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Abstract
A novel design of stochastic numerical computing method is introduced for computational fluid dynamics problem governed
with nonlinear thin filmflow (TFF) system by exploiting the competency of polynomial splines for discretization and optimiza-
tion with evolutionary computing aided with brilliance of local search. The TFF model of second grade fluid is represented
with nonlinear second-order differential system. The aim of the present work is to exploit the cubic spline approach (CSA) to
transform the differential equations for TFF model into an equivalent set of nonlinear equations. The approximation in mean
squared error sense is introduced for the formulation of cost function for solving the nonlinear system of equations repre-
senting TFF model. The optimization of the decision variables of the cost function is carried out with global search efficacy
of evolution by genetic algorithms (GAs) integrated with sequential quadratic programming (SQP) for speedy adjustments.
The designed spline–evolutionary computing paradigm, CSA–GA–SQP, is evaluated for different scenarios of TFF model by
variation of second grade and magnetic parameters, as well as variation in the length of splines. Results endorsed the worth
of CSA–GA–SQP solver as an efficient alternative, reliable, stable, and accurate framework for the variants of nonlinear
TFF systems on the basis of multiple autonomous executions. The design computing spline paradigm CSA–GA–SQP is a
promising alternative numerical solver to be implemented for the solution of stiff nonlinear systems representing the complex
scenarios of computational fluid dynamics problems.
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1 Introduction

A well-known terminology “thin film” is commonly intro-
duced for flow which is based on the layer of material and
whose range lies from fractions of a nanometre to several
micrometres in thickness. The flow spectrum ismuch smaller
in one dimension than in the other (one or two dimensions).
It is a characteristic that is used to reduce Navier–Stokes
equations in a simple set of modelling equations. Flow-type
problems with thin films (flow) are of main structural sig-
nificance. Due to their numerous applications in different
fields such as surface coating, chemical engineering, indus-
trial processes, cooling, and the lubrication of heat exchanger
fins into the motion of contact lens, the researchers are taking
keen interest to work in this field [1].

In everyday life, problems of thin film flow range from
very easy to complex affects, such as transferring a rain drop
on an aircraft panel. It is admitted that in several procedures
of industries, it also depends upon thin film flow. Thus, the
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research community is interested to work on various fields of
natural science and engineering by using thin film flow. The
most prominent applications related to industries are seen in
the following fields such as paint coatings, modelling of dam
breaking wave, and nuclear reactor drawn in fluid dynamics.
Representation of dynamics of TFF is like tear films inside
eye and in biophysics field like membranes. The characteris-
tics of flow and thin film flow are most common. In addition,
in the current advance and rapid age, thin film allows all
those people to check the output of paints in surface flow
covering, plan the design of nuclear reactor, and decrease the
composition of machinery such as bearing fluid. Likewise,
the biological applications of TFF are red blood cells flow
across eyes, veins, and lungs friction [2].

The importance of flow that relates to the non-Newtonian
fluids is much fruitful for physicians, applied mathemati-
cians, and engineers. Furthermore, its involvement can be
seen in different fields of engineering, social, and natural
sciences. In many fields of nonlinear dynamic systems in
technology and science, many researchers in these fluids
consider the best analysis on the current situation. Exam-
ples include Sakiadis’ [3] and Chen’ [4] outstanding work
exploring the movement of a viscous fluid across a moving
solid surface or researching mixed convection flow across
a porous medium [5]. Elahi and Riaz [6] studied the non-
Newtonian MHD flow through viscous dissipation in a third
grade fluid, examining the TFF of third grade fluid.

Many physical problems are nonlinear, but there is also
inadequate linear analysis to properly explain the behaviour
of physical systems. For nonlinear dynamic systems, an
exact solution is always scarce, at least in the current state
of science. New and creative methods capable of solving
nonlinear system dynamics should be understood in this
regard. Some valuable results for solving different nonlin-
ear equations have recently been obtained. There are several
analytical methods that refer to nonlinear problems, such as
the weighted linearization process [7], Lindstedt–Poincare
method [8], Adomian decomposition technique [9], bound-
ary element technique [9], optimal perturbation homotopy
method [10], optimal asymptotic homotopymethod [11], etc.
[12].

For weakly nonlinear problems, all of the methods listed
above work very well and some of them work well, even for
higher-order nonlinear systems. It is also very important to
secure the convergence state of the solutions in the presence
of highly nonlinear problems. For the nonlinear differential
equation of thin film flow, we use the spline method in the
current work to solve a boundary value problem. The fluid
being used is third grade, which in the analysis of the problem
introduces strong nonlinearities.

In order to achieve analytical approximations to the TFF
field of a grade four fluid from outside of the large square
cylinder, Siddiqui et al. [13] applied the homotopy analy-

sis technique and the conventional perturbation approach.
The steady flow of a fluid across porous plate was also
addressed in [14]. Hayat and Sajid [15] established solu-
tion in the form of series for the same topic. The TFF of
an inviscid third grade fluid across an inclined plane was
studied by Mabood [16]. There are several other characteris-
tics, such as time dependence, historical consequences, other
nonlinear problems, and yield strain [17–19]. In the areas of
industry and engineering, thin film flows have many implica-
tions. Thin film layers play an important role within chemical
engineering in the growth of distillation columns, thin film
reactions, evaporators, and condensers. A thin layer’s enor-
mous advantages depend on itsminor density, which supplies
its movement acrossmicrochannels. In physical engineering,
thin film layers have essential roles and have wide appli-
cations in developing cooling techniques via heat sinks for
nanotechnology.A lot of issues arise in geophysical engineer-
ing associated with thin film flows such as massive flooding,
lava, and flash floods [20]. Thin film flow studies are related
directly to Newtonian fluids in the available literature, and
very little research has been reported on non-Newtonian flu-
ids. These are also of great importance, as in the class of
non-Newtonian fluids, shear thickening and pseudo-plastic
or shear thinning liquids are perceived. The industrial sec-
tors, photographic films, the deformation of polymer sheets,
etc., studies of TFF of tensile liquids are of immense impor-
tance.

Non-Newtonian viscous fluid flow modelling equations
arise to strongly nonlinear systems. The non-Newtonian liq-
uids are widely used in trade and industry and now have
become the subject of comprehensive research, particularly
mixed with nanomaterials [21–28]. For instance, chemical
industries handle polymers and plastics extensively, whereas
rheological activity is used by biomedical devices such as
homodialyser. For the mathematical model and TFF solu-
tion, a new nonlinear computing paradigm based on the CSA
integrated with GAs aided by SQP, CSA–GA–SQP, is pre-
sented in this review. The main objective of such a model is
to solve differential equations utilizing advanced stochastic
solvers to optimize weights built on the hybrid technique of
global research genetic algorithms with local search tech-
niques. Many researchers use such techniques to solve linear
and nonlinear differential equations [29–31,33–41,43,43].
Few recent applications include hybrid rotational nanofluidic
model with thermal characteristic consideration [44], cross-
wise stream fluid model involving nanomaterial over porous
stretching medium [45], mathematical models of hydrogen
possessions [46], COVID-19 epidemical models with future
generation disease control [47], and nonlinear corneal shape
model [48].

Moreover, research community is interested in splines
method to solve different types of differential equations in
wide scale. Some examples of such approach are given in
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[49–55]. Recently, the spline method has been considered
by the researchers as an ideal numerical method for solving
many problems. For example, cubic B-spline approximation
has been applied for approximate solution of the integro-
differential equation of fractional order [56], and solution
of well-known stiff system arising in atomic physics is
obtained using evolutionary optimized cubic splines [57].
TFF equation has been solved by using a new stochas-
tically computational intelligent methodology constructed
with the hybridization of active set and particle swarm opti-
mization after transformation of mathematical models based
on neural networks [58]. These facts discussed above pro-
vide the research community with the inspiration to explore,
examine, and analyse stochastic paradigms to solve non-
linear singular TFF. For the TFF solution, a stochastic
optimization computation paradigm focusing on CSA–GA–
SQP was built in this research. The key aspects of current
investigation may be expressed in terms of salient features
as:

• A novel design of spline–evolutionary stochastic solver
CSA–GA–SQP is presented for the analysis of TFF
model of second grade fluid governed with second-order
nonlinear differential system.

• The cubic spline approach (CSA) is exploited to trans-
form the differential system for TFF model into an
equivalent set of nonlinear equations.

• The approximation in mean squared error sense is
incorporated for the formulation of figure of merit
to solve the transform system of equations of TFF
model.

• The optimization of the decision variables is conducted
by global search efficacy of evolution by GAs integrated
with sequential quadratic programming (SQP) for speedy
adjustments.

• The designed spline–evolutionary computing paradigm,
CSA–GA–SQP, is evaluated effectively for different sce-
narios of TFF model by variation of second grade and
magnetic parameters, as well as variation in the length of
splines.

The paper is organized in the following way: In Sect. 2,
we construct the mathematical formulation of nonlinear thin
film flow possible and apply the structured approach for
evolutionary cubic spline interpolation with the appropriate
overview of CSA–GAs and CSA–GA–SQP. In Sect. 3, we
layout the design of the model and bring forth the numer-
ical experiments of the CSA–GA–SQP through the study
of various statistical analyses. Our results are presented
in Sect. 5, whereas in the last section conclusion is pre-
sented.

2 Mathematical Formulation

The governing equations for incompressible fluid in the
absence of thermal impacts are given in the following. For
incompressible fluid, continuity equation takes the form

∇ · V = 0. (1)

The momentum equation is

ρDV /Dt = −∇P + ρ f + divτ, (2)

where ρ,V , P,D/Dt , and τ represent density, velocity, pres-
sure, material derivative, and the stress tensor, respectively.

The third grade fluid is defined through the stress given as

τ = S1 + S2 + S3

S1 = μB1

S2 = α1B2 + α2B
2
1

S3 = β1B3 + β2(B1B2 + B2B1) + β3(tr B2)B1,

where α1, β1, α2, β2, β3 are material constants and μ is the
dynamic viscosity. Moreover, B1, B2, and B3 are Rivlin–
Ericksen tensors.

Bn = DBn−1/Dt + Bn−1(∇V ) + (∇V )T Bn−1, n ≥ 1.

(3)

An incompressible thin film flow of third grade fluid along
an inclined plane is considered. The fluid is flowing due to
gravity as ambient air and surface tension are considered
stationary along with uniform film thickness δ. The velocity
profile is given as

V = (y(x), 0, 0). (4)

Substitutions ofV and τ inEqs. 2–3 in the absenceof pressure
gradient to deal with TFF, and in general, nonlinear boundary
value (BVP) thin film solution is obtained by the second-
order differential equation given as:[59]

d2y

dx2
+ 6(β2 + β3)

μ

(
dy

dx

)2 d2y

dx2
− ρg

μ
= 0, (5)

having boundary conditions given as

y = Yo, x = 0,
dy
dx = 0, x = δ.

(6)

Here, y is the fluid velocity, beta2 and beta3 are fluid content
constants, μ represents the fluid density, ρ is the mass, grav-
itational acceleration is represented by g, Yo is the velocity,
and δ is the film’s uniform thickness.
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We add a new parameter to create dimensionless as

x∗ = x

δ
, y∗ = y

Yo
, β = (β2 + β3)

μδ2
, n = ρgδ2

μYo
. (7)

Then, it becomes(neglecting the symbol*)

d2y

dx2
+ 6β

(
dy

dx

)2 d2y

dx2
− n = 0, (8)

where β is the material constant and n is the Stokes number.
For Newtonian fluid (β= 0), exact solution of the above well-
positioned problem is given as

y(x) = 1 − n

2
(1 − (1 − x)2). (9)

The approximated solution for nonlinear system is expressed
as:

y(x) = 1 − n

2
(1 − (1 − x)2) + n3β

2
(1 − (1 − x)4)

−2n5β2(1 − (1 − x)6) + 12n7β3(1 − (1 − x)8)

−88n9β4(1 − (1 − x)10) + 362n11β5(1 − (1 − x)12).

(10)

By using spline techniques, results are determined for Eq.
(4) and are compared with reference solution.

3 DesignMethodology

Some important points of the proposed scheme are given
that comprises two segments: Fitness function for TFFS is
developed for optimal solution, while learning methodol-
ogy structure is presented in the second part. The graphical
abstract of the proposed scheme is shown in Fig. 1, and the
flowchart of GA is presented in Fig. 2.

3.1 Mathematical Modelling for Thin Film Flow
Equation

Necessary information in a compact form for the designed
methodology is provided here to find the solution of the
nonlinear TFF differential system. The goal of cubic spline
interpolation is to get piecewise interpolation polynomials
having continuous first and second derivatives, which conse-
quently gives well-ordered interpolation-type function. The
first derivative of cubic spline function is used for the slopes
of the tangent lines which show the increasing or decreasing
trend of the function, while curvature is determined by the
second derivative of cubic spline function. Cubic splines are
used for the mathematical system of TFF based on nonlinear
differential equations to find the optimal solution with the

following procedure; first of all, n-sub intervals [xi, xi+1]
are obtained by dividing the domain of problem such as
i = 1, 2, ..., n and formulating a spline representation, for
instance, as follows:

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x), x1 ≤ x ≤ x2;
f2(x), x2 ≤ x ≤ x3;
f3(x), x3 ≤ x ≤ x4;

.

.

.

fn(x), xn ≤ x ≤ xn+1,

(11)

where f(x) shows the optimal solution of the mathematical
model for TFFS and fi (x) denotes i th third-order polyno-
mial spline as follows:

fi (x) = ai + bi x + ci x2 + di x3 (12)

having the first derivative:

f
′
i (x) = bi + 2ci x + 3di x2 (13)

and the second derivative:

f
′′
i (x) = 2ci + 6di x . (14)

The objective is to find the optimal solution for TFFS by
exploiting the efficacy of genetic algorithms (GAs) and
sequential quadratic programming soft computing infrastruc-
tures. The universal estimated proficiency of GAs is used
to develop the unsupervised mathematical framework for
TFFS. GAs is efficient and reliable approach for finding the
accurate solution searching through the global minima of
the proposed function which can also avoid the divergence.
And optimization performance is further improved by the
process of hybridization with sequential quadratic program-
ming (SQP). Thus, in the present study optimization of the
objective function model with CSA is carried out initially
with the GAs procedure which satisfies the boundary con-
ditions associated with the mathematical model as a global
search algorithm aided with local search technique of SQP,
i.e. CSA–GA–SQP.
Consider the differential equation

£[x, y, y
′
, y

′′ ] = 0. (15)

Now, the splines model the differential system in the input
interval, so for i=1, 2,..., p:

£[x, fi (x), f
′
i (x), f

′′
i (x)] = 0; xε[xi , xi+1]. (16)
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Fig. 1 Graphical illustration of the CSA–GA–SQP for nonlinear singular TFF

Also, the first and last spline function should satisfy the end
boundary conditions

f1(x1) = y1 (17)

and

fn−1(xn) = yn . (18)

The f(x) must be continuous:

fi (x) = fi−1(x); i = 2, 3, 4, ......., p. (19)

The first derivative of f(x) should be continuous:

f
′
i (x) = f

′
i−1(x); i = 2, 3, 4, ......., p. (20)
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Fig. 2 Flowchart for CSA–GA–SQP

The continuity of curvature implies:

f
′′
i (x) = f

′′
i−1(x); i = 2, 3, 4, ......., p. (21)

4 Application to Thin Film Flow Equation

The general form of TFF is given as

d2y

dx2
+ 6β

(
dy

dx

)2 d2y

dx2
− n = 0, (22)
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with boundary conditions

y = 1, x = 0,
dy
dx = 0, x = 1.

(23)

The splines are incorporated along with first and second
derivatives for the solution of TFFS, where the optimal solu-
tion is shown by f.

y = fi (x)

=
3∑

p=0

bi,px
p; xε [

xi , xi+1
]
, i = [1,m − 1] , (24)

y
′ = f

′
i (x)

=
3∑

p=0

pbi,px
p−1; xε [

xi , xi+1
]
, i = [1,m − 1] , (25)

y
′′ = f

′′
i (x)

=
3∑

p=0

p(p − 1)bi,px
p−2; xε [

xi , xi+1
]
, i = [1,m − 1] ,

(26)

where fi represents i th spline solution and bi,p represents
pth coefficients of i th spline.

4.1 Soft Computing

Soft computing infrastructure is of great significance for arti-
ficial intelligence algorithm and procedures of learning. A
variety of optimization procedures based on bio- and nature-
inspired computing algorithms, fuzzy logic, and supervised
and unsupervised artificial neural networks are supported by
soft computing system. Physical and mathematical models
comprising linear and nonlinear stiff differential equations
can be handled by soft computing infrastructures with cer-
tain tolerance for incorrectness and unpredictability to find
the low-cost optimal results. Soft computing infrastructure is
also used to handle the fitness functions for different nature-
and bio-inspired techniques in the process of optimization.
Zadeh [60] is the pioneer in the field of soft computing;
through this new development, the tolerances of the objective
functions for different evolutionary- andnature-inspired opti-
mization techniques are investigated for incorrectness and
unpredictability to achieve low-cost functions and trace abil-
ities of the optimal solutions. Soft computing infrastructures
are helpful to exploit the error functions in terms of GAs
which were introduced by John Henry Holland in seven-
ties of nineteenth century [61,62], that is based on evolution,
which is the mechanism of survival of the best. GAs work-
ing is based on four important components, i.e. selection of
initial population, reproduction in the considered population,
crossover, and mutation. GAs are based on initial population

Table 1 Settings for GAs optimization tools

Index setting

Solver GA

Individuals in population 200

Total number of generations 200

Crossover scheme Heuristic routine

Fraction of crossover 0.2

Function tolerance 1.00E−20

Range initialization [−1; 1]

Selection scheme stochastic uniform

Scaling procedure Ranking

Elitism 20 counts

Mutation scheme Adaptive feasible

Other Defaults

Table 2 Parameter setting for SQP

Index setting

Solver ’FMINCON’

Method SQP

Initial weight Best of GAs

Iterations 2000

X-tolerance 1.00E − 12

Maximum function counts 2.00E + 05

Function tolerance 1.00E − 06

Constraints tolerance 0

Nonlinear constraints 1.00E − 11

Hessian Off

SQP constraints Off

for the optimization procedure to find the best combinations
from the given initial population for the best optimal solu-
tion. The initial population considered for the solution of the
model is candidate solution. Selection of initial population
is of great importance as for small initial population it can
be the premature convergence, while against a large size of
population the expensive computation procedure is involved.
Therefore, the following steps can be implemented for find-
ing the optimal solution.
(a) Initialization.

Candidate solutions are initiated randomly keeping in
view the model-related information.
(b) Fitness Evaluations

The fitness function is developed in such a way that it
provides the solution close to optimal results for the proposed
system model. Fitness for all candidate solutions is checked
and endorsed by the designed fitness function.
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Fig. 3 Learning curves of CSA–GA for the proposed problems with 5 splines

Fig. 4 Learning curves of CSA–GA for the proposed problems with 10 splines

(c) Selection
More better and close values to the actual solutions based

on higher fitness are allocated along with the survival of the
fittest mechanism. In this section, potential solutions with
close resemblance to the optimal values are preferred than
worse solutions. The chromosomes with high-rank of fitness

in the existing population will survive as a parent for the next
generation.
(d) Recombination

Solutions with better fitness are produced by the combi-
nation of pairwise adjusted potential solutions. Mechanism
on the basis of recombination setting is established for the
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Fig. 5 Learning curves of CSA–GA for the proposed problems with 15 splines

Fig. 6 Learning curves of CSA–GA–SQP for the proposed problems with 5 splines

optimal solutions related to the proposed problem. Offspring
under the process of recombination should not be similar to
any parent, but traits are transferred in a unique way as per
procedure designed by Goldberg.

(e) Mutations
New genes are replaced which were unremembered under

the procedure of recombination andproduction newoffspring
and then randomly modified by recombination operator on
parental chromosomes. There are different variants of muta-
tion operator, but it mostly influences the individual’s traits
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Fig. 7 Learning curves of CSA–GA–SQP for the proposed problems with 10 splines

Fig. 8 Learning curves of CSA–GA–SQP for the proposed problems with 15 splines

with new alterations for optimal solutions. Mutation influ-
ences the candidate solution in the vicinity possessing the
most favourable and reliable potential candidate solutions.
(f) Replacements

Variants of replacement operator based on generation-
wise replacement, elitist replacement, and time-independent
replacements are employed in genetic algorithms. Original

parental population is replaced by creating offspring through
selection, recombination, and mutation procedures. Note:
Repeat steps 2–6 until a terminating condition is met.
(g) Termination Criteria

The GAs terminates if the following common termination
conditions are satisfied:
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Fig. 9 The best weights of 5 splines for cases 1–8

(h) Local Search Fine Tuning
After selecting the appropriate individual by GAs, it fed

into the SQP algorithms as a beginning stage for adjusting
and improvement.
The optimization arrangements for GA and GA–SQP are
presented in Tables 1 and 2.

5 Numerical Experimentation with
Discussion

The detailed numerical simulationswith results for presented
CSA–GA–SQP solver are provided here for the analysis of
nonlinear thin film flow model. The three scenarios on the
basis of length of splices for CSA, i.e. 5, 10, and 15 splines-
based model, are executed in interval (0,1).

5.1 Scenario 1: 5 Splines-Based CSA–GA–SQP for
Thin Film FlowModel

The thin film flow equation for the case based on input inter-
vals along with boundary conditions is written as:

d2y

dx2
+ 6β

(
dy

dx

)2 d2y

dx2
− n = 0 y(0) = 1,

y
′
(1) = 0 xε[0, 1]. (27)

The figure of merit or objective function for the said case is
written as follows:

ε =
5∑

k=0

εk, (28)

where

εo =
5∑

i=1

f
′′
i + 6β( f

′
i )

2 f
′′
i − n, (29)

ε1 =
5∑

i=1

( fi − fi−1)
2, (30)

ε2 =
5∑

i=1

( f
′
i − f

′
i−1)

2, (31)

ε3 =
5∑

i=1

( f
′′
i − f

′′
i−1)

2, (32)

ε4 =
5∑

i=1

( f1(1) − 0)2, (33)

ε5 =
5∑

i=1

( f
′
1(0) − 1)2. (34)

Accordingly, the objective/cost function for 10 and 15 splines
is constructed. The RE for p = 5 splines is mathematically
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Fig. 10 The best weights of 10 splines for cases 1–8

Fig. 11 The best weights of 15 splines for cases 1–4
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Fig. 12 The best weights of 15 splines for cases 5–8

represented as follows:

RE =
5∑

i=1

|y ′′
i, j + 6β(y

′
i, j )

2y
′′
i, j − n|. (35)

If xε[0, 1], then h = 0.1, where yi, j represent the solution
of i th sub-spline for j th input in accordance with step size
h.

5.2 Scenario 2: 10 Splines-Based CSA–GA–SQP for
Thin Film FlowModel

The fitness function is formulated same as scenario 1 for 10
splines by taking i = 1 to i = 10 and for RE p = 10.

5.3 Scenario 3: 15 Splines-Based CSA–GA–SQP for
Thin Film FlowModel

The fitness function is formulated same as scenario 1 for 15
splines by taking i = 1 to i = 15 and for RE p = 15.

5.4 Performance Analysis CSA–GA–SQP for
Multi-Runs

All three scenarios are optimized through memetic comput-
ing based on GA–SQP algorithm as presented in Sect. 3. The
learning curves for 5, 10, and 15 splines in case of GA and
GA–SQP are presented in Figs. 3, 4, 5, 6, 7, and 8, and their
best weights are shown in Figs. 9, 10, 11, and 12.

• Solution is satisfied minimum criteria.
• Change in the form of no improvement in the population
after some iterations.

• Attain the specific criteria regarding generations.
• Goal defined for objective function is achieved.

Process of simulations has been completed for the solution
of thin film flow problems through the proposed scheme. The
numerical results for these problems are determined through
Mathematica and compared with proposed numerical results
in MATLAB. The complete statistical analysis of all cases
for different splines 5, 10, and 15 is given in Tables 3, 4, 5, 6,
7, and 8. Further, graphical illustration of numerical solutions
for different splines 5, 10, and 15 is shown in Figs. 13, 14, and
15. Table 9 shows the variation of nondimensional material
constant and Stokes number.
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Fig. 13 Spline fitting of CSM–GA–SQP for different cases of TFF problem with 5 splines
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Fig. 14 Spline fitting of CSM–GA–SQP for different cases of TFF problem with 10 splines
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Fig. 15 Spline fitting of CSM–GA–SQP for different cases of TFF problem with 15 splines
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Table 3 Relative study on the basis of absolute errors of GA for spline
5

Case Max Min Mean Std

1 6.97*10-06 7.11*10-13 3.37*10-06 3.49*10-06

6.97*10-06 1.70*10-06 3.87*10-06 2.75*10-06

4.38*10-06 4.09*10-07 2.58*10-06 2.01*10-06

4.73*10-06 1.75*10-07 3.09*10-06 2.53*10-06

4.73*10-06 2.40*10-07 2.97*10-06 2.40*10-06

2 1.32*10-05 1.06*10-12 6.69*10-06 6.61*10-06

1.90*10-05 2.14*10-06 1.15*10-05 8.58*10-06

1.90*10-05 2.66*10-06 1.09*10-05 8.19*10-06

3.08*10-05 2.66*10-06 1.68*10-05 1.41*10-05

3.08*10-05 9.48*10-06 2.03*10-05 1.07*10-05

3 5.52*10-05 4.77*10-12 2.73*10-05 2.76*10-05

5.52*10-05 5.86*10-06 3.54*10-05 2.61*10-05

4.51*10-05 7.96*10-06 2.42*10-05 1.90*10-05

7.96*10-05 7.96*10-06 4.11*10-05 3.61*10-05

7.96*10-05 1.34*10-05 4.67*10-05 3.31*10-05

4 8.90*10-05 7.19*10-12 4.39*10-05 4.45*10-05

8.90*10-05 1.09*10-05 5.70*10-05 4.09*10-05

7.10*10-05 5.02*10-07 3.61*10-05 3.52*10-05

0.000142 5.02*10-07 7.15*10-05 7.10*10-05

0.000142 4.96*10-05 9.66*10-05 4.64*10-05

5 0.000137 1.59*10-11 6.78*10-05 6.87*10-05

0.000137 2.97*10-05 8.49*10-05 5.39*10-05

8.78*10-05 5.29*10-06 4.54*10-05 4.13*10-05

0.000207 5.29*10-06 0.000104 0.000101

0.000207 8.76*10-05 0.000149 5.98*10-05

6 0.00014 1.13*10-11 6.90*10-05 6.98*10-05

0.00014 4.55*10-05 8.19*10-05 5.06*10-05

6.06*10-05 1.75V*10-06 3.12*10-05 2.94*10-05

0.000224 1.75*10-06 0.000111 0.000111

0.000224 0.000162 0.000195 3.12*10-05

7 0.00012 3.54*10-11 5.92*10-05 6.00*10-05

0.00012 3.24*10-05 6.76*10-05 4.62*10-05

3.24*10-05 2.26*10-06 1.66V*10-05 1.51*10-05

0.00021 2.26*10-06 0.000103 0.000104

0.000219 0.00021 0.000214 4.61V*10-06

8 9.55*10-05 3.78*10-11 4.70*10-05 4.78*10-05

9.55*10-05 8.55*10-06 5.06*10-05 4.35*10-05

8.55*10-06 1.48*10-06 4.79*10-06 3.56*10-06

0.000185 4.33*10-06 9.10*10-05 9.06*10-05

0.000248 0.000185 0.00022 3.20*10-05

6 Conclusions

Mathematical expression governing the dynamics of thin film
flow of second grade fluid model is interpreted and analysed
effectively by introducing a novel computing spline swarm

Table 4 Relative study on the basis of absolute errors of GA for spline
10 for cases 1–4

Case Max Min Mean Std

1 6.45*10-07 1.37*10-12 4.02*10-07 3.50*10-07

7.51*10-07 3.75*10-07 5.90*10-07 1.94*10-07

3.75*10-07 8.44*10-09 2.13*10-07 1.87*10-07

7.59*10-07 1.99*10-07 4.05*10-07 3.08*10-07

7.59*10-07 1.35*10-07 3.55*10-07 3.50*10-07

1.21*10-06 1.35*10-07 5.88*10-07 5.57*10-07

1.21*10-06 5.22*10-08 4.85*10-07 6.32*10-07

1.38*10-06 1.93*10-07 6.43*10-07 6.41*10-07

1.38*10-06 8.95*10-08 6.76*10-07 6.52*10-07

1.03*10-06 8.95*10-08 5.25*10-07 4.72*10-07

2 6.26*10-06 3.64*10-12 3.13*10-06 3.13*10-06

6.26*10-06 2.20*10-06 4.19*10-06 2.04*10-06

4.12*10-06 2.12*10-07 2.77*10-06 2.21*10-06

4.90*10-06 2.51*10-07 3.04*10-06 2.46*10-06

4.90*10-06 1.54*10-06 2.72*10-06 1.89*10-06

6.15*10-06 1.72*10-06 3.41*10-06 2.39*10-06

6.15*10-06 3.05*10-07 3.20*10-06 2.92*10-06

7.91*10-06 3.05*10-07 3.99*10-06 3.81*10-06

7.91*10-06 1.22*10-06 4.51*10-06 3.35*10-06

8.11*10-06 1.22*10-06 4.64*10-06 3.44*10-06

3 1.59*10-05 5.44*10-12 8.00*10-06 7.96*10-06

1.59*10-05 5.35*10-06 9.01*10-06 5.99*10-06

9.71*10-06 2.57*10-06 6.02*10-06 3.58*10-06

1.15*10-05 2.29*10-07 7.15*10-06 6.06*10-06

1.15*10-05 3.43*10-06 6.24*10-06 4.56*10-06

1.65*10-05 3.79*10-06 8.58*10-06 6.90*10-06

1.65*10-05 6.86*10-07 8.69*10-06 7.91*10-06

1.97*10-05 6.86*10-07 1.03*10-05 9.52*10-06

1.97*10-05 3.22*10-06 1.14*10-05 8.25*10-06

2.13*10-05 3.22*10-06 1.23*10-05 9.03*10-06

4 3.18*10-05 3.96*10-12 1.58*10-05 1.59*10-05

3.18*10-05 7.49*10-06 1.71*10-05 1.29*10-05

2.11*10-05 6.39*10-06 1.17*10-05 8.20*10-06

2.11*10-05 1.91*10-06 1.36*10-05 1.03*10-05

1.77*10-05 4.08*10-06 1.08*10-05 6.83*10-06

2.76*10-05 7.88*10-06 1.53*10-05 1.07*10-05

2.76*10-05 2.06*10-07 1.37*10-05 1.37*10-05

3.45*10-05 2.06*10-07 1.72*10-05 1.71*10-05

3.45*10-05 5.99*10-06 2.05*10-05 1.42*10-05

3.82*10-05 5.99*10-06 2.22*10-05 1.61*10-05

paradigm CSA–GA–SQP consisting of integration cubic
spline approach, genetic algorithm, and sequential quadratic
programming. The cubic spline approach with a length of
5, 10, and 15 is implemented as discretization to transform
the differential equations of the TFF model into system of
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Table 5 Relative study on the basis of absolute errors of GA for spline
10 for cases 5–8

Case Max Min Mean Std

5 4.42*10-05 6.77*10-11 2.20*10-05 2.21*10-05

4.42*10-05 9.56*10-06 2.41*10-05 1.80*10-05

3.05*10-05 9.56*10-06 1.67*10-05 1.19*10-05

3.05*10-05 4.84*10-06 1.92*10-05 1.31*10-05

2.24*10-05 3.97*10-06 1.36*10-05 9.23*10-06

3.71*10-05 1.08*10-05 2.07*10-05 1.43*10-05

3.71*10-05 2.85*10-06 2.01*10-05 1.71*10-05

5.10*10-05 2.85*10-06 2.68*10-05 2.41*10-05

5.10*10-05 1.52*10-05 3.31*10-05 1.79*10-05

5.67*10-05 1.52*10-05 3.60*10-05 2.08*10-05

6 4.80*10-05 1.84*10-11 2.38*10-05 2.40*10-05

4.80*10-05 4.73*10-06 2.49*10-05 2.18*10-05

3.63*10-05 4.73*10-06 1.87*10-05 1.61*10-05

3.63*10-05 1.08*10-05 2.09*10-05 1.36*10-05

1.89*10-05 5.63*10-07 1.17*10-05 9.75*10-06

3.31*10-05 6.37*10-06 1.95*10-05 1.34*10-05

3.31*10-05 4.97*10-06 1.93*10-05 1.41*10-05

5.51*10-05 4.97*10-06 2.99*10-05 2.51*10-05

5.51*10-05 2.60*10-05 4.06*10-05 1.45*10-05

6.59*10-05 2.60*10-05 4.62*10-05 2.00*10-05

7 3.16*10-05 1.69*10-11 1.57*10-05 1.58*10-05

3.16*10-05 2.11*10-06 1.63*10-05 1.47*10-05

2.50*10-05 2.11*10-06 1.28*10-05 1.15*10-05

2.50*10-05 7.53*10-06 1.41*10-05 9.50*10-06

9.78*10-06 2.42*10-07 6.47*10-06 5.40*10-06

2.82*10-05 8.48*10-06 1.54*10-05 1.12*10-05

2.82*10-05 1.67*10-05 2.23*10-05 5.78*10-06

5.50*10-05 1.67*10-05 3.55*10-05 1.91*10-05

5.50*10-05 4.39*10-05 4.94*10-05 5.54*10-06

7.06*10-05 4.39*10-05 5.76*10-05 1.34*10-05

8 2.02*10-05 2.02*10-11 1.00*10-05 1.01*10-05

2.02*10-05 1.21*10-06 1.09*10-05 9.51*10-06

1.68*10-05 1.21*10-06 8.92*10-06 7.79*10-06

1.68*10-05 4.65*10-06 9.26*10-06 6.57*10-06

4.82*10-06 1.20*10-07 3.20*10-06 2.67*10-06

2.11*10-05 4.82*10-06 1.11*10-05 8.72*10-06

2.11*10-05 2.01*10-05 2.05*10-05 5.17*10-07

5.11*10-05 2.01*10-05 3.55*10-05 1.55*10-05

5.25*10-05 5.11*10-05 5.20*10-05 7.77*10-07

7.19*10-05 5.25*10-05 6.26*10-05 9.73*10-06

Table 6 Relative study on the basis of absolute errors of GA for spline
15 for cases 1–3

Case Max Min Mean Std

1 6.36*10-07 5.84*10-13 2.96*10-07 3.20*10-07

6.36*10-07 1.36*10-07 3.89*10-07 2.50*10-07

5.34*10-07 3.36*10-07 4.21*10-07 1.02*10-07

3.36*10-07 2.65*10-07 3.01*10-07 3.55*10-08

6.19*10-07 2.65*10-07 4.00*10-07 1.92*10-07

6.19*10-07 2.66*10-07 4.12*10-07 1.85*10-07

3.70*10-07 1.92*10-08 2.47*10-07 1.97*10-07

5.46*10-07 1.74*10-07 3.63*10-07 1.86*10-07

1.86*10-07 7.42*10-08 1.45*10-07 6.15*10-08

8.39*10-07 1.86*10-07 4.57*10-07 3.40*10-07

8.39*10-07 1.07*10-07 4.61*10-07 3.67*10-07

7.54*10-07 4.37*10-07 6.05*10-07 1.59*10-07

7.54*10-07 7.56*10-08 4.18*10-07 3.39*10-07

1.56*10-07 7.56*10-08 1.29*10-07 4.62*10-08

5.80*10-07 1.05*10-07 2.80*10-07 2.61*10-07

2 3.42*10-06 1.97*10-11 1.51*10-06 1.74*10-06

3.42*10-06 8.89*10-07 1.93*10-06 1.32*10-06

2.07*10-06 8.89*10-07 1.36*10-06 6.25*10-07

2.07*10-06 5.11*10-07 1.49*10-06 8.50*10-07

1.88*10-06 5.47*10-07 1.24*10-06 6.69*10-07

2.31*10-06 1.58*10-07 1.26*10-06 1.08*10-06

2.31*10-06 6.76*10-07 1.38*10-06 8.44*10-07

2.28*10-06 4.97*10-07 1.31*10-06 9.01*10-07

2.28*10-06 8.87*10-07 1.35*10-06 8.00*10-07

2.60*10-06 7.20*10-07 1.40*10-06 1.04*10-06

2.60*10-06 1.15*10-07 1.47*10-06 1.26*10-06

3.73*10-06 1.15*10-07 1.68*10-06 1.85*10-06

3.73*10-06 3.05*10-08 1.79*10-06 1.85*10-06

3.29*10-06 3.05*10-08 1.82*10-06 1.65*10-06

3.29*10-06 2.58*10-07 1.80*10-06 1.52*10-06

3 7.79*10-06 8.32*10-10 3.98*10-06 3.90*10-06

1.19*10-05 1.66*10-06 7.12*10-06 5.15*10-06

6.04*10-06 1.66*10-06 3.23*10-06 2.44*10-06

6.04*10-06 1.68*10-06 3.74*10-06 2.19*10-06

4.94*10-06 1.72*10-07 2.86*10-06 2.44*10-06

5.31*10-06 1.48*10-08 3.42*10-06 2.95*10-06

5.31*10-06 7.44*10-07 2.98*10-06 2.28*10-06

6.40*10-06 2.26*10-06 3.85*10-06 2.23*10-06

6.40*10-06 7.89*10-07 3.29*10-06 2.85*10-06

8.14*10-06 7.88*10-07 4.01*10-06 3.76*10-06

8.14*10-06 4.53*10-07 4.23*10-06 3.84*10-06

8.76*10-06 4.54*10-07 4.70*10-06 4.16*10-06

8.76*10-06 6.70*10-07 4.70*10-06 4.05*10-06

9.01*10-06 6.71*10-07 4.91*10-06 4.17*10-06

9.01*10-06 1.49*10-06 5.12*10-06 3.77*10-06
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Table 7 Relative study on the basis of absolute errors of GA for spline
15 for cases 4–6

Case Max Min Mean Std

4 1.32*10-05 2.70*10-11 6.68*10-06 6.59*10-06

1.32*10-05 2.27*10-06 6.95*10-06 5.61*10-06

1.07*10-05 2.27*10-06 5.47*10-06 4.59*10-06

1.07*10-05 2.88*10-06 6.26*10-06 4.03*10-06

7.10*10-06 6.24*10-07 4.30*10-06 3.33*10-06

8.13*10-06 1.78*10-08 5.08*10-06 4.42*10-06

8.13*10-06 2.57*10-06 4.82*10-06 2.93*10-06

1.04*10-05 3.19*10-06 5.79*10-06 4.03*10-06

1.04*10-05 1.26*10-07 5.18*10-06 5.16*10-06

1.35*10-05 1.26*10-07 6.65*10-06 6.67*10-06

1.35*10-05 2.37*10-06 8.02*10-06 5.55*10-06

1.52*10-05 2.37*10-06 8.83*10-06 6.42*10-06

1.52*10-05 3.77*10-06 9.61*10-06 5.73*10-06

1.65*10-05 3.77*10-06 1.02*10-05 6.38*10-06

1.65*10-05 4.95*10-06 1.08*10-05 5.79*10-06

5 1.49*10-05 5.54*10-12 7.51*10-06 7.47*10-06

1.49*10-05 2.66*10-06 7.92*10-06 6.33*10-06

1.11*10-05 2.66*10-06 5.87*10-06 4.58*10-06

1.11*10-05 2.60*10-06 6.75*10-06 4.26*10-06

7.43*10-06 1.96*10-07 4.72*10-06 3.94*10-06

1.06*10-05 1.20*10-06 6.40*10-06 4.76*10-06

1.06*10-05 2.17*10-06 5.67*10-06 4.36*10-06

1.42*10-05 2.17*10-06 7.37*10-06 6.19*10-06

1.42*10-05 2.78*10-06 8.51*10-06 5.72*10-06

1.97*10-05 2.78*10-06 1.13*10-05 8.45*10-06

1.97*10-05 7.70*10-06 1.35*10-05 6.00*10-06

2.33*10-05 7.70*10-06 1.56*10-05 7.83*10-06

2.33*10-05 1.05*10-05 1.69*10-05 6.40*10-06

2.51*10-05 1.05*10-05 1.80*10-05 7.27*10-06

2.51*10-05 1.25*10-05 1.90*10-05 6.31*10-06

6 1.88*10-05 3.25*10-10 9.49*10-06 9.41*10-06

1.88*10-05 1.59*10-06 9.91*10-06 8.63*10-06

1.65*10-05 1.59*10-06 8.30*10-06 7.56*10-06

1.65*10-05 3.85*10-06 8.91*10-06 6.69*10-06

1.20*10-05 3.85*10-06 6.60*10-06 4.68*10-06

1.20*10-05 2.60*10-06 7.22*10-06 4.71*10-06

7.44*10-06 3.22*10-07 4.94*10-06 4.01*10-06

1.26*10-05 2.20*10-06 7.41*10-06 5.19*10-06

1.26*10-05 1.07*10-06 6.44*10-06 5.80*10-06

1.83*10-05 1.07*10-06 9.43*10-06 8.62*10-06

1.83*10-05 6.29*10-06 1.23*10-05 6.00*10-06

2.48*10-05 6.29*10-06 1.58*10-05 9.28*10-06

2.48*10-05 1.25*10-05 1.88*10-05 6.19*10-06

2.90*10-05 1.25*10-05 2.08*10-05 8.24*10-06

2.90*10-05 1.50*10-05 2.21*10-05 6.98*10-06

Table 8 Relative study on the basis of absolute errors of GA for spline
10 for cases 7–8

Case Max Min Mean Std

7 1.88*10-05 3.73*10-11 9.28*10-06 9.42*10-06

1.88*10-05 6.24*10-07 9.66*10-06 9.10*10-06

1.69*10-05 6.24*10-07 8.52*10-06 8.15*10-06

1.69*10-05 1.80*10-06 9.02*10-06 7.57*10-06

1.40*10-05 1.80*10-06 7.53*10-06 6.15*10-06

1.40*10-05 4.08*10-06 7.77*10-06 5.46*10-06

1.00*10-05 2.49*10-06 5.53*10-06 3.97*10-06

1.00*10-05 7.09*10-07 6.44*10-06 5.01*10-06

8.59*10-06 2.42*10-06 4.81*10-06 3.31*10-06

1.53*10-05 2.42*10-06 7.83*10-06 6.68*10-06

1.53*10-05 5.86*10-06 1.07*10-05 4.73*10-06

2.41*10-05 5.86*10-06 1.49*10-05 9.11*10-06

2.41*10-05 1.40*10-05 1.89*10-05 5.03*10-06

3.01*10-05 1.40*10-05 2.20*10-05 8.05*10-06

3.01*10-05 1.73*10-05 2.37*10-05 6.42*10-06

8 1.18*10-05 1.09*10-10 5.77*10-06 5.89*10-06

1.18*10-05 2.77*10-07 5.95*10-06 5.75*10-06

1.17*10-05 2.77*10-07 6.08*10-06 5.73*10-06

1.17*10-05 3.45*10-07 5.99*10-06 5.69*10-06

9.86*10-06 3.45*10-07 4.79*10-06 4.79*10-06

9.86*10-06 2.04*10-06 5.33*10-06 4.05*10-06

6.00*10-06 2.04*10-06 3.37*10-06 2.28*10-06

6.20*10-06 4.48*10-07 4.22*10-06 3.26*10-06

6.20*10-06 4.07*10-07 3.39*10-06 2.90*10-06

1.33*10-05 4.07*10-07 6.70*10-06 6.45*10-06

1.33*10-05 9.56*10-06 1.14*10-05 1.87*10-06

2.26*10-05 9.56*10-06 1.60*10-05 6.52*10-06

2.26*10-05 1.94*10-05 2.08*10-05 1.64*10-06

3.01*10-05 1.94*10-05 2.46*10-05 5.35*10-06

3.01*10-05 2.34*10-05 2.69*10-05 3.34*10-06

Table 9 Cases description for thin film flow model

Index β n

1 5.00*10-01 1.00*10-01

2 5.00*10-01 2.00*10-01

3 5.00*10-01 3.00*10-01

4 5.00*10-01 4.00*10-01

5 5.00*10-01 5.00*10-01

6 1.00E+00 5.00*10-01

7 1.50E+00 5.00*10-01

8 2.00E+00 5.00*10-01
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nonlinear equations. The approximation in mean squared
error sense is exploited to represent the objective function
of TFF model, and combined strength of GAs and SQP is
utilized for optimization. The designed spline–evolutionary
computing paradigm, CSA–GA–SQP, is evaluated for differ-
ent scenarios of TFF model by variation of second grade, β,
and magnetic, m, parameters. Results with reasonable accu-
racy level certified the performance of CSA–GA–SQP solver
as an efficient alternative, reliable, and stable platform for the
variants of nonlinear TFF system.

In the future, the design computing spline swarmparadigm
CSA–GA–SQP is a promising alternative numerical solver
to be implemented for the solution of stiff nonlinear systems
representing the complex scenarios of computational fluid
dynamics problems [63–70].
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