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Abstract Anti-estrogen and anti-HER2 treatments have

been among the first and most successful examples of

targeted therapy for breast cancer (BC). However, the

treatment of triple-negative BC (TNBC) that lack estrogen

receptor expression or HER2 amplification remains a major

challenge. We previously discovered that approximately

two-thirds of TNBCs express vitamin D receptor (VDR)

and/or androgen receptor (AR) and hypothesized that

TNBCs co-expressing AR and VDR (HR2-av TNBC)

could be treated by targeting both of these hormone

receptors. To evaluate the feasibility of VDR/AR-targeted

therapy in TNBC, we characterized 15 different BC lines

and identified 2 HR2-av TNBC lines and examined the

changes in their phenotype, viability, and proliferation after

VDR and AR-targeted treatment. Treatment of BC cell

lines with VDR or AR agonists inhibited cell viability in a

receptor-dependent manner, and their combination

appeared to inhibit cell viability additively. Moreover, cell

viability was further decreased when AR/VDR agonist

hormones were combined with chemotherapeutic drugs.

The mechanisms of inhibition by AR/VDR agonist hor-

mones included cell cycle arrest and apoptosis in TNBC

cell lines. In addition, AR/VDR agonist hormones induced

differentiation and inhibited cancer stem cells (CSCs)

measured by reduction in tumorsphere formation effi-

ciency, high aldehyde dehydrogenase activity, and CSC

markers. Surprisingly, we found that AR antagonists

inhibited proliferation of most BC cell lines in an AR-

independent manner, raising questions regarding their

mechanism of action. In summary, AR/VDR-targeted

agonist hormone therapy can inhibit HR2-av TNBC

through multiple mechanisms in a receptor-dependent

manner and can be combined with chemotherapy.
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cancer � Androgen receptor � Vitamin D receptor �
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Introduction

Breast cancers (BCs) are categorized in the clinic into three

subtypes, including, estrogen receptor positive (ER?),

epidermal growth factor receptor 2 positive (HER2?), and

triple-negative BCs (TNBCs) [1]. Treatment of ER? and

HER2? BCs has been successful through targeted therapy

with anti-estrogen and anti-HER2 drugs. Due to the lack of

these targets, neo-adjuvant chemotherapy is used for

treatment of TNBC that are typically associated with

poorer prognosis compared to other BC subtypes [2, 3]. In

addition, up to half of the ER? tumors eventually become

resistant to anti-estrogens [4–6]. Therefore, there is an
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urgent need to identify and develop novel targeted therapy

approaches for TNBC and hormone refractory ER? BCs.

In an attempt to develop a normal cell lineage-based

phylogenetic BC classification [7], we previously studied

hormone receptors (HRs) in normal human breast tissues

and compared them with human BCs [1]. To do so, we

used multiplex immunofluorescent staining and analyzed

simultaneous co-expression of the 14 lineage markers in

*15,000 normal breast cells and *3000 BCs, and found

that both normal luminal breast cells and BCs conform to

four hormonal states (HR3, HR2, HR1, and HR0) based on

co-expression of ER, androgen receptor (AR) and vitamin-

D (Vit-D) receptor (VDR) [1]. We also found that there

was 6.9-fold difference in overall survival between HR3

versus HR0 tumors [1]. Compared to the 1.7–2.1-fold

differences typically reported in overall survival between

ER?/LumA versus TNBC/basal-like BC [8, 9], these

results suggest that the HR0–3 classification reveals BC

sub-groups with highly significant outcome differences.

Utilizing the HR0–3 classification, we discovered that

approximately two-thirds of TNBCs co-express AR and

VDR (HR2-av TNBC) or express VDR alone (HR1-v

TNBC); the remaining one-third of the TNBCs are triple

negative for ER, AR, and VDR (HR0 TNBC) [1]. These

findings raised the possibility of developing novel HR-

targeted therapies for TNBC, for which the only existing

option is chemotherapy at the moment. In the present

study, we demonstrate that HR1-v and HR2-av TNBC cell

lines can be targeted with AR and/or VDR agonist hor-

mones alone and in combination. The combined effects of

AR and VDR ligands not only reduce the viability of the

cells, but also change their cancer stem cell (CSC) phe-

notype and differentiation. In addition, we found that AR

and VDR agonist hormones can be combined with

chemotherapeutic agents to successfully target TNBC cells.

Materials and methods

Cell culture and drug viability

All the BC and prostate cancer (PC) cell lines were pur-

chased from ATCC and DSMZ and cultured in their

respective media. The short tandem repeat profiling was

used to validate the authenticity of the cell lines (Genetic

Resources Core Facility, John Hopkins School of Medi-

cine). All the drugs were prepared and used according to

concentrations that were previously reported [10–14],

detailed information for each drug is provided in Supple-

mental Table 2. Cell viability assays were carried out in 24

or 96 well plates with cell titer cell reagent as previously

described [15]. The LD50 values of all the AR antagonists

were calculated as described previously [16]. See

supplemental methods for further details and analysis of

additive or antagonistic activity determined by Bliss

independent criterion.

Cell cycle and apoptosis assays

The cell cycle profile after AR or VDR agonist treatment

was evaluated by bromodeoxy uridine (BrdU) pulse

labeling followed by FACS analysis. Apoptosis was mea-

sured with FACS analysis of Annexin V and propidium

iodide double staining following the manufacture’s proto-

col (Life Technologies). See supplemental methods for

further details.

Tumorsphere and AldeFluor assays

Tumorsphere assays were performed as described previ-

ously [15]. AldeFluor assays were performed as described

[17] using ALDEFLUOR kit (StemCell Technologies).

The cells were treated with agonist(s) for 8 days with

media changes every 3 days and analyzed according to

manufacturer’s protocol by FACS. See supplemental

methods for further details.

PCR-based human stem cell array

Human stem cell RT2 ProfilerTM PCR array was used and

data were analyzed according to manufacturer’s protocol

and software (SA Biosciences). The genes with a 2-fold

difference compared to the vehicle treated control group

were shortlisted and plotted as a Heatmap generated using

Microsoft Excel.

Statistical analysis

The statistical significance of the data was evaluating by

performing Student’s T test using a cut-off of P-value

\0.05.

Results

Majority of TNBC cell lines express AR and/or VDR

In order to identify BC cell lines that represent HR1-v,

HR2-av, and HR0 phenotypes, we selected 15 lines based

on their previously published profiles. Two well-estab-

lished AR? (LNCaP and LAPC-4) and two AR- (PC-3

and DU-145) PC cell lines were used to provide bench-

mark for relative scale of AR expression. Among the 15

BC cell lines, seven were TNBC (Fig. 1a) that included

HR0 (BT-549 and SUM-1315), HR1-v (BT-20, MDA-MB-

468 and SUM-159PT), and HR2-av (MFM-223 and CAL-
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148) cell lines (Fig. 1d). In addition to confirming these

phenotypes with western blots, we tested the response of

these cell lines to physiologic levels of AR and VDR

agonists and determined that the cells we designate as

HR1-v respond to VDR agonists but not AR agonists,

HR2-av cell lines respond to both AR and VDR agonists,

and HR0 cells did not respond to either AR or VDR

agonists (Fig. 1b, c; Suppl. Fig. 1b). Therefore, the phe-

notypic HR0, HR1-v, and HR2-av designation of the cells

in Fig. 1b are based on both biochemical AR and VDR

expression and response to physiologic concentrations of

their natural ligands.

Inhibition of TNBC cell lines with calcitriol is VDR

dependent

The role of VDR has been studied in cancers, showing that

ligand bound VDR induces anti-proliferative, pro-apop-

totic, and pro-differentiating effects both in vitro and

in vivo [13, 18]. Here, we confirmed that natural VDR

agonist 1a,25-dihyroxy vitamin D3 (calcitriol) inhibits cell

viability in BC cell lines (Fig. 1b). No inhibition of cell

viability was observed in VDR- breast cell line BT-549

demonstrating that the response to calcitriol is VDR

dependent.

Fig. 1 Evaluation of androgen and vitamin D receptor agonists

response in BC lines: a Western blot analysis of 15 breast cancer cell

lines for ER, AR, VDR, PR, and Her2 expression. Two AR? and two

AR- prostate cancer cell lines, LNCaP, LAPC-4, PC-3, and DU-145,

respectively, were used as controls for AR expression. 30 lg extract

was loaded in each lane of a 4–12 % 20-well SDS-PAGE gel, which

was transferred onto a nitrocellulose membrane and probed with the

following antibodies: ERa (1:750, Santa Cruz sc-8002), progesterone

receptor (1:1000, Thermofisher Scientific MA1-410), HER2 (1:2000,

Abcam ab2428), androgen receptor (N-20) (1:1000, Abcam sc-816),

vitamin D receptor (1:1000, Thermofisher Scientific MA5-14617). b-
Actin is used as a loading control (1:5000, Sigma A2228). The results

of VDR and AR agonist treatment experiments in panels b and c are

plotted as percent viability of the cells in comparison to the vehicle

control. Error bars represent mean ± standard error of mean (SEM).

These experiments were repeated at least three times. The statistical

significance of the drug treatments was determined using two-tailed

Student’s T-test. *P\ 0.05, **P\ 0.01. Cal calcitriol, DHT

dihydrotestosterone. b VDR agonist calcitriol treatment on cancer

cell lines: breast cancer cell lines [black VDR(?) and hatched

VDR(- or low)] were plated in their respective media with complete

serum in triplicates. 24–48 h after plating, the cells were treated with

100 nM calcitriol for 6 days with media change containing fresh drug

every 3 days. At the end of the experiment, the cells were trypsinized,

stained with 0.1 % Trypan blue and viable cells were counted using

Cellometer. c AR agonist dihydrotestosterone (DHT) treatment of

cancer cell lines: all the cell lines were seeded at 30–40 % confluency

into 24-well plates in triplicates in phenol red-free media containing

charcoal stripped serum in order to exclude the interference from

androgenic hormones in serum [black AR(?) and hatched AR(- or

low expression)]. 48–72 h after plating, the cells were treated with

10 nM DHT for 8–10 days with media change every 3–4 days. At the

end of the experiment, the cells were trypsinized, stained with 0.1 %

Trypan blue and viable cells were counted using Cellometer. d The

HR0–3 phenotype designation of selected TNBC cell lines based on

AR/VDR expression and response to natural ligands
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Inhibition of TNBC cell lines

with dihydrotestosterone is AR dependent

While the notion of AR-targeted therapy for BC has been

around since the early 1970s [19–21], whether AR agonists

or AR antagonists should be used for this purpose has been

contentious. Many studies show that AR agonists inhibit

BC cell growth both in vivo and in vitro [22–30], and

others indicated that AR antagonists can also inhibit breast

tumor growth [31] and recently several clinical studies

were initiated with AR antagonists in BC patients [32, 33].

Hence, based on the prior literature, it was not entirely

clear whether AR agonists or antagonists should be used to

treat AR? TNBC. Thus, we started by testing the effects of

both AR agonists and antagonists in a panel of AR? and

AR- BC cell lines including all three subtypes (ER?,

HER2?, and TNBC). In addition, we used AR? and AR-

PCs as controls because PC cell lines have a well-estab-

lished and specific response to AR ligands.

We found that AR agonists dihydrotestosterone (DHT)

and R1881 stimulated proliferation of AR? PC cell lines as

expected. Importantly, there was no effect on AR- PC-3

cell line, which demonstrates that the effect of DHT and

R1881 on cell proliferation is AR dependent in PC cell

lines (Fig. 1c; Suppl. Fig. 1b).

Consistent with the opposing role of androgens in male

versus female, DHT or R1881 treatment resulted in a

decrease in cell proliferation and viability in AR? BC cell

lines (Fig. 1c; Suppl. Fig. 1b). The one exception was the

ER- HER2? BC cell lines in which AR agonists increase

cell proliferation (data not shown), which was shown to be

due to a cross-talk between HER2 and AR signaling

pathways that is only observed in ER- background [10, 34,

35]. There was no response to DHT or R1881 in AR- BT-

20, MDA-MB-468, and AR-low SUM-159PT cell lines

indicating that at the effect of DHT and R1881 on cell

proliferation is AR dependent in BC cell lines (Fig. 1c;

Suppl. Fig. 1a, b).

In summary, AR agonists DHT and R1881 decrease

proliferation of TNBC, ER?, and ER?/HER2? BC cell

lines and stimulate proliferation of ER-/HER2?/AR? cell

lines.

Inhibition of TNBC cell lines with AR antagonists is

not dependent on AR

Next, we tested the effect of AR antagonists on BC cell line

proliferation using three different drugs (flutamide, bica-

lutamide, and enzalutamide) on four AR? and three AR-/

low BC cell lines. In addition, two AR? and two AR- PC

cell lines were used as controls.

As expected, in PC cell lines, we observed a dose-de-

pendent decrease in cell proliferation and viability in AR?

cell lines at low concentrations compared to AR- cell lines

(Fig. 2a; Suppl. Fig. 2a). There was an approximately 5-fold

difference in the LD50 values between AR
? versus AR- PC

cell lines (Fig. 2b; Suppl. Fig. 2c), indicating that the

response to AR antagonists in PC cell lines is AR dependent.

Surprisingly, in BC cell lines, we did not observe a similar

difference in the LD50 values of AR antagonists in AR?

versus AR- lines (Fig. 2d; Suppl. Fig. 2c). There was

decrease in cell proliferation in BC cell lines with AR

antagonists regardless of their AR protein expression

(Fig. 2c; Suppl. Fig. 2b). These results suggest that the

effect of AR antagonists in BC cell lines can be AR-inde-

pendent. Therefore, we concentrated on AR agonists as drug

of choice for further experiments in TNBC lines (Fig. 7a).

Treatment of TNBC with AR and VDR agonists

in combination with chemotherapy

We previously showed that nearly two-thirds of TNBC

have HR1-v (45 %) or HR2-av (18 %) phenotype, i.e.,

these tumors are negative for ER, PR, and HER2, but

positive for VDR (HR1-v) or both AR and VDR (HR2-av)

[1]. These TNBCs are currently treated with chemothera-

peutic agents such as Taxol or cisplatin.

We found that single agent VDR agonist (calcitriol) can

reduce proliferation of both HR1-v and HR2-av TNBC cell

lines (Fig. 1c), and combination of calcitriol with Taxol

resulted in an additive or synergistic decrease in cell pro-

liferation and viability in two different HR1-v TNBC lines

(Fig. 3a) using Bliss independence criterion approach [36–

38]. Additionally, similar results were observed when the

combination of calcitriol and Taxol was tested in two

TNBC lines, MFM-223, and CAL-148 (Suppl. Fig. 3).

In HR2-av TNBC cell lines, we found that combination

of AR and VDR agonists had an additive inhibitory effect

in two different HR2-av TNBC cell lines (Fig. 3b). Next,

we examined combining AR- and VDR-targeted therapy

with chemotherapy, and found that combination of AR

(DHT)- and VDR (calcitriol)-targeted therapy with Taxol

or cisplatin has an additive effect in reducing cell viability

(Fig. 3c, d).

It is worth pointing out that in order to demonstrate

additivity in these experiments, we used doses lower than

IC50 for each drug (Suppl. Fig. 4). Therefore, it is possible

to achieve a greater reduction in cell numbers and viability,

close to 100 % cell death, when these drugs are combined

between IC50 and IC90 dose range.

The mechanism of tumor cell inhibition by AR-

and VDR-targeted hormones

The VDR and AR agonists have been shown to have cell-

context dependent pleiotropic effects on cell cycle,
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apoptosis, autophagy, or differentiation depending on the

cell type and dose [13, 14, 25, 39–42]. Therefore, we

examined these potential mechanisms in HR2-av cell lines

MFM-223 and CAL-148.

There was an increase in G1 phase of the cell cycle in

MFM-223 with both DHT and calcitriol individually, and

their combination resulted in additive G0/G1 cell cycle

arrest (Fig. 4a). In contrast, we did not observe a change in

the cell cycle profile of CAL-148 with VDR or AR agonists

(Fig. 4b).

An increase in apoptosis was observed in CAL-148 with

combination of DHT and calcitriol evaluated by Annexin

V/PI co-staining (Fig. 4c) as well as PARP cleavage

(Fig. 4d). Importantly, the apoptotic effects of DHT and

calcitriol were minimal when they were used alone, con-

sistent with an additive effect. In contrast, there was no

change in apoptosis of MFM-223 cells with either hormone

alone or in combination (Fig. 4c, d). Since many

chemotherapeutic agents induce G2/M arrest followed by

apoptosis [43, 44], we examined whether combining DHT

and calcitriol with cisplatin in MFM-223 and CAL-148

would interfere with chemotherapy-induced G2/M arrest

and apoptosis. We also found that co-treatment with AR/

VDR agonists plus chemotherapy resulted in either no

change or additive increase in G2/M arrest and apoptosis in

MFM-223 and CAL-148 (Suppl. Fig. 5).

Fig. 2 Evaluation of androgen receptor antagonists response in BC

lines: a all the prostate cancer cell lines were seeded at 4000 cells/

well on black-colored clear bottomed 96-well plates [LNCaP and

LAPC-4, red lines AR(?) and PC-3 and DU-145, blue lines AR(- or

low)]. 24 h after plating, the cells were treated with AR antagonists

enzalutamide or bicalutamide for 4 days at concentrations ranging

from 0.1 to 100 lM and cell viability was measured by cell titer blue

reagent. The results were plotted as percent cell viability compared to

vehicle control versus the concentration of the drug. Error bars

represent mean ± SEM. b The IC50 values of enzalutamide and

bicalutamide in prostate cancer cell lines were calculated using Prism

software (version 6.05 GraphPad Software, Inc.) by non-linear

regression analysis. The lethal dose LD50 was calculated as described

in the ‘‘Materials and methods’’ section. Red bars AR(?) LNCaP and

LAPC-4. Blue bars AR(-/low) PC-3 and DU-145. (*) DU-145 cell

line did not reach 50 % inhibition, hence its LD50 value is[100 lM.

c All the breast cancer cell lines were seeded at 4000 cells/well on

black colored clear bottomed 96-well plates. Red lines AR(?) BC cell

lines CAL-148, ZR-75-1, BT-474, and MFM-223. Blue lines

AR(-/low) BC cell lines BT-20, MDA-MB-468, and SUM-159PT.

24 h after plating, the cells were treated with AR antagonists

enzalutamide or bicalutamide for 4 days at concentrations from 0.1 to

100 lM and cell number and viability was measured by cell titer blue

reagent. The results were plotted as percent cell viability compared to

vehicle control versus the concentration of the drug. Error bars

represent mean ± SEM. d The IC50 values of enzalutamide and

bicalutamide in breast cancer cell lines were calculated using Prism

software (version 6.05 GraphPad Software, Inc.) by non-linear

regression analysis. The lethal dose LD50 was calculated as described

in the ‘‘Materials and methods’’ section. Red bars AR(?), blue bars

AR(- or low)]
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Lastly, we found that autophagy did not change with co-

treatment of MFM-223 and CAL-148 cell lines with AR

and VDR (DHT and Cal), measured by FACS using Cyto-

ID� fluorescent dye or by western blots for autophagy

marker LC3B (Suppl. Fig. 6).

Cumulatively, these results indicate that AR and VDR

stimulation can additively inhibit proliferation of BC cells

through cell cycle arrest or apoptosis depending on the cel-

lular context, suggesting a rationale for their combined use.

Furthermore, combining both hormones with chemotherapy

can additively increase apoptosis in cancer cell lines.

AR- and VDR-targeted hormones can inhibit cancer

stem cell phenotype

Both androgens and Vit-D are well-known regulators of

cellular differentiation [14, 40–42, 45–49]. Therefore, we

examined whether they also change the differentiation state,

CSC marker expression and tumorsphere formation effi-

ciency (TFE) of BC cell lines. We found that calcitriol sig-

nificantly inhibited TFE in both MFM-223 and CAL-148

cell lines and DHT inhibited TFE in CAL-148 (Fig. 5a;

Suppl. Fig. 7). No further decrease in TFE was observed

with co-treatment with both hormones at the doses we tested.

High aldehyde dehydrogenase (ALDH) activity is one of

the features of CSCs, which is measured by AldeFluor

assay [17, 50]. Consistent with the TFE results, we found

that treatment with AR or VDR agonists decreased

ALDH? cells additively resulting in 5–100-fold decrease in

the frequency of ALDH? cells with co-treatment of HR2-

av TNBC MFM-223 and CAL-148 cell lines (Fig. 5b;

Suppl. Fig. 8).

Next, we examined other CSC-associated markers

after treatment with AR or VDR agonists alone or in

Fig. 3 Evaluation of AR- and VDR-targeted therapy in combination

with chemotherapy in TNBC: the effect on cell viability was

measured after 8 days of treatment with various drugs listed in a–
d by counting viable cells after 0.1 % Trypan blue staining using

Cellometer in all experiments. Whether the combination of drugs

resulted in additive, synergistic, or antagonistic interactions was

determined by Bliss independent criterion approach, explained in

detail in the supplemental methods. Y-axis represents percentage

viability of the cells after treatment compared to vehicle control.

Error bars represent mean ± SEM. Cal calcitriol, DHT dihy-

drotestosterone, Cis cisplatin, Tax paclitaxel. � represents additive

effect on the combination of drugs and § represents additive or

synergistic effect. a VDR-targeted therapy in combination with

paclitaxel (Taxol) in TNBC HR1-v cell lines. Two VDR(?) TNBC

lines BT-20 and SUM-159PT were treated with vehicle (gray bar),

calcitriol (black bars 10 nM) or Taxol (white bar BT-20: 1 nM,

SUM-159PT: 0.5 nM) or a combination of calcitriol and Taxol

(hatched bar) for 6 days with media change with fresh drug every

3 days. b Combination of AR- and VDR-targeted therapy in TNBC

HR2-av cell lines. MFM-223 and CAL-148 cell lines were treated

with DHT (black bar 10 nM), calcitriol (white bar MFM-223: 25 nM

and CAL-148: 10 nM), or combination of DHT and calcitriol

(hatched bars). c Combination of AR- and VDR-targeted therapy

with paclitaxel in TNBC HR2-av cell lines. MFM-223 and CAL-148

cell lines were treated with DHT (black bar 10 nM), Taxol (white bar

0.5 nM), calcitriol (single hatched bar MFM-223: 25 nM and CAL-

148: 10 nM), or combination of DHT ? calcitriol ? Taxol (double

hatched black bar). d Combination of AR- and VDR-targeted therapy

with cisplatin in TNBC HR2-av cell lines. MFM-223 and CAL-148

cell lines were treated with DHT (black bar 10 nM), cisplatin (white

bar 10 nM), calcitriol (single hatched bar MFM-223: 25 nM and

CAL-148: 10 nM), or combination of DHT ? calcitriol ? cisplatin

(double hatched black bar)
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combination; we found that CD49f, Musashi, CD133,

and CD326 are down-regulated with combination treat-

ment (Fig. 5c). In addition, we observed an increase in

differentiation markers Claudin-4 and cytokeratin 18 and

down-regulation of cytokeratin 5 (MFM-223) as well as

reciprocal down-regulation of vimentin and up-regula-

tion of cytokeratin 18 (CAL-148) consistent with more

differentiated epithelial phenotype (Fig. 5d; Suppl.

Fig. 9).

Lastly, we used a PCR-based CSC pathway array that

includes 84 common CSC-associated genes and found a

2–5-fold decrease in the mRNA expression of CD44,

SOX2, MME (CD10), ALDH1A1, and PPAR-gamma with

AR and VDR hormone co-treatment compared to control

(Fig. 5e).

Cumulatively, these results indicate that in addition to

increasing apoptosis and cell cycle arrest, AR and VDR

agonists also inhibit CSC phenotype and induce differen-

tiation in HR2-av TNBC cell lines.

Synthetic AR and VDR ligands can be used to treat

HR2-av TNBC cell lines

One concern with using natural AR agonists in the clinic is

the potential virilizing side effects and aromatization to

estrogens, which can be overcome by a new class of drugs,

known as non-steroidal selective AR modulators (SARMs).

We selected to test SARM compound enobosarm (GTx-

024), since it is currently being tested in clinical trials [51].

We found that similar to AR agonists DHT and R1881,

GTx-024 increased proliferation of AR? PC cell line

LNCaP, and inhibited proliferation of AR? BC cell lines.

This effect was specific to AR because GTx-024 had no

effect on AR- PC and BC cell lines (Fig. 6a).

The natural Vit-D ligands can cause hypercalcemia in

patients, which prevents achieving clinically effective anti-

tumor activity. However, over 1500 Vit-D analogs have

been synthesized which may potentially have low calcemic

effect [52–54]. We selected seocalcitol (EB1089), since its

Fig. 4 Analysis of cell cycle and apoptosis after AR and/or VDR

therapy: a, b the effect of DHT or calcitriol treatment on cell cycle

was analyzed in TNBC cell lines MFM-223 (a) and CAL-148 (b) with
DHT (10 nM, black bars) or calcitriol (10 or 25 nM, white bars) or

DHT ? calcitriol (hatched bars) after 4 days. After BrdU incorpo-

ration, cells were fixed and stained with 2 lg anti-BrdU FITC

antibody and 50 lg/ml propidium iodide solution and evaluated by

flow cytometric analysis. Y-axis represents percentage population of

cells in a given phase (G1, S or G2/M) of cell cycle. Error bars

represent mean ± SEM. Statistical analysis was carried out compared

to the control group. *P\ 0.05, **P\ 0.01. c The effect of DHT or

calcitriol treatment on apoptosis was analyzed in TNBC cell lines

MFM-223 and CAL-148 that were treated with DHT (10 nM, black

bars) and calcitriol (10 or 25 nM, white bars) alone or in combination

(hatched bars) for 4 days. A positive control with 10 lM etoposide

treatment was included in the experiments (dotted bar). All the cells

(attached and floating) were collected, double stained with Annexin V

and propidium iodide to identify apoptotic cells. Y-axis represents the

combined early and late apoptotic cell population. The error bars

represent mean ± SEM. Statistical analysis was carried out compared

to the control group. *P\ 0.05, **P\ 0.01. d PARP cleavage as a

measure of apoptosis was measured with Western blots in HR2-av

TNBC cell lines treated with DHT or calcitriol. MFM-223 and CAL-

148 treated as described in panel c and were harvested with RIPA

buffer. 30 lg Protein was loaded in each well 7.5 % SDS-PAGE gel;

after gel transfer on to nitrocellulose membrane, they were probed

with anti-PARP antibody (1:1000, Cell Signaling 9542). b-Tubulin
was used as a loading control
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affinity to VDR is similar to natural ligand calcitriol, yet it

has a 50–200-fold higher anti-proliferative activity and

reduced hypercalcemic effect [55, 56]. We found that

treatment of HR1-v and HR2-av cell lines with EB1089

resulted in a dose-dependent decrease in cell viability.

Moreover, as reported before, EB1089 treatment was more

potent than calcitriol at low doses (Fig. 6b; Suppl.

Fig. 10a).

Next we examined combining synthetic VDR agonist

EB1089 with chemotherapy in HR1-v BC cell lines, and

found that there is an additive decrease in cell viability

when EB1089 is combined with cisplatin or Taxol (Fig. 6c;

Suppl. Fig. 10b). Furthermore, combining GTx-024 and

EB1089 with or without Taxol produced additive inhibition

of cell viability of the TNBC cell lines (Fig. 6d, e; Suppl.

Fig. 10c, d). Cumulatively, these results suggest that AR-
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and VDR-targeted hormone therapy should be considered

in the clinic using synthetic AR and VDR ligands with

lower virilizing and calcemic side effects.

Discussion

In brief, our study demonstrates that two different hor-

mones that activate AR and VDR can be used alone, in

combination with each other as well as with chemotherapy

to inhibit proliferation of TNBC cell lines by increased

apoptosis and G1/S arrest. In addition, these hormones

inhibit TNBC CSC phenotype and induce differentiation.

These observations raise the possibility of targeting

approximately two-thirds of the TNBCs [1] with AR and/or

VDR HR-targeted therapies.

Vitamin D receptor: its role in breast cancer

treatment

VDR is expressed in around 90 % of the breast tumors

[57]. Of the six natural Vit-D compounds, calcitriol is the

most active and stable form of Vit-D [52]. Several clinical

trials have been conducted with calcitriol as a single agent

in breast tumors, with the conclusion that the therapeutic

dose required to induce anti-tumor activity is difficult to

achieve due to hypercalcemia, renal stones [52, 58, 59],

and vascular calcification [60]. Therefore, VDR agonists

with low calcemic effects are needed to translate our

findings to the clinic. Only a few of the more than 1500

Vit-D analogs have been tested in vivo so far [52–54].

Seocalcitol (EB1089) which we used in our study was

tested in a Phase-I clinical trial and was found to be well

tolerated and had some activity in BC patients [61].

The role of androgen agonists in breast cancer

treatment

In early 1970s, post-menopausal women with breast cancer

were treated with testosterone with favorable responses [62–

65]. However, conversion of testosterone into estrogens in

tissues [66, 67], virilizing side effects, and development of

effective anti-ER therapies as an alternative have slowed

further development of AR-targeted therapy for BC [68]. An

additional challenge was the seemingly discrepant response

to AR agonists in different cell lines [22, 25–27, 69, 70].

However, a recent review of ER? BC cell lines suggest that

while experimental variations in cell density, serum, drugs,

and cell counting methods contributed to conflicting results,

in the studies that reported a response to AR agonists

(n = 33), the majority (78 %) showed that AR activation

results in inhibition of cell proliferation in ER? BC lines

[68]. In ER-/HER2? BC, it was shown that the growth

inhibitory effect of AR agonists is switched into growth

stimulation by the cross-talk between HER2 and AR [10, 34,

35]. But, this switch only occurs in ER- cells, i.e., AR

agonists stimulate proliferation in ER-HER2? cell lines, but

inhibit proliferation in ER? HER2? cell lines. In addition to

these preclinical data, it was found that high AR expression

correlates with low grade and better outcome in BC [71] and

we previously reported that AR expression is mutually

exclusive with proliferation in human BC sections [1]. We

also found that SARMs such as GTx-024 are effective in

inhibiting proliferation of BC cell lines and showed clinical

activity in a Phase II trial with few virilizing side effects [51,

72–74]. Cumulatively these observations indicate that AR

bFig. 5 Effect of AR and/or VDR therapy on cancer stem cell and

differentiation phenotype: a the effect of DHT and calcitriol on

tumorsphere formation in TNBC HR2-av cell lines MFM-223 and

CAL-148. The cells were trypsinized and single cell suspensions were

plated into six-well low adhesion plates in 4-ml sphere media (seeding:

MFM-223 10,000 and CAL-148 6000) containing DHT (10 nM, black

bars) or calcitriol (MFM-223 25 nM and CAL-148 10 nM,white bars),

or DHT ? calcitriol (hatched bars). After 2 weeks during which

spheres are formed from single cells, the plates were stained with iodo-

nitrotetrazolium chloride overnight and the spheres were counted using

GelCount. Y-axis represents the TFE, tumorsphere formation efficiency

(number of spheres formed per the number of cells seeded in a well)

represented as fold change in comparison to control group (no

treatment, vehicle only). The statistical significance of the drug

treatments was determined using two-tailed Student’s T-test. Error

bars represent mean ± SEM. *P\ 0.05, **P\ 0.01. b AldeFluor

assay on HR2-av cell lines MFM-223 and CAL-148 after AR and VDR

treatment. The cells were treated as described in panel a for 8 days with

media change containing fresh drug every 3 days and ALDH?

population was examined by AldeFluor assay kit using FACS profiles

representing ALDH? population before (top) and after (bottom) co-

treatment. The graph shows ALDH? cells plotted as percentage in each

treatment group.Gray bar vehicle treatment, black barDHT,white bar

Cal, hatched DHT and Cal combination. Error bars represent

mean ± SEM. The statistical significance of the drug treatments was

determined using two-tailed Student’s T-test. *P\ 0.05, **P\ 0.01.

c, d Western blot analysis of differentiation and cancer stem cell

markers in HR2-av cell lines MFM-223 and CAL-148 after DHT and

calcitriol treatment. The cells were treated with DHT (10 nM) and/or

calcitriol (MFM-223: 25 nM and CAL-148: 10 nM) for 8 days with

media including drug every 3 days. The cell lysates with 30 lg protein
were loaded in each lane of a 4–15 % SDS-PAGE gel and after transfer

to nitrocellulosemembrane, it was probedwith the following antibodies

at appropriate dilutions: E-cadherin (BD Biosciences 61081), vimentin

(Sigma 5255), cytokeratin 5 (Abcam ab75869), cytokeratin 18 (Ther-

mofisher Scientific MS-142-P), Claudin-4 (Invitrogen 32-9400),

ALDH1A1 (Cell Signalling mAb12035), CD326 (Abcam ab32392),

CD49f (ABD Serotec MCA1457), CD133 (Sigma C9493), CD24

(Santa Cruz SC-53660), CD166 (Abcam ab49496), Nanog (Abcam

ab109250), and Musashi (Abcam ab52865). b-Actin or b-tubulin were
used as loading controls. e mRNA expression of stem cell markers.

MFM-223 cells were treated with 10 nM DHT and/or 25 nM calcitriol

for 96 h. ThemRNAwas quantified using a PCR-based array (Qiagen).

The expression level of each gene was determined by comparing the

treatment to vehicle control, and geneswithmore than 2-fold change are

presented here in a Heatmap generated using conditional formatting in

Microsoft Excel. Scale bar red represents high expression, green

represents low expression
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agonists can inhibit proliferation of AR? BC, except in ER-

HER2? tumors (Fig. 7).

The role of androgen antagonists in breast cancer

treatment

In our study, AR antagonists inhibited proliferation of all

BC cell lines regardless of their high, low or negative AR

expression status. This is very different than the observa-

tions in PC in which there was a [5-fold difference

between in the LD50 of AR antagonists in AR? versus AR-

PC cell lines. Importantly, AR-independent inhibition of

TNBC cell line proliferation was observed with all three

antagonists indicating that this is not an isolated finding.

Furthermore, the response of the same TNBC cell lines to

the AR agonists DHT and R1881 was AR-specific, which

indicates that these TNBC cell lines have a functional AR

receptor. At the same time, the response of PC cell lines to

AR antagonists was AR dependent ruling out method-

ological errors. These results indicate that the anti-prolif-

erative effect of AR antagonists in BC cell lines may

possibly be due to an off-target effect. Thus, while these

drugs have some activity in the clinic, whether this is

through AR or some other target remains to be determined.

It is worth pointing out that it is already known that some

AR antagonists can have non-AR activities; for example,

enzalutamide inhibits GABA-A receptors [75], bicalu-

tamide inhibits CYP27A1 [76], and both flutamide and

bicalutamide bind to PR [77]. Hence it is possible that

these drugs may have activity in cells that are ostensibly

negative for AR activity through other genes that are yet to

be discovered. Therefore, genetic background of these

individual cell lines may play a role in the AR antagonist

response in BC cell lines. However, one might have

Fig. 6 Selective androgen receptor modulators and VDR analogs

alone or in combination results in anti-proliferative effects: for all the

panels a–e, the Y-axis represents percentage viability of the cells after

drug treatment compared to vehicle control. Error bars represent

mean ± SEM. The statistical significance was validated by two-tailed

Students T-test compared to vehicle control. *P\ 0.05, **P\ 0.01.

The combination of drugs resulted in additive, synergistic or

antagonistic was determined by Bliss independent criterion approach,

explained in detail in the supplemental methods. � Represents

additive effect on the combination of drugs and § represents additive

or synergistic effect. a Selective androgen receptor modulator

(SARM) treatment in breast and prostate cancer cell lines. All the

cell lines [black AR(?) and hatched AR(- or low)] were treated with

SARM compound GTx-024 at 100 nM concentration for 8–10 days

with media change every 3 days. The cells were then trypsinized,

stained with 0.1 % Trypan blue and viable cells were counted using

Cellometer. b Comparison of VDR agonist analog EB1089 and

calcitriol treatment in TNBC cell lines. Selected TNBC cell lines that

express VDR (BT-20, SUM-159PT, MFM-223 and CAL-148) were

treated with either 5 nM calcitriol (gray bar) or 5 nM EB1089 (black

bar) for 6 days with media change every 3 days. The viable cells

were counted after staining with 0.1 % Trypan blue. c Combination of

VDR agonist analog EB1089 with chemotherapy drug paclitaxel in

TNBC HR1-v cells lines. BT-20 and SUM-159PT cell lines were

treated with EB1089 and/or paclitaxel for 6 days and viable cells

were counted using Cellometer. EB1089 (black bars BT-20 1 nM,

SUM-159PT 2.5 nM), Taxol (white bars BT-20 1 nM, SUM-159PT

0.5 nM), combination of EB1089 ? Taxol (hatched bars). d Combi-

nation of SARM compound GTx-024 with VDR analog EB1089 in

HR2-av TNBC cell line MFM-223. Gray bar vehicle, black bar GTx-

024 (100 nM), white bar EB1089 (0.5 nM), hatched bar combination

of GTx-024 and EB1089. e Triple combination of SARM GTx-024,

VDR analog EB1089 and Taxol in HR2-av TNBC cell line MFM-

223. Gray bar vehicle, black bar GTx-024 (100 nM), white bar Taxol

(0.75 nM), single hatched bar EB1089 (0.5 nM), double hatched

black bar combination of all the three drugs
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expected the genetic background could affect agonist

response equally, which was not the case. The seemingly

off-target AR-antagonist effect appears to emerge only in

breast cells and not in prostate cells, which may be due to

tissue-specific regulation of signaling pathways. For

example, at the gene expression level, it was found that AR

binds to the PTEN promoter as a repressor, inhibiting its

transcription in PC cells. In contrast, AR stimulates PTEN

gene expression as an activator in BC cells [78]. Therefore,

while surprising, the tissue-specific drug response may not

be completely unexpected. Many drugs have unexpected

activities due to binding to unknown targets or unknown

interactions between the known drug target and other

biochemical pathways [79].

Role of hormones in inhibiting CSC population

There is growing evidence that BCs consist of a hetero-

geneous population of different subtypes of cells including

non-CSCs and CSCs that possess the ability of self-renewal

[80, 81] and thought to be associated with resistance to the

standard therapies and metastasis [82, 83]. Hence, targeting

CSCs may be important for complete tumor remission.

We found that hormonal co-stimulation of AR and VDR

simultaneously leads to reduction of CSC population,

evidenced by a decrease in TFE, decrease in ALDH

activity and down-regulation of markers associated with

the CSC phenotype. High expression of CD49f regulates

pluripotency factors such as OCT4 and SOX2 [84] and

Musashi regulates Notch which is one of the key pathways

that regulate self-renewal potency of the cells [85, 86].

Therefore, inactivation of CD49f, SOX2, and Notch sig-

naling may provide a mechanism through which AR and

VDR treatment can decrease CSC population.

In summary, we show that co-targeting AR and VDR

with agonist hormones can be an effective strategy to target

CSCs. Our results also suggest that the selection of AR

agonists in the treatment of BC will depend on ER and

HER2 status, and combination of AR and VDR agonists

can be additive with chemotherapy.
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