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Background: Osteoarthritic knee pain is a complex phenomenon, andmultiple factors, both within the knee and external
to it, can contribute to how the patient perceives pain. We sought to determine how well a deep neural network could
predict osteoarthritic knee pain and other symptoms solely from a single radiograph view.

Methods: We used data from the Osteoarthritis Initiative, a 10-year observational study of patients with knee osteo-
arthritis. We paired >50,000 weight-bearing, posteroanterior knee radiographs with corresponding Knee Injury and
Osteoarthritis Outcome Score (KOOS) pain, symptoms, and activities of daily living subscores and used them to train a
series of deep learning models to predict those scores solely from raw radiographic input. We created regression models
for specific score predictions and classification models to predict whether the modeled KOOS subscore exceeded a range
of thresholds.

Results: The root-mean-square errors were 15.7 for KOOS pain, 13.1 for KOOS symptoms, and 14.2 for KOOS activities
of daily living. Modeling was performed to predict whether pain was above or below given pain thresholds, and was able to
predict extreme pain (KOOS pain < 40) with an area under the curve (AUC) of 0.78. Notably, the system was also able to
correctly predict numerous cases where the Kellgren-Lawrence (KL) grade assigned by the radiologist was 0 but patient
pain was high, and cases where the KL grade was 4 but patient pain was low.

Conclusions: A deep neural network can be trained to predict the osteoarthritic knee pain that a patient experienced and
other symptoms with reasonable accuracy from a single posteroanterior view of the knee, even using low-resolution
images. The system can predict pain and dysfunction that the traditional KL grade does not capture. Deep learning applied
to raw imaging inputs holds promise for disentangling sources of pain within the knee from aggravating factors external to
the knee.

Level of Evidence: Diagnostic Level III. See Instructions for Authors for a complete description of levels of evidence.

O
steoarthritic knee pain is a complex phenomenon, and
multiple factors can contribute to a patient’s perception
of pain. Clinicians use knee radiographs to help to gauge

the extent to which pain and other symptoms may originate from
structural factors within the knee. Yet, the process is complicated
because a patient’s perception of pain can be aggravated by factors
external to the knee, including psychosocial stress, coping skills,
comorbid conditions, and others1-7. Disentangling these “within
the knee” and “external to the knee” causes is important, given that
they have very different treatment implications. Psychosocial in-
terventions target causes external to the knee, whereas physical
therapy, medications, and surgical procedures address causes
within the knee8-10.

This process of assigning causation is a substantial part
of an orthopaedic surgeon’s thought process when considering

whether a patient is a candidate for total knee arthroplasty
(TKA). A surgeon must integrate disparate information to
judge the extent to which the pain and dysfunction that the
patient are experiencing stem from structural factors within the
knee, as well as the likelihood of TKA addressing those symp-
toms to a patient’s satisfaction, all while considering the degree
to which factors external to the knee may confound mat-
ters6,11-14. Clinicians may not be as good at this as we think, even
when it comes to the first step of determining the degree to
which pain originates from structural factors within the knee15.
Clinicians rely on the Kellgren-Lawrence (KL) grade to gauge
the structural severity of osteoarthritis by radiographs16, yet
the KL grade does not explain pain very well17-20. It is not
uncommon for clinicians to see patients with severe degener-
ative changes on radiographs (high KL grades) and relatively
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little pain, as well as those with relatively mild degenerative
changes on radiographs (low KL grades) and severe pain. This
leaves plenty of room for improvement, starting with: What
share of pain can be attributed to the knee itself?

The first step is to determine how well we can predict
osteoarthritic knee pain and other symptoms solely from a
single radiographic view of the knee. Using deep learning to
predict osteoarthritis symptoms may allow for a more direct
measure of how much osteoarthritic pain and dysfunction are
structurally based. The key innovation is not constraining
ourselves to preexisting notions of important structural fea-
tures in the knee (e.g., joint space narrowing, osteosclerosis)
and instead allowing deep learning algorithms to identify the
most salient structural features from the images. We hypoth-
esized that a substantial amount of underappreciated infor-
mation about patient symptoms has gone unrecognized in
imaging studies of the knee. In this study, we use a convolu-
tional neural network to predict patients’ Knee Injury and
Osteoarthritis Outcome Score (KOOS) values from weight-
bearing posteroanterior views of the knee using data from the
Osteoarthritis Initiative (OAI)21,22. We evaluated the accuracy of
the models’ pain predictions as a minimum prerequisite for
adapting and improving themodels for future use cases, such as
artificial intelligence-based shared decision-making tools. If
successful, we anticipated that more sophisticated models and
use of advanced imaging will be able to give deeper insights into
the discordance between structural and symptomatic severity
of knee osteoarthritis.

Materials and Methods
Population

The study participants were selected from the National Insti-
tutes of Health (NIH)-sponsored OAI. The OAI was a mul-

ticenter, 10-year longitudinal, observational study of 4,796 men
andwomenwhowere 45 to 79 years of age at enrollment, of whom
29% had and 68% were at risk for symptomatic femorotibial knee

osteoarthritis. Detailed descriptions of the eligibility criteria and
study protocol have been published, and the study data can be
found on the NIH website21. Briefly, individuals who had inflam-
matory arthritides, severe joint space narrowing, or total knee
replacement in both knees, or required ambulatory aids (other
than a cane) for most of their walking were excluded. Annual
evaluations of the OAI participants began in 2004 at 4 study sites.
Missing clinic visit data for the entireOAI sample ranged from10%
at the 1-year clinic follow-up visit to 35% at the 8-year follow-up.

In this study, 4,794 participants had ‡1 bilateral, weight-
bearing, posteroanterior knee radiographs. Across all visits, this
provided 26,520 radiographs. The mean number of radio-
graphs per patient was 5.5, with as few as 1 and as many as 7.
Each radiograph was split into left and right knees and was
cropped and normalized. Dropping 10 radiographs for which
the cropping algorithm failed left 53,030 radiographs.

Participants in theOAIwere askedKOOS pain, symptoms,
and activities of daily living questions for each knee22-24. These
questions were filtered to ensure that only scores acquired within
180 days of their closest radiograph were included. This resulted
in the radiograph and KOOS score pair counts in Table I.

The data were split into training, validation, and test
groups (70/10/20 splits) by patients, not by radiograph, to
prevent the models from leveraging individual patient char-
acteristics. The final counts are in Table I.

Model Creation
Each set of radiograph and KOOS subscore pairs was used to
build and test a series of convolutional neural network (CNN)
models to predict patients’ self-reported measures from their
posteroanterior radiographs. All CNNmodels were built using a
ResNet18 model pretrained on the ImageNet data set. Regres-
sionmodels were constructed to predict exact patient scores, and
binary classification models were built to predict whether the
patient score was beyond a set threshold. For regression models,
the final layer was replaced with a fully connected layer to

TABLE I Data Set Creation and Final Sizes*

KOOS

Pain Symptoms Activities of Daily Living

Scores Patients Scores Patients Scores Patients

KOOS subscore count 59,039 4,796 59,088 4,796 58,637 4,796

With matching radiograph 52,983 4,794 53,013 4,794 52,753 4,792

With recent radiograph 52,927 4,794 52,993 4,794 52,733 4,792

After removal of flawed radiographs 52,917 4,794 52,983 4,794 52,723 4,792

Training 36,940 3,356 36,902 3,356 36,903 3,355

Validation 5,278 479 5,406 479 5,241 479

Test 10,699 959 10,675 959 10,579 958

Test with KL grade 8,566 877 8,596 883 8,475 868

*Each data set was broken into training, validation, and test sets using a 70/10/20 split by patients.

An Algorithmic Approach to Understanding Osteoarthritic Knee Pain

JBJS Open Access d 2023:e23.00039. openaccess.jbjs.org 2



predict a single output. For binary classification models, an
additional sigmoid layer was added. To counter the distribution
of the KOOS seen in Figure 1, imbalance weights were used in
the binary classification models’ loss functions.

Inputs
Radiographs were first split into left and right knees to create
single-knee inputs for the models. Knee centers were located
using a support vector machine trained to locate the tibio-
femoral joint space25. This was cropped to a 140-mm square
(creating 600 to 800-pixel squares, depending on the radio-
graph). Cropping preserved more resolution from the original
image and prevented the models from learning bias resulting
from radiograph artifacts unique to individual collection sites.
To fit the input needs of ResNet18, the resulting images were
rescaled to 224 · 224, and the z-score was normalized.

Outputs and Labels
The labels used for training and evaluating the models were the
patients’ self-reported KOOS knee pain and symptoms (both
per knee) and activities of daily living. The KOOS ranges from
100 (perfect health) to 0 (extreme impairment). Figure 1 shows
the distribution of scores for each subscore by decile.

Model Evaluation
For the regression models, the coefficient of determination
(R2) (i.e., how close the model’s predictions are to a fitted line)
and the root-mean-square error (RMSE) (i.e., the difference
between the model’s predicted values and those observed) were
the primary measures of model performance.

For the binary classification models, we created a receiver
operating characteristic (ROC) curve and captured the area

under the curve (AUC) for each prediction threshold for each
KOOS measure. To give a finer-grained look at performance,
we also reported the accuracy, sensitivity, and specificity when
each model’s decision threshold was set to 0.5.

Finally, systems such as the KL grade fail to capture the
range of reported pain and function at various levels of knee
joint degeneration17-20. Figure 2 demonstrates this in a violin
plot of patient pain compared with KL grade. A key question is
whether the CNN models can find evidence in the radiograph
to correctly predict anomalies regularly encountered by clini-
cians, such as patients with a high KL grade but low self-
reported pain or a low KL grade but high self-reported pain.
For this, we grouped patient data with equal KL grades and
examined how well the classifier models could predict dys-
function above or below thresholds for pain (86.1), symptoms
(85.7), and impairment of activities of daily living (86.8)26.

Source of Funding
There was no source of external funding for this study.

Results
Descriptive Statistics

Most patients reported relatively low levels of pain; as
shown in Figure 1, 74.1% had KOOS pain of 81 to 100).

However, very high and very low levels of pain were reported
across all KL grades, including severe pain (e.g., KOOS < 20)
in KL grade-0 knees and no pain whatsoever (e.g., KOOS =
100) in KL grade-4 knees. The distribution of reported pain
increased gradually from KL grade 0 (minimal symptoms)
to KL grade 3 (mild to moderate symptoms), whereas pa-
tients with KL grade 4 had a much wider distribution of pain
levels spanning the full range of possible KOOS pain (Fig. 2).

Fig. 1

Frequency of KOOS subscores by decile. ADL = activities of daily living.
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Similar patterns can be seen in KOOS symptoms and activ-
ities of daily living subscores.

Model Performance
Table II shows the regression models’ performance in pre-
dicting each KOOS subscore. In the test groups for pain (10,699
radiographs), symptoms (10,675 radiographs), and activities of
daily living (10,579 radiographs), the models achieved RMSEs
of 15.7 for pain, 13.1 for symptoms, and 14.2 for activities of
daily living. The coefficient of determination (R2) was 0.140 for
pain, 0.141 for symptoms, and 0.143 for activities of daily
living. We used violin plots to overlay the regression models’
predicted KOOS values on top of the patient-reported KOOS
subscores for each of the 5 KL grades (Fig. 3). Table III shows
the accuracy of the binary classifier models when used to
predict pain worse than specific KOOS thresholds. Figures 4, 5,
and 6 present the corresponding ROC curves and AUCs for
these binary predictions. Together, Table III and Figures 4, 5,
and 6 illustrate that the models’ predictive performance im-
proved as the threshold was changed to more extreme pain
levels. For example, the model was only 73% accurate when
predicting KOOS pain worse (less) than 80 but 96% accurate
when predicting KOOS pain worse than 50 (severe pain).
Naturally, there was a trade-off between sensitivity and speci-
ficity as the threshold was altered, and parity between the
measures was achieved when predicting KOOS pain worse than
90, at which point both sensitivity and specificity were approx-
imately 60%.

As Figure 2 showed, patient pain did not tightly follow
KL grades. The violin plot in Figure 3 overlays the regression
model predictions over the actual KOOS values. It shows the
portion of the real score range for which the regression
models could find evidence in the set of radiographs for each
KL grade. In general, models tended to underpredict KOOS
values at lower KL grades and underpredict the variation in
KOOS values seen at higher KL grades. Comparatively, the
KOOS predictions based on KL grade alone would be the
means seen in Figure 2, which do not allow for variations
within each KL grade.

Finally, the models’ ability to predict KOOS results that
would be unexpected based on the KL grade was investigated.
For the test cohort, 26.9% of patients with KL grade 4 (88 of 327)
reported unexpectedly low KOOS pain of >86.1, and the model
captured 14.8% of these 88 cases. On the other end of the

Fig. 2

KOOS subscores compared with the KL grade for the most recent radiograph across the entire cohort. Radiographs are grouped by KL grade. Darker

horizontal bars indicate the group’s maximum, mean, and minimum KOOS subscores. The width indicates the percentage of the group receiving that

specific KOOS subscore. This plot only shows the subset of the entire data set with a KL grade available for the radiograph (pain = 42,463, symptoms =

42,483, activities of daily living [ADL] = 42,302).

TABLE II Primary Measures of Models’ Predictive Performance*

KOOS Measure RMSE R2

Pain 15.7 0.140

Symptoms 13.1 0.141

Activities of daily living 14.2 0.143

*RMSE = root-mean-square error, and R2 = coefficient of deter-
mination.
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Fig. 3

Range of predicted KOOS subscore values compared with actual KOOS subscore ranges. Radiographs are grouped by KL grade. Darker horizontal bars

indicate the group’s maximum, mean, and minimum KOOS subscores. The width indicates the percentage of the group receiving that specific KOOS

subscore. This plot only shows thesubset of the test data setwith aKLgradeavailable for the radiograph (pain=8,566, symptoms=8,596, andactivitiesof

daily living [ADL] = 8,475).

TABLE III Results After Training, Presented as a Series of Binary Classification Models*

Measure
Measure
Threshold Accuracy P TP FP N TN FN Sensitivity Specificity

Pain <90 0.616 4,485 2,797 2,416 6,214 3,798 1,688 0.623 0.611

<80 0.728 2,646 1,152 1,420 8,053 6,633 1,494 0.435 0.824

<70 0.826 1,754 367 474 8,945 8,471 1,387 0.209 0.947

<60 0.900 960 126 234 9,739 9,505 834 0.131 0.976

<50 0.955 472 4 18 10,227 10,209 468 0.008 0.998

<40 0.977 246 5 14 10,453 10,439 241 0.020 0.999

Symptoms <90 0.650 4,798 2,970 1,912 5,877 3,965 1,828 0.619 0.675

<80 0.756 2,602 806 811 8,073 7,262 1,796 0.310 0.900

<70 0.870 1,192 260 459 9,483 9,024 932 0.218 0.952

<60 0.936 557 44 169 10,118 9,949 513 0.079 0.983

<50 0.977 227 9 30 10,448 10,418 218 0.040 0.997

<40 0.986 108 1 39 10,567 10,528 107 0.009 0.996

Activities of daily living <90 0.601 3,466 1,859 2,613 7,113 4,500 1,607 0.536 0.633

<80 0.795 2,202 597 559 8,377 7,818 1,605 0.271 0.933

<70 0.881 1,260 128 126 9,319 9,193 1,132 0.102 0.986

<60 0.931 687 38 83 9,892 9,809 649 0.055 0.992

<50 0.964 327 23 79 10,252 10,173 304 0.070 0.992

<40 0.988 129 0 0 10,450 10,450 129 0.000 1.000

*Models were trained to predict whether the patient measure would be worse than a given threshold. The values reflect a decision threshold of 0.5 (i.e.,
themodel had ‡0.5confidence inaprediction). P=positive, TP= truepositive, FP= falsepositive,N=negative,TN= truenegative, andFN= falsenegative.
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spectrum, 19.4% of patients with KL grade 0 (710 of 3,668)
reported symptomatic KOOS pain of <86.1. The model captured
56.0%of these cases. These results and similarmeasures for KOOS
symptoms and activities of daily living can be seen in Table IV.

Discussion

We found that deep learning could predict osteoarthritis
knee pain and dysfunction with reasonable accuracy

from a single, low-resolution radiograph. More interestingly, the

Fig. 4

ROC curves after training as a series of binary classificationmodels.Models were trained to predict whether the patient’s KOOSpain would be worse than a

given threshold.

Fig. 5

ROC curves after training as a series of binary classification models. Models were trained to predict whether the patient’s KOOS symptoms score would be

worse than a given threshold.

An Algorithmic Approach to Understanding Osteoarthritic Knee Pain

JBJS Open Access d 2023:e23.00039. openaccess.jbjs.org 6



algorithm captured a small but notable share of cases where the
radiologist assigned a KL grade of 0 but patient pain was high,
and cases where the KL grade was 4 but patient pain was low. In
other words, the algorithm demonstrated the ability to under-
stand something about the relationship between radiographic
imaging features and pain that a human-derived algorithmic
approach (KL grade) does not capture. What the algorithm is
detecting and what it means for our understanding of knee pain
and osteoarthritis will be the topic of future research.

Interpreting these results benefits from context. The re-
lationship between radiographic severity of osteoarthritis and
pain has long been debated27,28. The KL grade has been the
standard radiographic measure of osteoarthritis severity for
>75 years16. Nevertheless, KL grades do not predict pain or other

symptoms very well17-20. Many patients with mild or no disease as
measured by radiographs experience pain, and many patients
with structural damage on radiographs or magnetic resonance
imaging (MRI) experience no or very little pain. This discordance
between structural and symptomatic severity has represented a
fundamental gap in our understanding of osteoarthritis. In
general, it has been explained by indirectly implicating factors
“external to the knee”29. For example, patients with the same
radiographic severity of disease (“within the knee” causes of pain)
may have experienced very different pain due to psychosocial
stress, coping skills, comorbid conditions, or other factors external
to the knee. Parsing “within the knee” and “external to the knee”
causes is important, given that they have very different treatment
implications8-10.

Fig. 6

ROCcurvesafter trainingasaseriesof binary classificationmodels.Modelswere trained to predictwhether thepatient’sKOOSactivities of daily living (ADL)

score would be worse than a given threshold.

TABLE IV Prediction of KOOS Levels Not Suggested by the KL Grades*

Measure
KL

Grade Count
Anomaly
Threshold

No. of
Anomalies

Percentage of
KL Grade Predicted

Percentage
Predicted

Pain 0 3,668 £86.1 710 19.4% 404 56.0%

4 327 >86.1 88 26.9% 13 14.8%

Symptoms 0 3,382 £85.7 575 17.0% 58 10.1%

4 331 >85.7 116 35.0% 33 28.4%

Activities of daily living 0 3,383 £86.8 538 15.9% 182 33.8%

4 321 >86.8 106 33.0% 4 3.8%

*For radiographs with the lowest KL grades, this was how many patients reported substantial dysfunction, and for radiographs with the highest KL
grades, this was howmany patients reported less than substantial dysfunction. Both include howmany of those cases were caught by the models.
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Within this context, the implications of our findings are
broad and foundational. This study demonstrates a new way for
researchers to use machine learning to discriminate between the
“within the knee” causes of pain and the “external to the knee”
causes. Our approach may begin to illuminate the apparent
discordance between structural and symptomatic disease.

Determining the maximum amount of predictive signal
from an imaging study of the knee (e.g., a radiograph or MRI)
is a beneficial exercise because it establishes a lower bound for
the amount of structural information within the knee that can
explain symptomatic knee pain. The lower bound will increase
as we incorporate more granular information about the knee,
including multiple radiographic views (e.g., standard views as
well as multiple flexion angles) and more advanced imaging
studies such as MRI. As this lower bound converges to its true
upper limit, we can be more confident that the residual may be
caused by or aggravated by factors external to the knee. Vari-
ables that characterize these external factors can be added to the
models with increasingly sophisticated modeling techniques.

It is important to note that prior studies have accurately
demonstrated the ability to predict KL grades from radiographs
using deep learning30. Nevertheless, automation of KL grading
does not advance our scientific understanding of the relation-
ship between radiographic and symptomatic findings. To be
clear, our approach described herein does. By predicting pain
(not the KL grade) from radiographs, we are pivoting from
human mimicry to an approach for knowledge creation and
hypothesis generation.

The study had limitations that also inform the next steps.
First, we do not know what the algorithm “sees” in the knee
radiograph that explains pain better than KL grading. We cannot
yet explain what it is about a radiograph with a KL grade of 0 or
1 that allows the algorithm to correctly identify it as a painful knee.
This is the black-box problem manifested. We know what goes
into the models and what comes out, but we do not understand
their inner workings; the explanations for the models’ predictions
remain opaque. The answer to this question is beyond the scope
of this article, but it is already the topic of future research ef-
forts using explainable artificial intelligence tools. Second, the
information in a single, low-resolution knee radiograph is quite
limited. The models’ coefficient of determination was generally
<0.15. As such, the lower bound for within-the knee information

will likely be substantially higher once advanced imaging likeMRI
can be incorporated into future models. Finally, this data set had
limitations. Figure 1 shows that not all KOOS values are equally
represented within the OAI data set. The models’ predictive per-
formances would likely benefit appreciably from training onmore
radiographs associated with poor (i.e., low) KOOS values. Also, in
the parlance of machine learning, KOOS values are noisy labels,
which further hampered the models’ predictive performances.
The noise level within the KOOS can best be characterized by
estimates of the minimal detectable change in the KOOS, which is
‡20 for the age range of OAI participants23,24. This highlights the
largest challenge of this technique. Any measure of dysfunction
will have some measurement error, so the limit on the models’
accuracy will always be twofold: sources of external pain and
measurement errors in the dysfunction measures.

The approaches presented here are likely to someday be
useful in the clinical setting for artificial intelligence-assisted
shared decision-making tools. As described above, parsing
“within the knee” and “external to the knee” causes is essential,
given that they have very different treatment implications.

In conclusion, we present a machine learning-based ap-
proach to understanding the degree towhich pain can be explained
by structural factors within the knee. Even a single, low-resolution
radiographic image of the knee has more information about pain
than our current benchmark approaches enable us to discern.
The techniques presented here do not give us all of the answers;
however, they are excellent tools for asking interesting questions
and generating novel hypotheses about knee osteoarthritis and its
treatments. n
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