate release of

glutamate and aspartate [187].
d-Ser—co-agonist for glycine and NMDA

receptors [16,182]; involved in Alzheimer’s disease
and alcohol addiction [196,197].

Alanine (Ala) Both Neuromodulator Glycine and
NMDA

d-Ala—weaker agonist for glycine receptors and
co-agonist for NMDA receptors [6,16].

Threonine (Thr) N/A Precursor N/A Precursor to glycine [212,213].

β-alanine (β-Ala) Inhibitory Neurotransmitter, precursor MrgprD [218], NMDA,
GABAA/C, and glycine [216]

Rate-limiting precursor to carnosine.
Pain modulation [219,222,225].

Histamine-independent itch mechanisms [226].
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Table 1. Cont.

Amino Acid Excitatory or
Inhibitory

Neurotransmitter,
Neuromodulator, or Precursor Receptor Function

Aromatic amino
acids (phenylalanine

(Phe), tryptophan
(Trp), tyrosine (Tyr)
and histidine (His))

N/A Precursors N/A Precursor to catecholamines, serotonin and
histamine [229,232,239].

BCAAs (isoleucine
(Ile), leucine (Leu)
and valine (Val))

N/A Precursor N/A

Competes with aromatic amino acid transport,
indirectly modulating synthesis of catecholamines,

serotonin and histamine [227,242].
Precursor for glutamate [246,247].
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Many previously reported efforts have focused on the synthesis of dyes for cysteine detection,
with at least 24 synthetic dye-based reported to function in detecting cysteine in the past five years
(Table 2) [257–263,271–288]. Of these, several can be targeted to the mitochondria [262,282,285,286],
the Golgi apparatus [259,276], the endoplasmic reticulum [274,275] and the lysosome [277]. Five
act as non-specific sensors, detecting cysteine and other molecules that contain thiol groups or
cysteine metabolites, with some using different wavelengths to distinguish between the different
ligands [258,271,273,280,283]. These synthetic sensors all require irreversible reactions to detect
cysteine, negatively affecting kinetics and requiring at least 5 min to an hour for maximum
fluorescence [257,259,260,262,271–286,288].

Outside of these cysteine- and thiol-sensitive dyes, three synthetic sensors, one based on coumarin
and the other two based on naphthalimide were published for the detection of histidine in cells
(Table 2) [289–291]. The first, CAQA, was reported to be specific but retained a significant response to
cysteine and other thiols present in cells; cells were treated with a thiol scavenger to eliminate any
interfering thiols [289]. The other two can reversibly detect histidine, show emission wavelengths at
similar ranges (~530 nm), but have different upper limits of detection and localization patterns. Next,
NCH-Cu2+, is reversible and shows good specific response between zero and 5 µM as well as possible
sublocalization to lysosomes [291]. Lastly, NPC shows a linear response up to 16 µM and has been
demonstrated to be applicable in HeLa cells and Caenorhabditis elegans [290]. However, NPC does show
modest responses (<1-fold) to other amino acids.

Finally, two synthetic sensors have been reported for aspartate. A green Cu2+-dependent
aspartate-sensing synthetic reporter, 8MPS, was shown to detect exogenously added aspartate in live
MCF-7 cells and C. elegans but retained a significant response to other amino acids (Table 2) [292]. The
second, N,N-SP-BPY, showed the largest fluorescent change towards aspartate and glutamate, but also
responds to other amino acids, especially cysteine [256]. The 8MPS and the histidine sensors require Cu 2+

ions to quench the sensor’s fluorescence while the presence of histidine or aspartate rescues the fluorescence.
They suffer from the same limitations, as similar levels of fluorescence may be observed with the presence
of both Cu2+ ions and the ligand of interest or with neither present. Therefore, although they can image
the presence of the amino acids, measurement of real-time flux of each amino acid may be difficult. To our
knowledge, these are the current extant amino acid sensors capable of being used in live cell imaging.

3.2. Genetically Encoded Single FP-Based Indicators

Genetically encoded indicators are a popular class of indicators for neuronal imaging due to their
ease of delivery (i.e., plasmid transfection or packaged into viruses) and the specificity of their targeting
(e.g., expression in different organelles or in a specific subset of cells). These indicators consist of a
ligand binding protein, usually a periplasmic binding protein (PBP) or a GPCR, as the sensing domain
and a fluorescent protein as the reporter domain such that binding of the ligand by the sensing domain
induces a change in the chromophore’s environment, causing a change in fluorescent intensity. Unlike
synthetic dye-based amino acid indicators, which often required the synthesis of a recognition moiety,
genetically encoded indicators often capitalize on naturally occurring proteins that have evolved to
have specificity and affinity for binding their target. The first single fluorescent protein-based indicator
for an amino acid was iGluSnFR, a glutamate indicator that used a glutamate/aspartate binding protein
from Escherichia coli and green fluorescent protein (GFP) (Table 2) [293]. Though it showed a greater
response to l-glutamate, it retained a smaller response to l-aspartate with comparable affinity. Since
then, a functionally brighter variant as well as different chromatic variants, ranging from blue to red,
have also been reported [294,295]. Further engineering of iGluSnFR also led to different variants with
different kinetics, sensitivities, or affinities [294,296,297].

Single fluorescent protein-based indicators have also been developed for GABA and histidine
(Table 2). The iGABASnFR series utilized a GABA-binding protein from Pseudomonas fluorescens and
had different variants possessing a range of affinities and dynamic ranges [298]. iGABASnFR was also
shown to have low affinity for glycine, alanine and histidine. Its applications in mice models and
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zebra fish for detecting concentration changes in GABA were also demonstrated. Notably, however, its
use for imaging GABA events longer than 1 s in duration may be limited as it undergoes a second
fluorescence change after 1 s.

On the other hand, the yellow histidine indicator, FHisJ, used the HisJ binding protein from E.
coli and showed a 520% increase in the fluorescence excitation ratio at 420 and 485 nm (R485/420) when
histidine is added [299]. FHisJ has a high affinity for histidine but does show a three-fold increase in
R485/420 in response to 100 mM l-arginine. The authors also expressed FHisJ in the cytosol and the
mitochondrial matrix of HeLa cells, where they used FHisJ to estimate the histidine concentration
(~159 and 77 µM, respectively) and to study histidine transport into cells.

3.3. Nanostructures (Excluding FRET-Based Sensors)

3.3.1. Quantum Dots

QDs are semi-conductor nanoparticles with optical and chemical properties that are influenced by
their size. They are attractive for biological investigations because of their brightness, narrow (and
tunable) emission profiles (which facilitates multiplex imaging), high photochemical and thermal
stability, resistance to photobleaching and long fluorescence lifetimes [270]. However, QDs are limited
by possible toxicity depending on their composition (especially cadmium-based QDs [300]), challenges
associated with their delivery for intracellular applications, and their tendency to “blink” (intermittent
periods of no observable emission) [270]. We refer readers to the review by Resch-Genger [270] for a
discussion of their properties as well as a thorough comparison of quantum dots against synthetic dyes.

A red sensor using copper indium sulfide (CuInS2)-based quantum dots functionalized with
tyrosine was reported as a sensor for cysteine, glutathione, histidine and threonine (Table 2) [301]. For
this sensor, the addition of copper (II) ions quenches the fluorescence, which can then be restored by
the addition of the ligands. However, this sensor appears to also respond to aspartate and tryptophan
and its use has not been demonstrated in living cells. Another sensor, using bright yellow carbon
dots functionalized with o-phenylenediamine and GABA, has also been reported to detect histidine
specifically (Table 2) [302]; however, similar to the CuInS2-based sensor [301], this sensor requires
the addition of a fluoroqinolone to first quench the fluorescence before recovery with histidine [302].
Testing of these carbon dots in human hepatoma cells showed good intracellular uptake with minimal
cytotoxicity, suggesting that they may be used to image intracellular histidine dynamics in living cells.

3.3.2. Carbon Nanotubes

Carbon nanotubes are semi-conducting hollow tubes of graphene that are categorized based
on their thickness as either single-walled carbon nanotubes (SWCNTs), consisting of one layer of
graphite (and are thus an allotrope of carbon), or multiwalled carbon nanotubes (MWCNTs). Although
their lengths may vary, carbon nanotubes have a diameter ranging from one to several nm. Carbon
nanotubes are a promising scaffold for building biosensors because of their unique physical and
chemical properties (for thorough discussions on carbon nanotubes, we refer readers to the reviews
by Liu et al. [303], Kruss et al. [304], and Yang et al. [305]). From a fluorescence imaging perspective,
SWCNTs are of particular interest because they possess tunable near-infrared emission profiles [306].
The emission profile of these carbon nanotubes is preferable to that of most other sensors using
different building blocks as light in this region allows for greater penetration [307,308]. Carbon
nanotubes can be functionalized by coating them with biomolecules, forming a “corona”, to tweak their
properties, such as in order to confer specificity towards a target analyte or increase solubility. This
strategy has been employed, using DNA or RNA for the corona, to engineer SWCNTs for the detection
of catecholamines, a class of key neurotransmitters [309–311]. Although carbon nanotube-based
fluorescent sensors, to our knowledge, do not yet exist for amino acids, the successful development of
sensors for catecholamines, which are derived from amino acids, bode well for the development of
carbon nanotube-based fluorescent sensors for amino acids.
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3.4. Hybrid Strategies (Excluding FRET-Based Sensors)

Hybrid sensors for amino acids incorporate a genetically encoded component for sensing the
amino acid and a synthetic flurophore as the reporter. This approach combines the advantages of
proteins’ specificity for their ligands with the brightness of synthetic dyes but requires the delivery of a
dye in the system. Additionally, hybrid sensors are, by design, modular since the synthetic dyes can be
replaced; however, in reality, replacing the dye may affect the sensor’s dynamic range.

The first hybrid sensor that was demonstrated in cells was for glutamate, dubbed glutamate (E)
Optical Sensor (EOS), and utilized the S1S2 glutamate binding domain of the GluR2 subunit of AMPA
receptors with a cysteine mutation engineered for attaching an environmentally-sensitive fluorophore
(Table 2) [312]. The first-generation EOS showed a modest response (∆F/Fmin = 0.20) on the cell surface but
was sufficient for mapping synaptically-release glutamate in hippocampal cultures. Two improved EOS
variants with improved dynamic ranges were then shown to be used in slices and in vivo [313]. However,
tethering of all these EOS variants required the unspecific labelling of EOS and cells with biotin by chemical
reagents. In 2014, a high throughput development system was used to engineer enhanced EOS (eEOS)
which showed a ∆F/Fmin of 5 (comparable to iGluSnFR [259]) on the surface of cultured neurons [314]. In
this work, the unspecific biotinylation of the cell surface was avoided by conjugating eEOS to biotinylated
BoNT/C-Hc, a domain of a neurotoxin that binds to gangliosides on neuronal surfaces. Recently, a hybrid
glutamate sensor, named Fl-GluBP has been reported [297]. Fl-GluBP utilizes the same binding protein
as iGluSnFR, exhibits a ∆F/Fmin of 1.9, and retains a significant response to glutamine (∆F/Fmin = 1.5).
Although this sensor remains untested in cells, its similarities to iGluSnFR suggest that Fl-GluBP should
also be applicable in cells. Lastly, a hybrid GABA sensor using the same binding domain as iGABASnFR
showed a ∆F/Fmin of ~0.7 (Table 2) [298].

3.5. FRET-Based Sensors

FRET-based sensors require a donor fluorophore that, upon excitation, transfers its energy to an
acceptor fluorophore without emission of a photon. The efficiency of this transfer, known as the FRET
efficiency, is dependent on the distance and orientation of the fluorophores as well as the spectral
overlap between the emission spectrum of the donor and the absorption spectrum of the acceptor.
Ligand binding induces a change in the distance and orientation of the fluorophores, causing a change
in the ratios of fluorescence intensities of both donor and acceptor fluorophores. The presence of two
fluorophores is both advantageous, since their 1:1 normalizes any changes caused by differences in
expression and allows for quantification, and disadvantageous, since the two fluorophores consume
more spectral bandwidth and limit the possibilities for multicolor imaging.

Most FRET-based sensors for amino acids are genetically encoded sensors that utilize PBPs from
bacteria as the ligand binding domain with cyan variants of GFP as the donor and yellow variants as
the acceptor. Genetically encoded FRET sensors for cysteine [251], glutamate [23,315], glycine [316],
histidine [317], isoleucine [252], lysine [254,318], leucine [253], methionine [255], glutamine [319],
arginine [154,317,320], and tryptophan [321] have been reported (Table 2). Of these, the first arginine
sensor [320] is unique as it uses the glutamine binding protein from E. coli as its recognition motif, while
the glycine indicator, GlyFS [316], utilized a binding domain that originally bound GABA, proline and
alanine and was engineered to bind glycine. The latest arginine sensor utilized an arginine-binding
protein identified from ancestral protein reconstruction [154]. Additionally, FRET sensors that recognize
multiple ligands have also been reported, such as one for lysine and arginine [317], aspartate and
glutamate [317], and BCAAs [317,322]. FRET sensors that use l-(7-hydroxycoumarin-4-yl)ethylglycine,
an unnatural fluorescent amino acid, for glutamine and methionine have also been reported [323,324].
Beyond genetically encoded sensors, two irreversible FRET-based synthetic probes selective for cysteine
with applications in mammalian cells are also recently available (Table 2) [325,326].

SNAP tag-based indicator proteins with a fluorescent intramolecular tether (Snifits), are hybrid
FRET-based sensors for glutamate and GABA (Table 2) [327,328]. Snifits consist of a receptor protein
fused to both SNAP and CLIP tags, which are two orthogonal tags that can be used for the attachment
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of FRET-capable fluorophores, that is also tethered to a competitive antagonist. Displacement of
the competitive antagonist induces a change in FRET efficiency, which can then be quantified. The
glutamate sensor, called Snifit-iGluR5 for the glutamate receptor used as the binding protein, showed
a decrease in FRET efficiency upon glutamate binding (∆R/Rmin = 0.9 for the purified sensor and 0.6 on
the surface of HEK293T cells) [327]. On the other hand, GABA-Snifit is based on the metabotropic
GABAB receptor with a decrease in FRET efficiency for a ∆R/Rmin of 0.8, while a variant with a GB1/2
chimera instead of the GABAB receptor, which could bind ligands but not interact with G proteins,
showed ∆R/Rmin of 0.4 with reduced affinity [328].

Table 2. Fluorescent indicators for amino acids.

Ligand Type Name Multiple
Variants Color ∆F/Fmin or

∆R/Rmin

Response In
Vitro a Ref.

Glu

Synthetic N,N-SP-BPY No Green ∆F/Fmin ~8.8 b,c [256]
Genetically

encoded
(GE)

iGluSnFR
Green

∆F/Fmin 4.5 [293]

iGluf andiGluu Yes 3.0 [296]
sf-iGluSnFR Blue to green 4.5 [294]
R-iGluSnFR Green and red 3.9 [295]

iGlul,m,h Yes Green 2.4 [297]
FRET (GE) FLIPE Yes

Cyan/yellow ∆R/Rmin

0.27 [315]
SuperGluSnFR

No
0.44 [23]

FLIP-cpGltI210 0.31 [317]

Hybrid
EOS No

Green ∆F/Fmin

0.37 [312]
EOS-K716A and EOS-L401C Yes 0.48 [313]

eEOS No 24 [314]

Fl-GluBP No 1.9 [297]
Hybrid
FRET Snifit-iGluR5 No Green/far red ∆R/Rmin 0.93 [327]

Asp Synthetic 8MPS
No Green ∆F/Fmin

~30 c [292]
N,N-SP-BPY ~8.8 b,c [256]

FRET (GE) FLIP-cpGltI210 No Cyan/yellow ∆R/Rmin 0.31 [317]

Gln FRET (GE)
FLIP-cpGlnH183 No Cyan/yellow

∆R/Rmin

0.13 [317]
FLIPQ Yes 0.26 [319]

EGFP-10-GlnBP-N138CouA No Blue/green 0.89 [323]

Cys

Synthetic

Probe 1 Blue ∆F/Fmin 66 [271]
Probe 1 Blue ~120 c [272]
NCQ Blue/green ~4.7, 3 c [273]

Nap-Cys ∆R/Rmin 22 [274]
TCS Cyan ∆F/Fmin 25 b [257]

Probe 1 Green 130 b [258]
GT-Cys ∆F/Fmin 110 b [259]
NPCC 13 [275]

Gol-Cys 20 [276]
Ly-1 8.8 [277]
CyP ~33 c [278]

Compound 1 ~9 c [279]
BDY-NBD Green/NIR ~7400, 9.8 c,d,e [280]

hCy-A Green/red ∆R/Rmin ~8 c [281]
PYR ∆R/Rmin 163 [282]
XCN Red

∆F/Fmin

1081 [283]
P-Cy 3 [260]
DCIP ~5 b,c [261]
CyA NIR ~6.5 c [284]

Cy-S-diOMe 250 [285]
NFL1 ~20 c [286]

DDNA 31 f [287]
CP-NIR 40 [288]
Mito-CP 12 b [262]
DP-NIR 7.5 b [263]

QDs T-CuInS2 QDs No Red ∆F/Fmin 0.72 [301]

FRET (GE) Cys-FS Yes Cyan/yellow ∆R/Rmin 0.42 b [251]

FRET
(Synthetic)

TP-Ratio-Cys No Blue/yellow ∆R/Rmin 36 [325]
Probe 1 No Blue/green 50 [326]
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Table 2. Cont.

Ligand Type Name Multiple
Variants Color ∆F/Fmin or

∆R/Rmin

Response In
Vitro a Ref.

Met FRET (GE) FLIPM Yes Cyan/yellow ∆R/Rmin
0.42 b [255]

YFP-MetQ-R189CouA Blue/yellow 1.7 [324]

GABA
GE iGABASnFR Yes Green ∆F/Fmin 4.5 [298]

Hybrid Pf622.V278C-JF585 No Red ∆F/Fmin ~0.7 [298]
GABA-Snifit Yes Green/far red ∆R/Rmin 0.8 [328]

Lys FRET (GE) ECFP-cpLAO-BP-Citrine
Yes Cyan/yellow ∆R/Rmin

~0.83 [318]
FLIPK ~0.26 b,c [254]

Arg FRET (GE)
QBP/Citrine/ECFP Yes

Cyan/yellow ∆R/Rmin

~0.25 [320]
FLIP-cpArgT194

No
0.54 [317]

cpFLIPR 0.35 [154]

Gly FRET (GE) GlyFS No Cyan/yellow ∆R/Rmin 0.28 [316]

Thr QDs T-CuInS2 QDs No Red ∆F/Fmin 0.37 [301]

Trp FRET (GE) FLIPW-CTYT No Cyan/yellow ∆R/Rmin 0.35 [321]

His

Synthetic
CAQA

No
Blue ∆F/Fmin ~18 c [289]

NPC Green ∆F/Fmin
6 [290]

NCH-Cu2+ Green 10 c [291]

GE FHisJ Yes Yellow ∆F/Fmin 5.2 [299]

QDs T-CuInS2 QDs
No

Red ∆F/Fmin
0.46 [301]

Y-CDs Yellow 4.5 [302]

FRET FLIP-cpHisJ194 No Cyan/yellow ∆R/Rmin 0.63 [317]

Ile FRET
FLIP-cpLivJ261 Yes

Cyan/yellow ∆R/Rmin

0.25 [317]
GEII Yes 0.44 b [252]

OLIVe No 1.05 [322]

Leu FRET
FLIP-cpLivJ261

Yes Cyan/yellow ∆R/Rmin

0.25 [317]
FLIP-Leu ~0.7 b [253]

OLIVe No 1.05 [322]

Val FRET
FLIP-cpLivJ261

No Cyan/yellow ∆R/Rmin
0.25 [317]

OLIVe ~0.9 [322]
a For sensors with multiple variants, the maximum response is reported. b These are sensors we find concerning
due to an apparent lack of internal consistency in the characterization data. c Response was not explicitly reported
or easily calculatable from an equation and was consequently estimated based on the provided data. d Response
estimated using a non-zero minimum concentration of ligand in the linear range. e Two fluorescent species with
their own responses to cysteine. f Response calculated with maximum concentration for linear range, which is
below the maximum tested concentration.

4. Conclusions

Amino acids have specific, but interconnected, roles for proper neurotransmission (Table 1).
Beyond their role in protein synthesis, many of the proteinogenic amino acids possess neuromodulatory
effects while others act as essential precursors to neurotransmitters without which deficiencies in
neurotransmission will result. Additionally, due to the shared nature of the amino acid transport
systems, perturbations in the levels of some essential amino acids may affect others. Despite the
significant strides made in understanding neurotransmission in recent decades, there is much more that
needs to be clarified, especially with respect to the roles amino acids have in neurotransmission. Indeed,
several amino acids, including some d-amino acids, are known to have neurotransmitter-like effects, yet
key mechanistic questions about their release—and their neurological relevance—remain unanswered.

Fluorescence imaging is a powerful technique that has the potential to answer many of these
unresolved questions and advance our understanding of neurotransmission. However, its potential
is handicapped by the limited availability and performance of sensors for amino acids. Out of the
22 amino acids reviewed here, sensors whose use has been demonstrated in living cells have only
been reported for 14 amino acids (Table 2). Our survey of available fluorescent probes for amino acids
revealed that most synthetic dye-based sensors are for cysteine and other biological thiols, taking
advantage of the unique nucleophilicity of thiols. Similarly, despite the advantages they offer, there is
a limited number of QD-based sensors. None are carbon nanotube-based, but given the platform’s
infancy, we believe that carbon nanotube-based sensors for amino acids would be forthcoming. On
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the other hand, sensors which utilized amino acid-binding proteins have been reported for 13 amino
acids, suggesting that strategies that incorporate an amino acid-binding protein as the recognition
motif might provide the fastest route for sensors. Although existing sensors with genetically encoded
recognition motifs have generally relied on known periplasmic binding proteins, recent advancements
in utilizing GPCRs as a scaffold [329] and protein engineering for engineering specificity for new
ligands [330] should facilitate the engineering of new and better biosensors for amino acids.

Ultimately, however, the most effective strategy would be through the collaborative efforts of
tool developers, using a combination of materials and strategies, and researchers who intend to use
these tools for their investigations. Open feedback loops between developers and users will maximize
the impact of tool development efforts and lead to further advancements in our understanding
of neurotransmission.
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Abbreviations

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid
Asp Aspartic acid
BBB Blood–brain barrier
BCAAs Branched-chain amino acids
CNS Central nervous system
EAAT1 Excitatory amino acid transporter 1
FP Fluorescent protein
FRET Förster Resonance Energy Transfer
GABA γ-Aminobutyric acid
GPCR G protein-coupled receptors
GLAST-1 Glutamate aspartate transporter 1
GFP Green fluorescent protein
mGluR5 Metabotropic glutamate receptor 5
MWCNT Multiwalled carbon nanotubes
NMDA N-methyl-d-aspartate
NIR Near-infrared
NOx Nitric oxide
PNS Peripheral nervous system
PBP Periplasmic binding protein
PA Pipecolic acid
QD Quantum dot
5-HT Serotonin
SWCNT Single-walled carbon nanotubes
Snifit SNAP tag-based indicator proteins with a fluorescent intramolecular tether
VGAT Vesicular GABA transporter
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64. Albrecht, J.; Zielińska, M.; Norenberg, M.D. Glutamine as a mediator of ammonia neurotoxicity: A critical
appraisal. Biochem. Pharmacol. 2010, 80, 1303–1308. [CrossRef]

65. Kolbaev, S.; Draguhn, A. Glutamine-induced membrane currents in cultured rat hippocampal neurons. Eur.
J. Neurosci. 2008, 28, 535–545. [CrossRef] [PubMed]

66. Luengo, J.G.; Muñoz, M.-D.; Álvarez-Merz, I.; Herranz, A.S.; González, J.C.; del Río, R.M.;
Hernández-Guijo, J.M.; Solís, J.M. Intracellular accumulation of amino acids increases synaptic potentials in
rat hippocampal slices. Amino Acids 2019, 51, 1337–1351. [CrossRef]

67. Dringen, R. Metabolism and functions of glutathione in brain. Prog. Neurobiol. 2000, 62, 649–671. [CrossRef]
68. Dringen, R.; Gutterer, J.M.; Hirrlinger, J. Glutathione metabolism in brain: Metabolic interaction between

astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem. 2000, 267, 4912–4916.
[CrossRef]

69. Dringen, R.; Hirrlinger, J. Glutathione pathways in the brain. Biol. Chem. 2003, 384, 505–516. [CrossRef]
70. Keller, H.J.; Do, K.Q.; Zollinger, M.; Winterhalter, K.H.; Cuenod, M. Cysteine: Depolarization-induced release

from rat brain in vitro. J. Neurochem. 1989, 52, 1801–1806. [CrossRef]
71. Olney, J.W.; Zorumski, C.; Price, M.T.; Labruyere, J. L-Cysteine, a bicarbonate-sensitive endogenous

excitotoxin. Science 1990, 248, 596–599. [CrossRef]
72. Sagara, J.I.; Miura, K.; Bannai, S. Maintenance of neuronal glutathione by glial cells. J. Neurochem. 1993, 61,

1672–1676. [CrossRef]

http://dx.doi.org/10.1007/s00726-012-1356-1
http://dx.doi.org/10.1016/j.neulet.2010.04.077
http://dx.doi.org/10.1093/jb/mvw043
http://dx.doi.org/10.1007/s00726-015-1926-0
http://www.ncbi.nlm.nih.gov/pubmed/25646960
http://dx.doi.org/10.1007/s00726-014-1847-3
http://dx.doi.org/10.1017/S1740925X11000093
http://www.ncbi.nlm.nih.gov/pubmed/22018046
http://dx.doi.org/10.1016/j.neuint.2011.08.017
http://dx.doi.org/10.1016/S0197-0186(03)00039-1
http://dx.doi.org/10.1016/j.neuint.2013.06.008
http://dx.doi.org/10.2174/13894501113149990156
http://dx.doi.org/10.2174/18715273113129990091
http://dx.doi.org/10.1016/j.neuint.2012.10.013
http://dx.doi.org/10.1007/s11011-008-9113-6
http://dx.doi.org/10.1002/hep.21357
http://www.ncbi.nlm.nih.gov/pubmed/17006913
http://dx.doi.org/10.1016/j.bcp.2010.07.024
http://dx.doi.org/10.1111/j.1460-9568.2008.06365.x
http://www.ncbi.nlm.nih.gov/pubmed/18702725
http://dx.doi.org/10.1007/s00726-019-02771-w
http://dx.doi.org/10.1016/S0301-0082(99)00060-X
http://dx.doi.org/10.1046/j.1432-1327.2000.01597.x
http://dx.doi.org/10.1515/BC.2003.059
http://dx.doi.org/10.1111/j.1471-4159.1989.tb07260.x
http://dx.doi.org/10.1126/science.2185543
http://dx.doi.org/10.1111/j.1471-4159.1993.tb09802.x


Int. J. Mol. Sci. 2020, 21, 6197 25 of 36

73. Janáky, R.; Varga, V.; Hermann, A.; Saransaari, P.; Oja, S.S. Mechanisms of L-cysteine neurotoxicity. Neurochem.
Res. 2000, 25, 1397–1405. [CrossRef] [PubMed]

74. Gonzalez, A.N.B.; Vicentini, F.; Calvo, D.J. Negative modulation of the GABA(A)rho 1 receptor function by
L-cysteine. J. Neurochem. 2018, 144, 50–57. [CrossRef] [PubMed]

75. Peana, A.T.; Assaretti, A.R.; Muggironi, G.; Enrico, P.; Diana, M. Reduction of ethanol-derived
acetaldehyde-induced motivational properties by L-cysteine. Alcohol. Clin. Exp. Res. 2009, 33, 43–48.
[CrossRef]

76. Peana, A.T.; Muggironi, G.; Calvisi, G.; Enrico, P.; Mereu, M.; Nieddu, M.; Boatto, G.; Diana, M. L-Cysteine
reduces oral ethanol self-administration and reinstatement of ethanol-drinking behavior in rats. Pharmacol.
Biochem. Behav. 2010, 94, 431–437. [CrossRef] [PubMed]

77. Peana, A.T.; Muggironi, G.; Fois, G.R.; Zinellu, M.; Sirca, D.; Diana, M. Effect of L-cysteine on acetaldehyde
self-administration. Alcohol 2012, 46, 489–497. [CrossRef] [PubMed]

78. Sirca, D.; Enrico, P.; Mereu, M.; Peana, A.T.; Diana, M. L-cysteine prevents ethanol-induced stimulation of
mesolimbic dopamine transmission. Alcohol. Clin. Exp. Res. 2011, 35, 862–869. [CrossRef]

79. Lewerenz, J.; Hewett, S.J.; Huang, Y.; Lambros, M.; Gout, P.W.; Kalivas, P.W.; Massie, A.; Smolders, I.;
Methner, A.; Pergande, M.; et al. The cystine/glutamate antiporter system x(c)(-) in health and disease:
From molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 2013, 18, 522–555.
[CrossRef]

80. Soria, F.N.; Pérez-Samartín, A.; Martin, A.; Gona, K.B.; Llop, J.; Szczupak, B.; Chara, J.C.; Matute, C.;
Domercq, M. Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic
damage. J. Clin. Investig. 2014, 124, 3645–3655. [CrossRef]

81. McBean, G. Sulfur-Containing Amino Acids. In Handbook of Neurochemistry and Molecular Neurobiology: Amino
Acids and Peptides in the Nervous System; Springer: Berlin/Heidelberg, Germany, 2007; pp. 133–154. [CrossRef]

82. Qu, K.; Lee, S.; Bian, J.; Low, C.-M.; Wong, P.-H. Hydrogen sulfide: Neurochemistry and neurobiology.
Neurochem. Int. 2008, 52, 155–165. [CrossRef]

83. Zhang, X.; Bian, J.-S. Hydrogen sulfide: A neuromodulator and neuroprotectant in the central nervous
system. ACS Chem. Neurosci. 2014, 5, 876–883. [CrossRef]

84. Huxtable, R.J. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol.
1989, 32, 471–533. [CrossRef]

85. Horikoshi, T.; Asanuma, A.; Yanagisawa, K.; Anzai, K.; Goto, S. Taurine and β-alanine act on both GABA
and glycine receptors in Xenopus oocyte injected with mouse brain messenger RNA. Mol. Brain Res. 1988, 4,
97–105. [CrossRef]

86. Davison, A.N.; Kaczmarek, L.K. Taurine—A possible neurotransmitter? Nature 1971, 234, 107–108. [CrossRef]
[PubMed]

87. Kaczmarek, L.; Davison, A. Uptake and release of taurine from rat brain slices. J. Neurochem. 1972, 19,
2355–2362. [CrossRef]

88. Oja, S.S.; Saransaari, P. Pharmacology of taurine. Proc. West. Pharmacol. Soc. 2007, 50, 8–15.
89. Ochoa-de la Paz, L.; Martinez-Davila, I.; Miledi, R.; Martinez-Torres, A. Modulation of human GABAρ1

receptors by taurine. J. Neurosci. Res. 2008, 61, 302–308. [CrossRef] [PubMed]
90. Galarreta, M.; Bustamante, J.; del Rio, R.M.; Solis, J.M. Taurine induces a long-lasting increase of synaptic

efficacy and axon excitability in the hippocampus. J. Neurosci. 1996, 16, 92–102. [CrossRef]
91. Dominy, J., Jr.; Thinschmidt, J.S.; Peris, J.; Dawson, R., Jr.; Papke, R.L. Taurine-induced long-lasting

potentiation in the rat hippocampus shows a partial dissociation from total hippocampal taurine content and
independence from activation of known taurine transporters. J. Neurochem. 2004, 89, 1195–1205. [CrossRef]

92. Hawkins, R.A.; O’Kane, R.L.; Simpson, I.A.; Vina, J.R. Structure of the blood–brain barrier and its role in the
transport of amino acids. J. Nutr. 2006, 136, 218S–226S. [CrossRef]

93. Bröer, A.; Tietze, N.; Kowalczuk, S.; Chubb, S.; Munzinger, M.; Bak, L.K.; Bröer, S. The orphan transporter
v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B(0)AT2). Biochem. J. 2006, 393, 421–430.
[CrossRef]

94. Lipton, S.A.; Kim, W.-K.; Choi, Y.-B.; Kumar, S.; D’Emilia, D.M.; Rayudu, P.V.; Arnelle, D.R.; Stamler, J.S.
Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl.
Acad. Sci. USA 1997, 94, 5923–5928. [CrossRef] [PubMed]

http://dx.doi.org/10.1023/A:1007616817499
http://www.ncbi.nlm.nih.gov/pubmed/11059810
http://dx.doi.org/10.1111/jnc.14237
http://www.ncbi.nlm.nih.gov/pubmed/29023772
http://dx.doi.org/10.1111/j.1530-0277.2008.00809.x
http://dx.doi.org/10.1016/j.pbb.2009.10.005
http://www.ncbi.nlm.nih.gov/pubmed/19879891
http://dx.doi.org/10.1016/j.alcohol.2011.10.004
http://www.ncbi.nlm.nih.gov/pubmed/22440691
http://dx.doi.org/10.1111/j.1530-0277.2010.01416.x
http://dx.doi.org/10.1089/ars.2011.4391
http://dx.doi.org/10.1172/JCI71886
http://dx.doi.org/10.1007/978-0-387-30411-3
http://dx.doi.org/10.1016/j.neuint.2007.05.016
http://dx.doi.org/10.1021/cn500185g
http://dx.doi.org/10.1016/0301-0082(89)90019-1
http://dx.doi.org/10.1016/0169-328X(88)90002-2
http://dx.doi.org/10.1038/234107a0
http://www.ncbi.nlm.nih.gov/pubmed/4331550
http://dx.doi.org/10.1111/j.1471-4159.1972.tb01289.x
http://dx.doi.org/10.1016/j.neures.2008.03.009
http://www.ncbi.nlm.nih.gov/pubmed/18479770
http://dx.doi.org/10.1523/JNEUROSCI.16-01-00092.1996
http://dx.doi.org/10.1111/j.1471-4159.2004.02410.x
http://dx.doi.org/10.1093/jn/136.1.218S
http://dx.doi.org/10.1042/BJ20051273
http://dx.doi.org/10.1073/pnas.94.11.5923
http://www.ncbi.nlm.nih.gov/pubmed/9159176


Int. J. Mol. Sci. 2020, 21, 6197 26 of 36

95. Poddar, R.; Paul, S. Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated
kinase leads to neuronal cell death. J. Neurochem. 2009, 110, 1095–1106. [CrossRef] [PubMed]

96. Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S.
[CrossRef]

97. Ganguly, P.K.; Maddaford, T.G.; Edel, A.L.; Karmin, O.; Smeda, J.S.; Pierce, G.N. Increased
homocysteine-induced release of excitatory amino acids in the striatum of spontaneously hypertensive
stroke-prone rats. Brain Res. 2008, 1226, 192–198. [CrossRef]
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