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Abstract

A multiplex real-time PCR assay for the detection of Mycoplasma pneumoniae (MP181), Chlamydia (Chlamydophila) pneumoniae
(CP-Arg), Legionella spp. (Pan-Leg), and the human RNase P (RNase P) gene was developed for rapid testing of atypical bacterial
respiratory pathogens in clinical specimens. This method uses 4 distinct hydrolysis probes to detect 3 leading causes of community-
acquired pneumonia. The assay was evaluated for specificity and sensitivity by testing against 35 related organisms, a dilution series of
each specific target and 197 clinical specimens. Specificity testing demonstrated no cross-reactivity. A comparison to previously validated
singleplex real-time PCR assays for each agent was also performed. The analytical sensitivity for specific pathogen targets in both the
singleplex and multiplex was identical (50 fg), while efficiencies ranged from 82% to 97% for the singleplex assays and from 90% to
100% for the multiplex assay. The clinical sensitivity of the multiplex assay was improved for the Pan-Leg and CP-Arg targets when
compared to the singleplex. The MP181 assay displayed equivalent performance. This multiplex assay provides an overall improvement in
the diagnostic capability for these agents by demonstrating a sensitive, high-throughput and rapid method. This procedure may allow for a
practical and efficient means to test respiratory clinical specimens for atypical pneumonia agents in health care settings and facilitate an

appropriate public health response to outbreaks.
Published by Elsevier Inc.
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1. Introduction

Respiratory infections caused by the atypical pathogens
Mycoplasma pneumoniae, Chlamydia pneumoniae, and
Legionella spp. collectively account for approximately
15% of all community-acquired pneumonia (CAP) cases
(Bartlett and Mundy, 1995; Gupta and Sarosi, 2001).
Because these infections are difficult to discern from other
causes of pneumonia based on examination, symptoms, or
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chest X-ray findings, laboratory identification of the
etiology is critical to establish the correct course of
treatment (Cunha, 2000). M. pneumoniae accounts for 15—
20% of atypical CAPs, and outbreaks have been reported to
occur in 3- to 7-year intervals with varying incidence rates
(Foy, 1993; Klement et al., 2006; Waites and Talkington,
2004). Although symptoms are usually mild and individuals
often do not seek medical treatment, some patients require
hospitalization and severe extrapulmonary disease can
develop (Koskiniemi, 1993; Mok et al., 1979; Waites and
Talkington, 2004). C. pneumoniae, an obligate intracellular
bacterium, is frequently misdiagnosed or undetected and is
estimated to cause 10—-15% of atypical CAP infections
(Dowell et al., 2001; Marrie et al., 1996; Menendez et al.,
1999; Sopena et al., 1999; Welti et al., 2003). Incidence
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rates may be much higher because approximately 50% of
adults have antibodies to C. pneumoniae (Birkeback et al.,
2000; Grayston, 1989; Tuuminen et al., 2000; Wan and
Grayston, 1990). Legionellae account for approximately 2—
8% of atypical CAPs, with Legionella pneumophila
serogroup (Sg) 1 causing approximately 70% of cases,
followed by Sg 2, 4, and 6 along with L. bozemanii, L.
longbeachae, and L. micdadei (Bartlett and Mundy, 1995;
Fields et al., 2002; Gupta and Sarosi, 2001).

Each of these agents are fastidious organisms that require
time-consuming procedures, specialized media, and techni-
cal expertise to successfully culture (Gupta and Sarosi,
2001). Several commercially available serologic kits exist
for detecting infection with M. pneumoniae and C.
pneumoniae; however, none display a high degree of
sensitivity or specificity. Moreover, the need for both acute
and convalescent patient serum makes this a retrospective
test and not ideal for a rapid diagnosis. Urinary antigen tests
are routinely used for diagnosis of Legionnaire’s disease but
only detect L. pneumophila Sgl, thereby allowing for
approximately 30% of other Legionella infections to go
undetected (Cunha, 2006; Fields et al., 2002).

Within the last decade, improvements for the detection of
these agents have been made. Specific real-time PCR assays
have been developed to provide a more rapid and reliable
method for detecting respiratory pathogens in clinical speci-
mens (Apfalter et al., 2003; Hayden et al., 2001; Mitchell et al.,
2009; Winchell et al., 2008). More recently, multiplex
(conventional and real-time) PCR assays have also been
developed (Gullsby et al., 2008; Loens et al., 2008;
McDonough et al., 2005; Miyashita et al., 2004; Welti et al.,
2003). Miyashita et al. (2004) designed a multiplex conven-
tional PCR test, followed by Micro-Chip Electrophoresis
Analysis, that showed an increase in detection rates over
traditional methods. A duplex real-time PCR assay for C.
pneumoniae and M. pneumoniae also showed improved
detection rates in clinical specimens when compared to

Table 1

conventional PCR (Gullsby et al., 2008). A real-time multiplex
nucleic acid sequence-based amplification assay, targeting the
16S rRNA region of these organisms, has also been used for
detection (Loens et al., 2008). Although only a limited number
of clinical specimens were tested, specific detection was
achieved in this study, albeit with lower sensitivity. This assay
also requires the use of molecular beacons that may pose
design challenges and extensive optimization.

The current study reports the development and evaluation
of a multiplex real-time PCR assay for simultaneous
detection of 3 atypical bacterial pneumonia-causing organ-
isms in clinical specimens. To our knowledge, this is the first
report of a 4-plex, single-tube, real-time TagMan® (Applied
Biosystems, Foster City, CA) PCR assay for the detection of
M. pneumoniae (MP181), C. pneumoniae (CP-Arg), Legio-
nella spp. (Pan-Leg), and human DNA (RNase P). This
rapid, reliable, and convenient method allows for early
identification of these agents to assist in providing a timely
and more appropriate public health response.

2. Materials and methods

2.1. Primer and probe design

The primer and probe sequences for all markers are listed in
Table 1. The MP181 and RNase P assays have been described
previously (Emery et al., 2004; Winchell et al., 2008). Legio-
nella spp. primers and probe (Pan-Leg) were designed
manually targeting the ssr4 gene (GenBank accession no.
U68079) and tested against a comprehensive list of Legionella
species and serogroups (Fields et al., 2002). Primer Express
3.0 (Applied Biosystems, Foster City, CA) was used to design
primer and probe sequences for the CP-Arg assay targeting the
arginine repressor protein gene of C. pneumoniae (GenBank
accession no. AE009440.1 for TW-183). The CP-Arg assay
was tested against all available isolates of C. pneumoniae: AR-
388, BR-393, W6, 10L-207, FML-7, FML-12, FML-16,

Primers and probes for multiplex real-time detection of M. pneumoniae, C. pneumoniae, Legionella spp., and human DNA

Primer/probe Sequence (5'—3") Gene target Product (bp) Multiplex primer/probe
final concentration
MPI181-F TTTGGTAGCTGGTTACGGGAAT M. pneumoniae 73 250 nmol/L
MP181-R GGTCGGCACGAATTTCATATAAG CARDS Tx (Kannan and 250 nmol/L
Baseman, 2006)
MP181-P HEX-TGTACCAGAGCACCCCAGAAGGGCT-BHQ1 100 nmol/L
CP-Arg-F CGTGGTGCTCGTTATTCTTTACC C. pneumoniae 74 250 nmol/L
CP-Arg-R TGGCGAATAGAGAGCACCAA argR 250 nmol/L
CP-Arg-P Quas670-CTTCAACAGAGAAGACCACGACCCGTCA-BHQ3 50 nmol/L
Pan-Leg-F GGCGACCTGGCTTC Legionella spp. 230 125 nmol/L
Pan-Leg-R TATGACCGTTGATTCGATACC ssrA 125 nmol/L
Pan-Leg-P FAM-ACGTGGGTTGC-BHQI1? 25 nmol/L
RNase P-F AGATTTGGACCTGCGAGCG Human RNase P 62 250 nmol/L
(Emery et al., 2004)
RNase P-R GAGCGGCTGTCTCCACAAGT 250 nmol/L
RNase P-P CalRd610-TTCTGACCTGAAGGCTCTGCGCG-BHQ2 50 nmol/L

# Locked nucleic acid probe.
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FML-19, K66, TW-183, CM1 CWL-029, TW-2043, TW-
2023, CWL-011, CWL-050, and BAL-16. These isolates were
obtained from various clinical sources, including throat
washings, NP/OP swabs, and BALs.

2.2. Singleplex real-time PCR assays

For each singleplex assay, specific TagMan® probes were
labeled with 6-carboxyflourescein (FAM) and were exam-
ined separately under previously optimized conditions
(Winchell et al., 2008). Briefly, the 25-uL reaction volume
contained 12.5 pL of Platinum Quantitative PCR Supermix-
UNG (Invitrogen, Carlsbad, CA), an additional 3 mmol/L
MgCl,, 1 pL of 10 mmol/L nucleotide mix (Promega,
Madison, WI), 1 pmol/L of each primer, 200 nmol/L of
probe, 1.25 U of Platinum Taq Polymerase (Invitrogen), and
5 uL of template. Each assay was performed on the ABI
7500 Real-Time PCR system using the following thermo-
cycling conditions: 95 °C for 2 min, followed by 45 cycles of
95 °C for 15 s and 60 °C for 1 min.

2.3. Multiplex real-time PCR assay

The multiplex assay used the same primer and probe
sequences as the singleplex assays, but all oligonucleotides
were pooled in a one-tube reaction. A combined positive
control (CPC) containing pooled genomic nucleic acid from
M. pneumoniae M129, C. pneumoniae TW-183, L. pneu-
mophila Sg 1, and human nucleic acid (Promega; catalog no.
G3041) was used to determine which fluorophores were
optimal for each assay. This pool was calibrated to provide a
consistent range of Ct values for each target. Table 1 shows
the final concentrations of each primer and probe set and the
distinct dyes used for each specific probe. The multiplex
reaction contains 12.5 pL of PerfeCTa™ Multiplex qPCR
SuperMix (Quanta Biosciences, Gaithersburg, MD), the
appropriate volume of each primer and probe, and 5 pL of
template to a final volume of 25 pL. The assay was
performed on the ABI 7500 Real-Time PCR system using
thermocycling conditions described above, except the initial
activation step is extended to 5 min, as recommended by the
manufacturer.

2.4. Analytical specificity

Analytical specificity for each assay was verified using
the following comprehensive panel of related respiratory
organisms, each at a concentration of 3 ng/pL: M. pirum, M.
penetrans, M. hominis, M. fermentans, M. buccale, M.
arginine, M. hyorhinis, M. amphoriforme, M. facium, B.
pertussis, C. albicans, C. trachomatis, C. psittaci, C.
diphtheriae, E. coli, L. planetarium, M. catarrhalis, N.
elongate, N. meningitidis, P. aeruginosa, S. aureus, S.
epidermidis, S. pneumoniae, S. pyogenes, S. salivarius, U.
parvum, U. urealyticum, human DNA, human coronavirus,
human rhinovirus, human parainfluenza virus 2, human

parainfluenza virus 3, human adenovirus, influenza virus A,
influenza virus B, respiratory syncytial virus A, respiratory
syncytial virus B (Winchell et al., 2008). No cross-reactivity
or nonspecific amplification was observed for any of the
assays tested with these organisms (data not shown).

2.5. Analytical sensitivity

Analytical sensitivity was established by testing a dilution
series of nucleic acids for each assay. M. pneumoniae M129,
C. pneumoniae TW-183, and L. pneumophila Sgl were
grown on appropriate media or cells. Nucleic acid extrac-
tions were performed using the QIAamp DNA Blood Mini
Kit (Qiagen, Valencia, CA) following manufacturer’s
instructions. Nucleic acid concentrations were determined
using the NanoDrop® ND-1000 V3.5.2 Spectrophotometer
(NanoDrop products, Wilmington, DE). M. pneumoniae, C.
pneumoniae, and L. pneumophila nucleic acids were diluted
to 100 pg/uL followed by 10-fold dilutions down to 1 fg/uL.
Human DNA (Promega) was diluted to 1 ng/uL followed by
10-fold dilutions down to 1 fg/uL. All nucleic acid extracts
were diluted in nuclease-free water and tested in replicates of
10 by 2 different operators (20 replicates total). These tests
were performed for both the singleplex and multiplex assays.
Limits of detection were established for each assay and
defined as the lowest dilution in which >50% of replicates
had positive crossing threshold values (Ct). The Ct values
were plotted against nucleic acid concentration to determine
slope and assay efficiencies (%). This was calculated by
determining the percentage of difference either above or
below the perfect slope of —3.3 and efficiency of 100%
(Qvarnstrom et al., 2005).

2.6. Clinical specimens

Respiratory clinical specimens were obtained from
previous respiratory surveillance studies that included both
domestic and international sources along with outbreak
investigations within the United States. All specimens were
collected from persons presenting with respiratory symp-
toms. Clinical sensitivity was established by testing, in
triplicate, 177 nasopharyngeal and/or oropharyngeal swabs
by all 4 singleplex assays as well as the multiplex assay. In
addition, 20 clinical specimens (lung tissue, bronchial
lavage, sputa, and spleen tissue) were tested, in triplicate,
with the Pan-Leg singleplex assay as well as the multiplex
assay. Specimens were extracted using the MagNA Pure LC
1.0 or the MagNA Pure Compact instruments (Roche
Applied Science, Indianapolis, IN) using the Total Nucleic
Acid Isolation Kit following manufacturer’s instructions.
Both instruments were programmed for the Total NA
Serum_Plasma_Blood protocol with a 200-puL sample
volume and 100-pL elution volume. Evaluation of clinical
sensitivity for the multiplex versus singleplex assays was
performed by comparing crossing threshold (Ct) values
using the Student’s t-test for statistical analysis.
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3. Results

3.1. Multiplex data analysis

Before performing the multiplex assay, the ABI 7500
instrument is programmed such that each target set was
assigned a distinct detector color. Fig. 1A is an example of
positive growth curves for all 4 markers using the CPC. The
C. pneumoniae is displayed in blue, M. pneumoniae in
brown, Pan-Leg in green, and RNase P in red. Fig. 1B is an
example of a no template control reaction showing no
amplification in any of the 4 assays. Representative positive
clinical specimen results are shown in Fig. 2A—C. A typical
negative specimen is shown in Fig. 2D where only RNase P
exhibits a positive curve, validating nucleic acid extraction
and proper preparation of the master mix.

3.2. Analytical sensitivity and assay efficiency

A comparison of the multiplex versus singleplex assays
for all 4 markers including analytical sensitivity, correlation
values, and assay efficiencies is shown in Fig. 3. The limits
of detection were equivalent for the singleplex and multiplex

pathogen-specific assays (50 fg) as well as for the RNase P
assay (6 pg). Efficiencies ranged from 82% to 100%
depending on the target. The efficiencies for both CP-Arg
and Pan-Leg were higher with the multiplex assay versus
singleplex at 100% versus 93% and 97% versus 82%,
respectively. RNase P efficiencies were identical with each
assay (85%), while the MP181 singleplex assay efficiency
was higher at 97% versus 90% for the multiplex.

3.3. Primary clinical specimen testing

Table 2 shows the average Ct values for all positive
clinical specimens using the multiplex and singleplex assays
for all bacterial targets. A total of 197 respiratory specimens
were tested using both assays. Of these, 36 specimens tested
positive for C. pneumoniae, 23 were positive for M.
pneumoniae, and 17 were positive for Legionella spp. The
remaining specimens were negative in all 3 replicates for
these agents when tested in both assays. All specimens gave
amplification curves with the RNase P marker for both the
multiplex and singleplex assays with a Ct range 0f22.2-32.0
and 23.6-33.0, respectively (data not shown). Statistical
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Fig. 1. (A-B) Analysis of CPC and no template control in triplicate using the multiplex assay on the ABI 7500.



Fig. 2. (A-D) Analysis of representative clinical specimens for MP181 (A), CP-Arg (B), Pan-Leg (C), and a negative specimen (D), using the multiplex assay on

the ABI 7500.
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Table 2

Comparison of singleplex versus multiplex average real-time PCR Ct values for clinical specimens

Specimen C. pneumoniae (CP-Arg) M. pneumoniae (MP181) Legionella ssp. (Pan-Leg)
1o Singleplex Multiplex Singleplex Multiplex Singleplex Multiplex
1 37.0 35.0 - - - -
2 28.2 26.4 - - - -
3 323 30.2 - - - -
4 38.0 359 - - - -
5 35.1 32.8 - - - -
6 33.4 31.2 - - - -
7 35.7 33.1 - - - -
8 352 33.0 - - - -
9 35.0 33.1 - - - -
10 359 354 - - - -
11 252 23.8 - - - -
12 33.4 314 - - - -
13 37.5 355 - - - -
14 30.4 28.2 - - - -
15 31.5 29.4 - - - -
16 24.5 233 - - - -
17 327 31.7 - - - -
18 36.4 353 - - - -
19 39.0 352 - - - -
20 26.3 24.7 - - - -
21 30.4 28.9 - - - -
22 234 22.4 - - - -
23 39.1 36.0 - - - -
24 33.6 31.3 - - - -
25 37.9 38.1 - - - -
26 372 349 - - - -
27 36.9 35.8 - - - -
28 44.1* 40.4 - - - -
29 39.6" 43.7 - - - -
30 38.2° 35.6 - - - -
31 38.9* 36.0 - - - -
32 38.8° 35.9° - - - -
33 38.2° 36.7° - - - -
34 38.9° 36.7° - - - -
35 39.4% 38.0° - - - -
36 - 37.5° - - - -
37 - - 33.7 34.6 - -
38 - - 29.6 29.7 - -
39 - - 29.2 29.0 - -
40 - - 319 31.7 - -
41 - - 29.8 29.9 - -
42 - - 31.1 36.4 - -
43 - - 34.6 34.4 - -
44 - - 35.8 36.1 - -
45 - - 36.9 36.1 - -
46 - - 335 33.2 - -
47 - - 30.9 315 - -
48 - - 37.7 38.2 - -
49 - - 30.0 28.3 - -
50 - - 36.8 36.6 - -
51 - - 23.0 22.6 - -
52 - - 34.7 35.0 - -
53 - - 32.1 3255 - -
54 - - 359 35.6 - -
55 - - 383 40.8 - -
56 - - 38.0° 40.3° - -
57 - - 37.9° 39.5 - -
58 - - 38.0° 38.8" - -
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Table 2 (continued)

Specimen C. pneumoniae (CP-Arg) M. pneumoniae (MP181) Legionella ssp. (Pan-Leg)

no- Singleplex Multiplex Singleplex Multiplex Singleplex Multiplex
61 - - - - 35.6 32.1
62 - - - - 38.4 35.6
63 - - - - 38.2 353
64 - - - - 29.9 27.4
65 - - - - 38.4 35.4
66 - - - - 314 27.8
67 - - - - 30.5 27.6
68 - - - - 3255 28.6
69 - - - - 30.0 26.9
70 - - - - 27.6 24.8
71 - - - - 40.3 36.7
72 - - - - 22.5 20.5
73 - - - - 349 33.6
74 - - - - 37.3 345
75 - - - - 36.4 33.8
76 - - - - 43.5° 38.1°

— = the specimens were tested for all markers but were negative except as indicated.

* Two of three replicates had positive Ct values.
® One of three replicates had positive Ct values.

analysis comparing average Ct values was performed to
determine if the multiplex assay significantly improved the
detection of these agents from clinical specimens. The CP-
Arg and Pan-Leg targets showed significant differences
between the 2 assays using the Student’s t-test with P <
.0002. The CP-Arg multiplex assay consistently displayed
lower Ct values (22.4-38.1) versus the singleplex assay
(23.4-39.1). Similarly, the Pan-Leg multiplex assay exhib-
ited lower Ct values, with a range of 20.5-36.7 versus 22.5—
40.3 for the singleplex assay. The Student’s t-test for the
MP181 marker showed no statistical difference between the
assays (P = .030). Statistical analysis was not performed on
specimens that failed to provide positive amplification
curves in all 3 replicates with either the singleplex or
multiplex assay. Eight specimens tested with the CP-Arg
singleplex assay failed to have positive curves in all 3
replicates; however, the multiplex assay was able to detect 4
of these in all 3 replicates. The multiplex assay also
detected one additional C. pneumoniae-positive specimen
(in 1 of 3 replicates) that was negative with the singleplex
reaction. The M. pneumoniae-specific assay (MP181)
showed equivalent sensitivity with both assays detecting
less than 3 replicates in the same 4 specimens. Lastly, one
Pan-Leg—positive specimen had 1 of 3 replicates positive
with both assays, although the Ct value for the multiplex
assay (38.1) was significantly earlier than that of the
singleplex assay (43.5).

4. Discussion

Although M. pneumoniae, C. pneumoniae, and Legionella
spp. have long been established as causative agents for atypical
bacterial CAP infections, rapid and reliable diagnosis
continues to be a challenge (Niederman et al., 2001; Skerrett,

1999). Our multiplex real-time PCR assay offers a sensitive
and specific tool for rapid and simultaneous detection of these
agents. This assay provides numerous advantages over
existing detection methodologies including singleplex real-
time PCR assays for detection of these agents. This multiplex
assay increases specimen throughput because all 3 agents,
along with a control, can be detected in a single tube. This
results in faster turnaround time from specimen receipt to
result, a feature that may be especially important during
respiratory outbreaks in which the initial etiology is unknown.
This assay reduces the potential for error in preparation of both
PCR master mix and sample addition. Furthermore, the
multiplex assay allows conservation of the specimen extract,
leading to greater flexibility and opportunity for follow-up or
additional testing. Because less specimen volume is required to
perform this assay, the extraction procedure may be modified
to decrease elution volume, thereby concentrating the extract
to further increase sensitivity.

The sensitivity observed when testing clinical specimens
with the multiplex assay was found to be significantly greater
in 2 agent-specific assays (CP-Arg and Pan-Leg) and the
RNase P. The CP-Arg and Pan-Leg did display superior
efficiencies for the multiplex assays compared to the
singleplex assays, which may account for the greater
sensitivity observed. These data also demonstrate that the
intra-assay competition within the multiplex reaction has no
negative impact on the detection of these agents. On the
contrary, we noticed an overall slight improvement in
detection with the multiplex assay. Recent advancements in
the formulation of reagents specifically designed for
multiplex real-time PCR and improved qPCR instruments
have likely added to the success of multiplex assay
performance. Collectively, these data support the validity
of using the current multiplex assay to test respiratory
specimens for these agents.



8 K.A. Thurman et al. / Diagnostic Microbiology and Infectious Disease 70 (2011) 1-9

MP181
45.00
Singleplex Multiplex
LOD 50 fg 50 fg
40.00 R? 09807  0.9823
. Slope 34 -3.6
Efficiency 97% 90%
¢ 35.00
=
™
>
© 30.00
25.00
~
20.
000-2 15 -1 05 0 05 1 15 2 25 3 35
Log Concentration
Pan-Leg
45.00
. Singleplex Multiplex
. LOD 50 fg 50 fg
40.00| . R 09838  0.9828
' Slope 39 3.4
Efficiency 82% 97%
I
8 35.00| I~
= - S~
2 <
>
(33
30.00|
25.00
20.00
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
Log Concentration
B Singleplex
N Multiplex

CP-Arg
45.00
Singleplex Multiplex|
- LoD 5013 501g
40.00 u R? 09931 09762
Slope -3 -3.3
Efficiency  93%  100%
@ 35.00
=
®
>—|
© 3000
25.00 -
20.00
-2 -1.5 -1 05 0 0.5 1 1.5 2 25 3
Log Concentration
RNase P
45.00
Singleplex Multiplex
LOD 6 pg 6 pg
40.00 R’ 0.9766  0.9714
Slope -3.8 -3.8
Efficiency 85% 85%
¢ 35.00
3
®
>4—
< 30.00
25.00
20.00

0 0.5 1 1.5 2 25 3 35 4

Log Concentration

Fig. 3. Comparison of multiplex versus singleplex performance.

These 3 leading atypical bacterial agents of CAP have
been targeted previously using various approaches. A
multiplex qPCR was performed in 2 separate reactions by
Welti et al. (2003) whereby one set contained M.
pneumoniae and C. pneumoniae targets and the other L.
pneumophila and an internal control. When compared to
conventional PCR, these multiplex assays had an overall
concordance of >98% when testing 73 respiratory clinical
specimens. The use of other chemistries for duplex real-time
PCR assays for these agents has also been employed
(Gullsby et al., 2008; Loens et al., 2008). To our knowledge,
our study is the first report of a single-tube, 4-plex real-time
PCR assay that is able to detect these CAP agents along with
an internal control (RNase P) in clinical specimens. The use
of this assay in surveillance studies may provide greater
insight into the etiology and prevalence of atypical bacterial
pneumonias among a population while also aiding in the
rapid identification of the causative agent for CAP outbreaks.

Widespread availability of this and similar assays may lead
to a more effective public health response and expedite
appropriate treatment of patients.
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