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Abstract

Background: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue
repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia
is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF) has been shown to
protect the tubular epithelium against apoptosis.

Methodology/Principal Findings: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-
KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense
oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in
impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of
inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling
and decreased apoptosis.

Conclusions/Significance: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival
via an autocrine pathway.
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Introduction

One of the features of acute renal failure as induced by renal

ischemia is the loss tubular epithelial cells (TEC) which

significantly contributes to disruption of renal function. Therefore

the development of new therapeutic interventions that prevents

further loss of TEC caused by ischemia is essential to reduce

kidney failure and to avoid the need for renal replacement

therapy.

Recent studies demonstrate that the kidney can undergo

effective repair following ischemia/reperfusion (I/R) injury.

Distinct sources of TEC progenitors which are engaged in the

re-epithelialization process have been described. Beside the

contribution of bone marrow-derived stem cells [1,2] and putative

renal TEC stem cells [3] to kidney repair, the original hypothesis

which states that viable TEC which have survived the ischemic

insult start to proliferate and thereby generate new TEC that

replace lost TEC, still stands [4,5,6].

The cytokine stem cell factor (SCF) and its receptor c-KIT are

important in inducing cell differentiation, proliferation and

survival in various cell types [7]. The receptor c-KIT is a tyrosine

kinase receptor, belonging to the same subclass as platelet derived

growth factor receptor. Its ligand SCF has to form a dimer to be

able to induce signaling. Two splice variants of SCF have been

reported in mice which differ in their expression of the 6th exon

[8]. This exon codes for an extracellular cleavage site, which is

susceptible to proteolytic cleavage by proteases. Expression of the

SCF variant containing exon 6 will produce a 45 kD membrane

bound isoform, designated as Kit Ligand-1 (KL-1), whereby

proteolytic cleavage will yield a 31 kD soluble form. Expression of

the second SCF splice variant, lacking exon 6, results in a 32 kD

membrane bound protein, KL-2. Although primarily found on cell

membranes, shedding of KL-2 may still occur (reviewed in [9]).

The expression ratio between the KL-1 and KL-2 isoforms of SCF

varies significantly between various cell types [10].

SCF and c-KIT regulate diverse functions during hematopoiesis

[11], gametogenesis [12] but also neural stem cell migration to the

site of brain injury [13,14], and melanocyte migration and survival

[15]. Expression of c-KIT is upregulated or subject to gain-of-

function mutations in several human neoplasms such as gastro-

intestinal stromal tumors [16], acute hematopoietic malignancies

[17] and small cell lung cancer [18]. Expression of c-KIT occurs in

distal nephrons of adult kidneys and in renal neoplasms [19,20].

An important role for SCF and c-KIT has been described

during nephrogenesis were a novel identified group of c-KIT

positive progenitor cells may influence renal development[21]. In
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mouse models for acute renal failure, apoptosis following folic acid

administration and I/R injury could be reduced by treatment with

SCF [22]. However, the exact mechanism of SCF-mediated

protection against apoptosis in I/R injury remains unclear. In this

study we examined how SCF mediates survival of the tubular

epithelium during I/R injury. Specific downregulation of SCF

expression in the corticomedullary region of the kidney resulted in

increased tubular damage and severely impaired renal function.

We demonstrate that in vitro hypoxic conditions induce SCF

expression and exposure to SCF promotes survival signaling via

activation of c-KIT involving phosphorylation of Ser136 of Bad,

leading to reduced caspase 3 activation. The SCF/c-KIT signaling

route following ischemia provides a new opportunity to reduce

TEC loss and to improve renal function after acute renal failure.

Results

Expression of c-KIT and SCF in the normal and ischemic
kidney

In normal adult human and mouse kidneys, expression of c-KIT

has been reported to be limited to the distal nephrons [19,20,22]. In

agreement with these findings we detected c-KIT expression on

renal tissue sections of adult mice in the papilla and medullary rays,

but not by tubules located in the corticomedullary area (figure 1A).

Cells from tubules located in the corticomedullary expressing CD10

did not express c-KIT in normal mouse kidney (figure 1B), but c-

KIT expression was evident in the distal nephrons of the normal

kidney (figure 1C). Immunostaining of tissue sections from sham

operated animals demonstrated SCF expression to be localized at

the distal nephrons in the renal papilla (figure 1D and E) but

virtually absent from the corticomedullary area (figure 1F). In

contrast, one day after induction of renal ischemia, c-KIT positive

cells were also detected in damaged tubules in the corticomedullary

region of the kidney (figure 1G). The pattern of c-KIT staining was

not homogenously distributed among the epithelial cells that were

present in the tubule, but rather showed a mosaic appearance

(figure 1H, I, M, N). Only very few c-KIT positive cells were

detected in the interstitium (not shown). SCF concentrations were

measured by ELISA in renal homogenates; the total concentration

of SCF was significantly higher at the first day after ischemia only,

compared to sham operated animals and later time points after

ischemia (figure 1J). One day after ischemia, SCF expression was

also detected at the apical side of tubules located in the

corticomedullary area (figure 1K and L). We confirmed that c-

KIT and SCF were present in the same tubule by performing

double immunostainings (figure 1M and N). This suggests that SCF

binding to and subsequent activation of c-KIT may occur in vivo

during I/R injury. Following ischemia, expression of c-KIT was

observed for tubular epithelial cells expressing CD10, identifying

this population as of proximal tubular epithelium origin (figure 1O).

Combined immunostainings for CD10, SCF and c-KIT were

analyzed using spectral imaging to assess both co-expression by

cells or co-localization per tubule (figure 2). In sham-operated

animals, SCF and c-KIT specific staining was absent in tubules

expressing CD10. During I/R injury, we detected both SCF single

positive and SCF-c-KIT double positive tubules stained with

CD10. These findings demonstrate that SCF and c-KIT

expressing cells are present in proximal tubules.

Decreased tubular SCF expression severely impairs renal
function after ischemia

We have previously demonstrated that antisense oligonucleo-

tides (ASON) can effectively down regulate translation of proteins

to which the ASON are targeted in tubular epithelial cells

following intraperitoneal administration [23,24]. To analyze the in

vivo distribution and identify the nephron segments that take up

oligonucleotides (ODN), we administered fluorescein isothiocya-

nate (FITC) labeled ODN twice with an interval of 24 hours and

examined FITC-ODN uptake in kidney, liver, lung and spleen

tissue 5 hours after the last administration. Uptake was detected

immunohistochemically using a FITC-specific antibody. We found

that FITC was present in most tubule segments located in the

corticomedullary area, although the intensity of the staining varied

per tubule (figure 3A). In addition, glomerular parietal epithelial

cells also showed FITC-ODN uptake. Double staining for FITC-

ODN and CD10 demonstrated the capability of proximal tubules

in the corticomedullary area to take up ASON (figure 3C). In

contrast, no uptake of ODN was found in tubules located in the

renal papilla (figure 3D). Beside the kidney, we also found that

FITC-ODN were taken up by cells in the liver (figure 3F) and the

spleen (figure 3H) but not in the lung (figure 3G). Since expression

of SCF in the ischemic kidney occurred in tubules located in the

corticomedullary area and coincides with the emergence of c-KIT

positive cells in tubules, we hypothesized that disruption of the

SCF/c-KIT signaling pathway by administrating SCF-specific

ASON may have implications for the epithelial response to

ischemic injury.

SCF-specific ASON treatment did not lead to a significant

decrease of SCF concentrations in whole kidney samples

compared to those found in control NSON treated animals

subjected to ischemia as measured by ELISA (figure 4A). Since

ODN are taken up only by tubules in the corticomedullary area

and not by the tubules in the renal papilla, we next examined

whether selective down-regulation of SCF expression by proximal

tubules after ischemia could be detected by performing digital

image analysis of SCF-specific immunostaining in the corticome-

dullary area of kidney sections. This revealed a significant decrease

in the total area stained for SCF in the corticomedulary area of

ASON treated animals (figure 4B), suggesting that the antisense

treatment did reduce SCF translation during I/R injury

specifically in this area of interest compared to NSON controls

(figure 4C and D).

PAS-D stainings showed a significantly higher degree of tubular

damage in sections of ischemic kidneys of ASON treated animals

compared to NSON treated animals (figure 4E). In accordance,

renal function was severely impaired in ASON treated animals

with significantly higher plasma urea (figure 4F) and creatinine

(figure 4G) levels in ASON treated mice compared to control mice

at one day after ischemia.

Of importance, in a separate experiment animals were treated

with NSON or vehicle only. I/R injury in vehicle treated animals

induced rises of plasma urea and creatinine levels that were similar

to that found in NSON treated animals, showing no additional

renotoxic effect of the phosphorothioate capped oligonucleotides

on renal function (data not shown).

SCF ASON treatment has no effect on renal inflammation
but increases TEC apoptosis

Early post-ischemic injury is characterized by the influx of

granulocytes, being mostly neutrophils, induced by expression of

chemotactic factors such as KC/CXCL1. This influx of

granulocytes is correlated with increased tubular damage and loss

of renal function [2,25,26]. Despite the increased tissue damage

(figure 4E) and worsening of renal function we observed in SCF

ASON treated animals (see figures 4F and G), we noted a similar

number of infiltrating granulocytes in the ischemic kidney

compared to the NSON treated controls (figure 5C). In contrast,

KC/CXCL1 levels were higher in ASON animals (figure 5A),

SCF in Renal Ischemia
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Figure 1. Expression of c-KIT and SCF in normal and ischemic kidneys. (A) Low magnification overview of the corticomedullary region (lower
right, indicated as CM) and renal papilla (upper left, indicated as M) from a sham operated animal. Expression of c-KIT (green) is primarily localized to
the distal nephrons located in the renal papilla. Tubules located in the corticomedullary region were stained for F actin (red) and show no clear c-KIT
expression, whereas medullary rays extending from the papilla contain c-KIT positive cells. Nuclei (blue) were counterstained using DAPI. Original

SCF in Renal Ischemia
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whereas IL-1b levels did not differ between both groups (figure 5B).

Analysis of macrophage inflammatory protein 2-alpha (MIP-2a)

and monocyte chemotactic protein-1 (MCP-1) protein levels

showed that these chemokines were not expressed in different

concentrations in renal tissue obtained from ASON-treated and

control animals at all time points (data not shown). As ASON

treatment also did not increase granulocyte accumulation and that

being a decisive factor in renal inflammation, we believe that SCF

does not play an important role in inflammation-mediated tissue

damage. Next we determined whether decreased SCF expression

acts primarily on TEC integrity.

SCF/c-KIT signaling is associated with cell survival and

proliferation for different cell types [27]. To determine whether

ASON treatment had any effect on TEC apoptosis, we performed

stainings for the active form of caspase 3. We detected more

apoptotic tubular epithelial cells in ASON treated animals after

ischemia compared to controls (figure 5D). In addition, we noted

significantly less Ki.67 positive tubular epithelial cells following

ischemia in ASON treated animals (figure 5E), suggesting that also

TEC proliferation was affected by SCF downregulation. Cell

death was confirmed by performing terminal deoxynucleotidyl

transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) on

renal tissue sections and the number of TUNEL stained cells in the

corticomedullary area was determined. TUNEL analysis con-

firmed the results obtained with the immunostaining for active

caspase 3, showing a significant increase in the number of TUNEL

stained cells in kidneys from ASON-treated animals at day 1 after

ischemia (16.760.2 versus 28.960.7 for NSON and ASON-

treated animals respectively, mean6SEM, *P = 0.01).

Expression of SCF and c-KIT phosphorylation by IM-PTEC
cells after in vitro hypoxia

As demonstrated above, SCF exerts protective effects on tubules

during I/R injury. To dissect the mode of action of SCF on TEC,

we generated and characterized a conditionally immortalized

proximal tubular epithelial cell line (IM-PTEC) to investigate how

SCF – c-KIT signaling may induce cell survival following renal

ischemia using an in vitro model.

To mimic I/R injury in vitro, we used a validated model whereby

cells are directly immersed in paraffin oil [23,28]. The resulting

hypoxia leads to ATP depletion (not shown), secretion of KC and

macrophage inflammatory protein-2 (MIP-2) (figure 6A) and

disruption of cell-cell contacts (figure 6B).

Transcription of c-KIT and both SCF splice variants was active

in normoxic controls and cells subjected to hypoxia followed by a

24 hour recovery while maintained in medium with or without

recombinant rat (rr) SCF (100 ng/ml) (figure 6C). Since SCF exists

both as a membrane bound and soluble protein, we measured

SCF in medium samples by ELISA. Hypoxia resulted in a two-fold

increase of soluble SCF compared to controls (figure 6D). To

determine which SCF variants are present in medium samples of

cells subjected to in vitro hypoxia, we performed Western blot

analyses on samples. Interestingly, we readily detected the

presence of the 45 kD KL-1 SCF variant in medium samples

obtained from control cells. The intensity of the respective bands

seemed to increase in samples from cells subjected to hypoxia

(figure 6E, upper panel). The smaller KL-2 isoform and the

cleaved, soluble form of KL-1 have a size of 32 and 31 kD,

respectively. We detected a band at longer exposure times

corresponding with a protein of approximately that size which

does not appear to increase in intensity following hypoxia

(figure 6E, lower panel).

To determine whether signaling via c-KIT is involved in the

cellular response to hypoxia, we studied if phosphorylation of the

tyrosine residue at position 719 (Tyr719) occurs, since phosphor-

ylation of this residue is engaged in activation of multiple signaling

pathways [7]. Control normoxic cells maintained in culture

medium already displayed phosphorylation of Tyr719, but this

was increased in cells subjected to hypoxia and left to recover for

24 hours in culture medium supplemented with 10 or 100 ng/ml

SCF or vehicle (figure 6F).

SCF reduces apoptosis of tubular epithelial cells and
induces phosphorylation of Bad

Apoptosis in I/R injury is associated with increased caspase 3

activity [29]. From pilot experiments we determined that at

24 hours after hypoxia, caspase 3 activity was significantly

increased compared to controls (data not shown). We measured

this activity in IM-PTEC cells subjected to hypoxia and cultured

for 24 hours with or without 100 ng/ml SCF during the

subsequent reoxygenation. Hypoxia led to a significant increase

in the activity of caspase 3, but addition of SCF significantly

reduced this activity (figure 7A).

magnification: 106. (B) Double immunostaining for CD10 (blue) and c-KIT (red) demonstrates that proximal tubules expressing CD10 located in the
corticomedullary area do not express c-KIT (indicated by white arrow), whereas CD10 negative tubules may contain c-KIT expressing cells (indicated
by black arrow). Original magnification: 406. (C) Expression of c-KIT (brown) could be detected in tubules located in the renal papilla in sham
operated animals. Nuclei were counterstained with hematoxylin (blue); original magnification: 406. (D) SCF expression (brown) was located in the
distal nephrons of sham operated animals and located at the luminal membrane of cells (indicated by arrow). Nuclei were counterstained with
hematoxylin (blue); original magnification: 406. (E) Double immunostaining for c-KIT (red) and SCF (blue) of a normal mouse kidney shows a distinct
staining pattern in which tubule segments containing c-KIT expressing cells (marked with black asterisk) are separate from those that stain for SCF
only (marked with red asterisk). (F) Single cell expressing SCF (brown, indicated by arrow) in the corticomedulary area demonstrates that SCF
expression in the normal kidney is mostly absent. Original magnification: 206. (G) High magnification view of tubules located in the corticomedullary
area of the kidney 1 day after ischemia. F actin (red) staining shows deposition of brush border material in the lumen of damaged tubules. Epithelial
cells of tubules now express c-KIT (green). Nuclear counterstaining (blue) using DAPI, original magnification: 406. (H) Expression of c-KIT (brown) was
equally confirmed on kidney tissue from animals one day after renal I/R injury. C-KIT was expressed by tubules in the corticomedullary region which
contain cast deposition. Nuclei were counterstained with hematoxylin (blue); original magnification: 206. (I) Magnification of outlined area in
figure 1H, demonstrating expression of c-KIT by cells of damaged tubule segments. (J) Analysis of whole kidney samples by ELISA demonstrated a
significant increase in renal SCF one day after ischemia, compared to renal SCF levels in sham operated animals and those at later time points
(*P = 0.003). Data are expressed as mean6SEM. (K) One day after ischemia SCF (brown) was also present in damaged tubules located in the
corticomedullary area. Nuclei were counterstained with hematoxylin (blue); original magnification: 406. (L) Magnification of outlined area in figure 1K,
demonstrating membrane staining for SCF (indicated by arrows). (M) and (N) Double immunostaining for c-KIT (red) and SCF (blue) at day 1 after
ischemia demonstrating c-KIT and SCF specific staining in the same tubule segment (indicated by black arrows) in the corticomedullary area of the
kidney. (M) C-KIT expression in the absence of SCF was also observed (white arrow), as well as (N) SCF expression in a tubule segment without cells
expressing c-KIT (white arrow). Original magnification: 406. (O) Double immunostaining for c-KIT (red) and CD10 (blue) at day 1 after ischemia
demonstrates co-expression of c-KIT and CD10 (indicated by black arrows) and tubular epithelium that expresses c-KIT only (indicated by white
arrows). Original magnification: 406.
doi:10.1371/journal.pone.0014386.g001
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To determine the mechanism of SCF induced inhibition of

apoptosis, we stimulated cells with both 10 ng/ml or 100 ng/ml

rrSCF and examined protein phosphorylation of downstream

signaling pathways in c-KIT/SCF signaling. We focused on

pathways which are activated by SCF induced phosphorylation of

Tyr719 on c-KIT, which is essential for PI3K signaling [7].

Addition of SCF resulted in rapidly increased phosphorylation of

Tyr719 (figure 7B) compared to non-stimulated cells. In addition,

phosphorylation of Akt (figure 7C, upper panels) and Bad

(figure 7C, lower panels), both downstream of PI3K, occurred

upon SCF stimulation. This suggests that cell survival in IM-

PTEC cells by SCF is mediated by phosphorylation of the tyrosine

residue at position 719 on c-KIT, leading to subsequent

phosphorylation of Akt and Bad resulting in decreased apoptosis.

Interestingly, no differences in phosphorylation of p38, p42/44

and JNK MAPK between stimulated and control cells were

observed (data not shown).

To correlate these findings to our in vivo data, we analyzed

phosphorylation of Akt and c-KIT in renal homogenates from

animals treated with NSON and ASON (figure 7D) All samples

from NSON-treated animals after ischemia showed increased

phosphorylation of Akt compared to samples from sham-operated

animals. ASON-treatment reduced phosphorylation of Akt after

ischemia compared to NSON-treated controls. In samples from

sham-treated animals, a low level of c-KIT phosphorylation could

be detected which was similar to that in samples from NSON-

treated animals that had been subjected to renal ischemia. No

specific signal was detected in lanes loaded with samples from

ASON-treated animals, demonstrating reduced activation of c-

KIT and Akt after ASON-mediated down-regulation of SCF

expression.

Discussion

Expression of c-KIT is generally regarded as a marker for adult

stem cells or their more differentiated descendants. Examples of

tissue stem cells expressing c-KIT are the well-known hematopoi-

etic stem cell [30,31], cells from the testes [12] and the recently

identified cardiac progenitor [32]. However it is incorrect to

attribute stem cell-like properties to any cell expressing c-KIT.

Mast cells [9], cells of Cajal in the intestines [33], vascular smooth

muscle cells [9] and epithelial cells from the distal nephrons

[19,20], for example, also express c-KIT, without there being

evidence that these cells posses any stem cell-like properties. No

distinctly shared phenotypes between c-KIT expressing cells have

been observed, suggesting that c-KIT expression does not indicate

cellular multipotency per se. Here we observed expression of c-KIT

by TEC in the corticomedullary area of the kidney following

ischemia, but not in normal kidneys.

During the early reperfusion phase following renal ischemia,

extensive necrosis and apoptosis takes place of the tubular

epithelium located in the corticomedullary area of the kidney. It

is the loss of the tubular epithelium in this region, comprising the

proximal tubular compartment that correlates with loss of renal

function as can be detected by increased urea and creatinine levels

in the blood. Viable, surviving TEC have been implicated in

tubular epithelial restoration [5] and their presence may be
Figure 2. Spectral image analysis of triple immunostaining.
Tissue sections were stained for c-KIT (red), SCF (blue), CD10 (brown)

and counterstained with eosin (pink). Next, true color stainings were
unmixed for each chromogen using spectral imaging (black and white
images, eosin is not shown). Pseudocolors were assigned to c-KIT (red),
SCF (blue), CD10 (green) and eosin (grey). Co-localization is presented in
yellow. Left panel: sham-operated kidney, right panel: kidney at day 1
after ischemia. Original magnification: 206.
doi:10.1371/journal.pone.0014386.g002

SCF in Renal Ischemia
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Figure 3. Tissue distribution of ODN. Distribution of FITC-labeled ODN was examined after two intraperitoneal administrations given with a
24 hour interval. Tissue was collected at 5 hours after the last administration. FITC was stained (brown) using a specific antibody showing (A)
extensive uptake of FITC-labeled ODN by most tubule segments in the corticomedullary area and uptake by the parietal epithelium of the glomerulus
(marked Gl) but (D) no significant uptake of ODN by the tubules located in the renal papilla. (C) CD10 expression (blue) by tubular epithelium co-
stained for FITC (brown) demonstrates uptake of ODN by proximal tubules. (F) and (H) uptake of ODN by cells in liver and spleen and (G) no uptake of
FITC-labeled ODN by lung tissue. Sections of (B) renal corticomedullary area, (E) renal papilla, (I) liver, (J) lung and (K) spleen labeled with secondary
antibody only. Nuclei were counterstained with methyl green. Original magnification of all images: 406.
doi:10.1371/journal.pone.0014386.g003

SCF in Renal Ischemia
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essential in the balance between repair and permanent loss of renal

tissue. A role for cytokine mediated TEC protection following

acute renal failure as caused by ischemia has been described

previously for erythropoietin (EPO) [34]. In agreement with our

findings, EPO is expressed following hypoxia and protects the

tubular epithelium against cell death. However, EPO expression

was limited to interstitial fibroblasts, whereas its receptor was

expressed on TEC [34]. Both c-KIT as its ligand SCF were

present in damaged tubules, suggesting that this interaction might

represent a protective, autocrine cell survival mechanism.

Apoptosis of TEC is an important determinant of renal function

in I/R injury. TEC apoptosis following ischemia may be the result

of various stimuli; however all routes converge at the point of

caspase 3 activation as a common end point [29]. Here we found

that SCF leads to phosphorylation of Bad via activation of Akt,

which is known to prevent apoptosis, as has previously been

demonstrated [35]. Decreased SCF expression resulted in

increased TEC apoptosis as determined by detection of active

caspase 3 in vivo, whereas addition of SCF to hypoxic IM-PTEC in

vitro significantly decreased caspase 3 activity. The mechanism

underlying the protective role of SCF may thus result from Bad

phosphorylation leading to suppression of caspase 3 activity. It is

previously reported that SCF can mediate cell-matrix adhesion of

mast cells [36] and may induce Slug transcription [37]. SCF may

thus also increase TEC adhesion following injury which may add

to the anti-apoptotic properties of SCF. We did not observe any

effect of SCF on MAPK phosphorylation. With respect to p38 and

p42/44 MAPK activation, membrane bound SCF will induce a

Figure 4. SCF ASON treatment increases renal injury. (A) Whole kidney sample analysis of SCF expression by ELISA did not show any
significant difference in SCF levels between NSON (%) and ASON (&) treated animals (P = 0.09, non significant). Data are expressed as mean6SEM. (B)
Digital image analysis of SCF immunostainings per hpf of the corticomedullary region demonstrated significantly less staining on tissue sections from
ASON treated animals (&) compared to controls (%) at day 1 after ischemia (*P = 0.003). Data are expressed as mean6SEM. (C) and (D)
Representative SCF immunostainings of ischemic kidney sections used for image analysis of NSON (c) and ASON (d) treated animals; original
magnification: 406. (E) Tubular damage was scored in a semi-quantitative fashion. The degree of injury one day after ischemia was significantly
increased in ASON treated animals (&) compared to NSON controls (%) (*P = 0.005). Data are expressed as mean6SEM. (F) and (G) Renal function
was determined by measurement of (f) plasma urea and (g) creatinine values. ASON treatment (&) resulted in significantly elevated plasma urea
(*P = 0.0047) and creatinine (*P = 0.001) compared to NSON controls (%) at day one after ischemia. Data are expressed as mean6SEM. (H)
Representative PAS-D stainings illustrating tubular injury as scored in (E). Kidneys from sham operated animals after NSON and ASON treatment show
no histologic signs of tubular injury. In contrast, at day 1 after ischemia most tubules in the corticomedullary area appear dilated with loss of the
brush border or display denudation of the tubular basement membrane. In NSON-treated animals, more undamaged tubules were present compared
to ASON-treated animals.
doi:10.1371/journal.pone.0014386.g004

Figure 5. Effect of SCF ASON treatment on inflammation and TEC apoptosis. (A and B) The concentration of renal (A) KC and (B) IL-1b was
measured by ELISA in whole kidney homogenates. An increase in the concentration KC was detected in samples obtained from ASON treated animals
(&) subjected to ischemia compared to controls (%) (*P = 0.03). No significant difference was detected in the concentration of IL-1b between NSON
(%) and ASON (&) treated animals. Data are expressed as mean6SEM. (C) Gr-1 positive cells were counted per hpf. Few Gr-1 positive passenger
leukocytes were detected in sham operated animals. In contrast, the number of Gr-1 positive cells increased at day 1 after ischemia. No significant
statistical difference was detected between the number of positive cells per hpf in NSON (%) or ASON (&) treated animals. Data are expressed as
mean6SEM. (D) Apoptosis of TEC was determined by immunostaining of tissue sections using an antibody to the active form of caspase 3. Positive
TEC were counted per hpf, significantly more apoptotic TEC were detected in ASON treated animals (&) compared to controls (%) at day 1 after
ischemia (*P = 0.0005). Data are expressed as mean6SEM. (E) Proliferation of TEC was determined using an antibody to Ki.67 (right). Kidneys from
ASON treated animals (&) contained less proliferating TEC compared to NSON controls (%) at day 1 after ischemia (*P = 0.0009). Data are expressed
as mean6SEM.
doi:10.1371/journal.pone.0014386.g005
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more persistent signal, compared to soluble SCF [7], which may

partially explain no increased phosphorylation upon ligand

stimulation. Activation of p38 and JNK MAPK have been shown

to facilitate apoptosis of TEC following injury [38]. This

observation therefore underlines our hypothesis that SCF protects

tubules to ischemic injury via the SCF/c-KIT signaling pathway

which prevents apoptosis of TEC.

Han et al. [39], have previously demonstrated that hypoxia is

able to induce SCF expression in mammary carcinoma cells via

binding of hypoxia-inducible factor 1a (HIF-1a) to a hypoxia-

response element located in the promoter region of SCF.

Epidermal growth factor (EGF) was shown to increase SCF

expression further. These findings may provide a mechanism for

the sharp increase in SCF expression at day 1 after ischemia.

Further studies should demonstrate whether HIF-1a and EGF are

the driving force behind activation of SCF expression in the

proximal tubules during I/R injury.

Local down-regulation of SCF in the corticomedullary area did

not affect granulocyte influx following ischemia when compared to

control animals. As tubular injury, tubular epithelial proliferation

and apoptosis were affected by ASON-treatment, we investigated

the role of SCF/c-KIT signaling using an in vitro model for

hypoxia. In line with this, we found a role for SCF in cell survival

following in vitro hypoxic injury. Furthermore, we could establish

Figure 6. Hypoxia of IM-PTEC results in SCF secretion. (A) To
validate the effect of paraffin oil immersion on IM-PTEC, KC and MIP-2
levels were measured in culture medium 24 hrs after hypoxia. In
accordance with previous reports, our in vitro hypoxia model led to
increased KC and MIP-2 secretion by IM-PTEC. Data are expressed as
mean6SEM, results are combined of data from two independent
experiments (*P = 0.03). (B) Normoxic cells (left) displayed normal
epithelial morphology with the appearance of cell-cell contacts. Cell
subjected to 60 minutes of hypoxia (right) displayed cellular retraction
and loss of cell-cell contacts, indicative of damage by hypoxic stress.
Original magnification: 206. (C) Transcription of c-KIT and SCF was
determined in normoxic control cells (nO2) and following hypoxia (hyp)
and SCF stimulation following hypoxia (100 ng/ml, hyp SCF). Samples
were obtained at 24 hours following hypoxia. Dual bands for SCF show
the two splice variants designated as full-length Kit Ligand (KL) -1 and
KL-2, which lacks exon 6. TATA box binding protein (TBP) was used as a
loading control. Data shown here are representative results obtained
from 3 separate experiments. (D) Levels of SCF were measured in
medium samples from cells subjected to in vitro hypoxia using a murine
SCF specific ELISA. The concentration SCF obtained from control
samples was low and values were just above the detection limit of the
ELISA. Hypoxia induced a significant increase in medium SCF. (E)
Western blot analysis of conditioned culture medium samples of control
cells (nO2), hypoxic cells (hyp), hypoxic cells cultured with 10 ng SCF/ml
medium (hyp + SCF 10 ng/ml) or hypoxic cells cultured with 100 ng
SCF/ml medium (hyp + SCF 100 ng/ml). Upper panel: 45 kD bands
representing full length membrane SCF (KL-1) appear after short
exposure. Lower panel: longer exposure reveals a smaller SCF variant
approximately 31–32 kD in size and recombinant SCF (approx. 18 kD).
Hypoxia leads to increased levels of KL-1 in medium samples whereas
the addition of SCF induces increased levels of the smaller SCF forms in
the medium. All samples were collected 24 hours following hypoxia.
Data shown here are representative results obtained from 3 separate
experiments (*P = 0.04). (F) Western blot analysis of cell lysates obtained
from cells 24 hours after being subjected to hypoxia. Phosphorylation
of tyrosine 719 of c-KIT (pTyr719) was present in samples from normoxic
control cells. Hypoxia increases the relative rate of c-KIT phosphoryla-
tion. Upper panel: phospho Tyr719 c-KIT. Lower panel: total c-KIT.
Densitometric analysis of the relative increase of Tyr719 c-KIT
phosphorylation versus total c-KIT following hypoxia. Phosphorylation
of Tyr719 phosphorylation in control cells was set as 1. Western blot
data shown here are representative results obtained from 3 separate
experiments; data from all experiments were used for the densitometric
analysis as shown here (*P = 0.05).
doi:10.1371/journal.pone.0014386.g006
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that SCF induces phosphorylation of c-KIT and Bad, suggesting

that this pathway is involved the survival of cells following in vitro

hypoxia. Using kidney lysates from NSON and ASON-treated

animals, we found that c-KIT phosphorylation was virtually

absent after ischemia in ASON-treated animals but not in the

NSON-treated controls. This was reflected by increased phos-

phorylation of Akt in control animals after ischemia which was

lower in ASON-treated animals.

Several SCF knockout animals have been described whereby

most homozygote SCF mutations are lethal due to severe anemia

[40]. Mice that are compound heterozygotes for the SCF alleles

KitlSl/KitlSl-d are viable, but display severe defects such as

macrocytic anemia but also renal malformations. These include

thickening of the glomerular basement membrane, increased

glomerular cellularity [41] but also increased mesangial matrix

deposition and severe malformations of the distal nephrons

(personal observation). This phenotype does not permit the use

of these animals in experimental renal I/R injury. We have

therefore applied a different strategy to block SCF expression by

preventing mRNA translation using ASON treatment. This

approach has several important benefits over other approaches.

First, expression is only transiently reduced and bypasses the

occurrence of adaptive mechanism that may be observed in

knockout animals as result of the specific genetic deletion. Second,

phosphorothioate capped oligonucleotides are distributed to the

kidney [35], more specifically to the glomerular parietal and the

tubular epithelium in the corticomedullary area [23,24] and has

been used in previous studies with success. The fact that we found

no differences between vehicle and NSON treated animals with

respect to tubular injury or renal function following I/R injury

indicates that the oligonucleotides do not affect TEC by inducing

renoprotection or, the opposite, being cytotoxic. Unfortunately we

are unable to demonstrate the effect of ASON on translation of

target genes in vitro. We speculate that upon in vitro cell culture, the

proximal TEC lose their capacity to properly engage in

reabsorption or uptake processes as a result of imperfect

polarization, thus limiting the uptake of oligonucleotides. Howev-

er, addition of SCF to hypoxic cells in vitro does supplement and

support our in vivo findings by decreasing the rate of apoptosis in

cultured IM-PTEC cells whereas a decrease of SCF expression by

ASON treatment increases apoptosis of TEC in vivo.

Here we have shown that c-KIT and SCF expression occurs in

tubules in the corticomedullary area during I/R injury. Reduced

expression of SCF leads to increased TEC apoptosis. Hypoxia has
Figure 7. SCF reduces hypoxia induced IM-PTEC apoptosis and
induces phosphorylation of Bad. (A) SCF reduces caspase 3 activity

following hypoxia. IM-PTEC cells were subjected to in vitro hypoxia and
cultured with 0 ng or 100 ng SCF/ml medium for 24 hours. Cell lysates
were collected and assayed for caspase 3 activity. To correct for equal
input, values are expressed as activity per mg protein. SCF reduces
caspase 3 activity in IM-PTEC cells following in vitro hypoxia (*P = 0.026).
Data are expressed as mean6SEM. Results are obtained from 2 separate
experiments with 6 measurements each. (B) IM-PTEC cells were serum
starved and exposed to 0, 10 or 100 ng SCF/ml for 5, 10 and 15 minutes.
Protein samples were analyzed using Western blot. SCF induced
phosphorylation of Tyr719 of c-KIT; b actin was used as loading control.
(C) SCF results in phosphorylation of Ser473 of Akt; total Akt expression
was used as loading control (upper panel); SCF induces phosphoryla-
tion of Ser136 of Bad; b actin was used as loading control (lower panel).
Normalized densitometric analyses of the immunoblots are presented
as the ratio phosphorylated protein/loading control. Data shown here
are representative results obtained from 3 separate experiments. (D)
Renal tissue samples obtained from sham and animals subjected to
ischemia were analyzed for phosphorylation of Akt (p-Ser473 Akt) and
c-KIT (p-Tyr719 c-KIT). Expression of total Akt and c-KIT were used as
loading control.
doi:10.1371/journal.pone.0014386.g007
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been shown to regulate SCF expression in vitro and addition of

SCF reduces caspase 3-mediated apoptosis via phosphorylation of

Bad. This protective interaction appears to be an autocrine mode

of TEC survival following I/R injury. Whether SCF and c-KIT

also mediate other protective adaptations to hypoxic injury in vivo

and in vitro has to be determined in future studies.

Materials and Methods

Mice, I/R injury, antisense treatment and oligonucleotide
distribution

Eight to 10 week old male C57BL/6 mice (B6) and Immorto

mice were purchased from Charles River (Maastricht, The

Netherlands). Bilateral ischemia was induced for in B6 mice as

described previously [2]. In short, mice were anesthetized by an

intraperitoneal injection with 0.08 mg/ml fentanyl-citrate,

2.5 mg/ml fluanison (Janssen Pharmaceuticals, Beerse, Belgium)

and 1.25 mg/ml midazolam (Roche, Mijdrecht, The Nether-

lands). Renal pedicles were exposed following a midline incision.

Both renal arteries were clamped for 45 minutes using microan-

eurysm clamps during which the incision was provisionally closed.

After removal of the clamps, reperfusion was confirmed by visual

inspection. The abdomen was irrigated with 100 ml of saline (0.9%

w/v) and the incision was closed using non-absorbable sutures

(Tyco Healthcare, Gosport, UK). All mice received a subcutane-

ous injection of 50 mg/kg buprenorphin (Temgesic; Schering-

Plough) for analgetic purposes and were allowed to recover from

surgery for 12 hours at 32uC in a ventilated stove. Animals were

sacrificed at day 1, 3, 7 and 14 after ischemia (n = 10 per time

point) to analyze SCF expression. Sham operated animals (n = 8)

were handled similarly with the exception of clamping of the renal

pedicles and sacrificed at day 1 after ischemia. Phosphorothioate

capped antisense (ASON) specific to mouse SCF RNA and control

nonsense (NSON) oligonucleotides were obtained from Biognostik

(Göttingen, Germany). ASON and NSON were dissolved in sterile

saline and administered in a volume of 100 ml containing 4 nmol

oligonucleotides intraperitoneally at the day prior to ischemia and

directly into the abdominal cavity after release of the clamps.

Animals (for I/R: n = 10 per group, for sham: n = 6 per group)

were sacrificed at day 1 after ischemia.

To analyze oligonucleotide tissue distribution, FITC-labeled

NSON were administered intraperitoneally twice with an interval

of 24 hours between injections. Animals were sacrificed five hours

after the last administration.

Plasma samples were obtained by blood collection via heart

puncture using a 25 gauge needle. Blood was transferred to

lithium-heparin gel tubes (BD Microtainer, BD, Breda, The

Netherlands) and stored on ice until processing. Plasma was

obtained after centrifugation of tubes in a standard table centrifuge

(10,000 rpm, 10 minutes, 4uC) as supernatant. Kidneys were

excised after which the renal capsule was removed. Kidneys were

divided transversally and processed as described below. All

experimental procedures were approved by the Animal Care

and Use Committee of the University of Amsterdam, the

Netherlands (study number DPA1008). Experiments have been

conducted according to the national guidelines.

Antibodies
The following antibodies were used for immunostainings and

immunoblotting: biotinylated rat-anti-mouse c-KIT from R&D

(Abingdon, UK), rat-anti-mouse Gr-1 (BD Biosciences, Alphen a/

d Rijn, The Netherlands), rabbit-anti-Ki.67, rabbit-anti- fluores-

cein isothiocyanate (FITC) from DAKO (Glostrup, Denmark),

rabbit-anti-activated caspase 3, anti-phospho-Akt, anti-phospho

p38 mitogen-activated protein kinase (MAPK), anti-phospho p42/

44 MAPK, anti-phospho-c-Jun N terminal kinase (JNK), anti-

JNK, anti-phospho-tyrosine(Tyr)721 c-KIT and anti-phospho-

BAD from Cell Signaling (Danvers, MA, USA), rabbit-anti-Akt,

rabbit-anti-ERK1/2, goat-anti-c-KIT and goat-anti-phospho-

Tyr721 c-KIT from Santa Cruz (Santa Cruz, CA, USA), rabbit-

anti-mouse-SCF from Chemicon (Chandlers Ford, UK). The anti-

b actin antibody was from Sigma-Aldrich (St Louis, MO). The

anti-CD10 from Neomarkers (Runcorn, UK) and anti-aquaporin

4 from Millipore (Amsterdam, The Netherlands). Secondary

peroxidase (HRP), alkaline phosphatase (AP), FITC or Texas

Red (TxR) conjugated antibodies were all from DAKO.

(Immune) Histochemistry (IHC) and TUNEL staining
Kidneys were fixed in formalin for approximately 10 hrs or

snap frozen in liquid nitrogen. Formalin fixed tissues were

subsequently embedded in paraffin overnight in a routine fashion.

Fourmm thick sections were cut and used for staining with periodic

acid Schiff reagents after diastase digestion (PAS-D). For

immunostainings, all antibodies were diluted in PBS. Formalin

fixed tissue sections were dewaxed and incubated in methanol

containing 0.3% H2O2 for 15 minutes. Sections were subsequently

boiled for 10 minutes in 10 mM citrate (pH 6.0) prior to SCF or

goat-anti-c-KIT immunoglobulin or in 10 mM Tris/1 mM

EDTA (pH 9.0) prior to caspase 3 antibody labeling. To detect

Gr-1, sections were digested with 0.25% pepsin (Sigma) dissolved

in 0.1 M HCl for 15 minutes at 37uC. Sections were blocked for

30 minutes in PBS containing 5% normal goat serum (Jackson

Immunoresearch, Newmarket, UK). Sections were incubated with

primary antibodies for 2 hours, HRP-conjugated secondary

antibodies for 30 minutes, both at room temperature. Sections

were stained using 3,39-diaminobenzidine and alternatively

counterstained with haematoxylin. For double immunostainings,

cells were dewaxed and boiled in citrate buffer as described above.

All antibodies for double stainings were diluted in Antibody

Diluent (Immunologic, Duiven, The Netherlands).Tissue was

blocked with V-Block (Immunologic) and incubated simultaneous-

ly with CD10 or SCF specific antibodies overnight, followed by

labeling with a CD10 or SCF specific AP-conjugated secondary

antibody for 30 minutes and staining was performed using Vector

Blue (Vector Laboratories). Sections were retreated with citrate as

above, blocked 5% normal swine serum (Jackson) and labeled for

3 hours with c-KIT specific antibody followed by labeling with a

AP-conjugated secondary antibody. Staining was performed using

Vector Red (Vector Laboratories).

For immunofluoresence stainings, 10 mm thick cryosections

were fixed in cold acetone for 15 minutes. TxR labeled phalloidin

(Molecular Probes) was dissolved as described in the product

information. Sections were treated with 0.1% Triton X-100 in

PBS for 10 minutes, rinsed in PBS, and incubated for 5 minutes

with phalloidin. For fluorescence stainings, sections were treated

with 0.1% azide in PBS for 15 minutes, incubated with biotin

block (DAKO) as described in the product information and

blocked for 15 minutes using serum-free block (DAKO). Sections

were incubated with primary antibodies for 2 hours, FITC and

TxR-conjugated secondary antibodies for 30 minutes, both at

room temperature. Sections were mounted with Vectashield

(Vector Laboratories, Peterborough, UK) containing 49,6-diami-

dino-2-phenylindole (DAPI).

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP

nick-end labeling (TUNEL) was performed on paraffin embedded

tissue sections using the fluorescein-based In Situ Cell Death

Detection kit (Roche) according to the instructions of the

manufacturer. In short, tissue sections were dewaxed followed by
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a 15 minute pre-treatment with Proteinase K (Roche, 5 mg/ml in

10 mM Tris/HCl, pH 7.4) at 37uC followed by a PBS wash. After

labeling, sections were washed in PBS and labeled for 20 minutes

with rabbit-a-FITC IgG (Dako), washed with PBS and labeled

with goat-a-rabbit-poly-alkaline phosphatase (Immunologic) for 30

minutes. Staining was performed using Vector Red.

Triple immunostaining and spectral imaging
For triple immunostaining, all sections were treated as above

and both epitope retrieval and immunolabeling for each antigen

were performed in a consecutive order. Sections were counter-

stained with eosin and mounted. Single immunostainings were

performed for adjustment of spectral imaging wave length settings

per chromogen. Light microscopy images were acquired with a

LeicaDM6000B microscope (Leica, Wetzlar, Germany) and

specific stainings were unmixed using Nuance software (CRi,

Woburn, MA).

Histopathological scoring and renal function
Damage to tubular epithelium was assessed using PAS-D

stainings, all histopathological scorings were performed in the

corticomedullary area on 10 non-overlapping fields (at 4006
magnification) and performed in a blinded fashion. Damage was

graded and scored semi-quantitatively on a scale from 0–5 [2,23].

Renal function was determined by measurement of plasma

creatinine and urea concentrations using Crea-plus (Roche

Diagnostics, Almere, The Netherlands) in a routine fashion at

the clinical diagnostics department of our institute.

TEC isolation and generation of a conditionally
immortalized PTEC cell lines

TEC were isolated from Immorto mice as described previously

[23], labeled with antibodies to neprilsyin/CD10 and aquaporin 4

combinedly, as markers for proximal tubular epithelium [42,43]

and sorted by flow cytometry on a FacsAria cell sorter (BD

Biosciences). Cells were grown in HK-2 medium (DMEM/F12

medium (Invitrogen) with 5% fetal bovine serum (Hyclone, Etten-

Leur, The Netherlands), 5 mg/ml insulin and transferrin, 5 ng/ml

sodium selenite (Roche), 20 ng/m tri-iodo-thyrionine (Sigma),

50 ng/ml hydrocortisone (Sigma) and 5 ng/ml prostaglandin E1

(Sigma) with L-glutamine and antibiotics (both from Invitrogen,

Paisley, UK) and mouse interferon-c (IFN-c, 1 ng/ml, R&D)) at

33uC in 5% CO2 and 95% air. From this cell population,

monoclonal cell lines were generated by limiting dilution and

examined for downregulation of SV40 activity during restrictive

conditions by immunofluoresence (data not shown) with recur-

rence of the cobble stone-like morphology (data not shown). One

clone was used for all experiments described below and named

IM-PTEC hereafter. Cells were grown in flasks until 70%

confluent and then passed to the appropriate assay plates. All

experiments were performed with cells between passage 4 and 15

after start of the culture. Cells were seeded in 6 well assay plates at

a density of 25,000 cells per well and cultured for 2 days under

permissive cell culture conditions reaching approximately 50%

confluence. Cells were then washed with PBS and cultured for one

week under restrictive culture conditions.

In vitro hypoxia
Hypoxia was simulated as described previously [23,28]. In

short, IM-PTEC cells were briefly serum-starved for 2 hrs in

DMEM/F12 medium. After washing, cells were incubated for 60

minutes with mineral paraffin oil (BUFA, Uitgeest, The Nether-

lands), controls with serum free medium. ATP depletion was

confirmed by measuring intracellular ATP levels in cell lysates

using the Bioluminescence Assay Kit HS II (Roche) as described

previously [23] (data not shown). Cells were washed twice with

serum free medium, and reoxygenation was permitted for 24 hrs

after hypoxia in HK-2 medium. Recombinant rat-SCF was

purchased from Peprotech (Rocky Hill, NJ, USA). Medium was

removed and stored for further analysis; cells were washed with

PBS and processed for immunoblotting or reverse transcription

PCR.

SCF stimulation
Prior to stimulation, cells were serum starved for 2 hrs. SCF (10

or 100 ng/ml medium) or vehicle (controls) was added to the cells

and incubated at 37uC for 5, 10 or 15 minutes. Stimulation was

stopped by washing cells in ice cold PBS. Cells were lysed as

described below.

In vitro cell apoptosis assay
Apoptosis was measured using the Caspase 3 Assay Kit (Sigma)

according to the manufacturer’s protocol. Cell medium containing

detached cells was transferred to tubes and placed on ice, adherent

cells were washed with PBS, trypsinized and added to the proper

medium samples. Cells pellets were washed with PBS once and

lysed using the provided buffer. Samples were stored at 280uC
until caspase 3 activity measurement. Lysates from cells grown in

HK2 medium were used as negative controls.

Transcription analyses reverse transcription PCR (RT-PCR)
Cells and cryosection of renal tissue were lysed with TRIZOL to

isolate RNA. RT-PCR was performed with 2.5 units/sample of

Taq DNA polymerase (Invitrogen) using 35 cycles and an

annealing temperature of 58uC. Primers were designed as follows.

SCF primers for RT-PCR were designed to span exon 6 to

demonstrate both splice variants. All primers were synthesized by

Sigma-Genosys (Cambridgeshire, UK).

For RT-PCR:

c-KIT: 59-ATCCCGACTTTGTCAGATGG-39 and 59-CGT-

CTCCTGGCGTTCATAAT-39

SCF: 59-GGGATGGATGTTTTGCCTAGT-39 and 59-GTC-

CATTGTAGGCCCGAGT-39

TATA binding protein (TBP): 59-CAGGAGCCAAGAGT-

GAAGAAC-39 and 59-GGAAATAATTCTGGCTCATAGCT-

ACT-39

ELISA and Western blotting
Frozen kidneys were thawed on ice for 30 minutes in PBS

supplemented with 4 mM EDTA, 1% Triton X-100 containing

relevant protease inhibitors (Sigma), and subsequently homoge-

nized using a PT1300D disperser (Kinematic AG, Lucerne,

Switzerland) at 30,000 rpm for 10 seconds. Duoset ELISA kits

specific for detection of mouse KC, IL-1b, MIP-2a and MCP-1

were obtained from R&D and performed in accordance to the

supplied protocol. Antibody dilutions were used as specified in the

accompanying datasheet. In short, standard ELISA assay plates

(Corning) were incubated overnight with chemokine specific

capture antibody, blocked with 1% (w/v) BSA in PBS for one

hour and incubated with tissue homogenate (one volume

homogenate diluted in one volume blocking solution for all

chemokines except KC which was diluted in 4 volumes of blocking

solution) for 2 hours. Detection antibody was incubated for

2 hours, followed by labeling with the provided HRP-conjugated

streptavidin. The mouse SCF ELISA kit was purchased from

Peprotech and performed in accordance with the supplied
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protocol. All antibodies were used at dilutions described in the

data sheet. Detection antibody, streptavidin-HRP and tissue

homogenates (1:1) were diluted in diluent buffer (0.1% (w/v)

BSA, 0.05% (v/v) Tween-20 in PBS). Further procedures were

similar to that of other ELISA sets. All ELISA stainings were

developed using o-Phenylenediamine dihydrochloride (0.4 mg/ml,

Sigma) dissolved in citrate buffer (7.3 g sodium citrate, 11.9 g

Na2HPO4?2H2O per 500 ml, pH 5.6). Development was stopped

by addition of 1 M H2SO4. Absorbance was measured at 490 nm.

Cytokine levels were corrected for total protein content per sample

using a Bradford protein assay (Bio-rad, Veenendaal, The

Netherlands).

For immunoblotting, cells and kidney tissue were lysed in RIPA

buffer (50 mM Tris (pH 7.5), 0.15 M NaCl, 2 mM EDTA, 1%

(w/v) deoxycholic acid, 1% (v/v) nonidet P40 (Roche), 0.1% (w/v)

sodium dodecyl sulfate) supplemented with protease inhibitor

cocktail (Sigma, diluted 100-fold), 10 mM NaF and 4 mM

Na3VO4. Protein concentrations were determined using the

bichonic acid protein assay kit (BCA; Thermo Fisher Scientific,

Rockford, IL). One volume of samplebuffer (0.5 M Tris-HCl

(pH = 6.8), 20% glycerol (v/v), 10% b mercaptoethanol (v/v), 4%

SDS (w/v), 0.005% bromophenolblue) was added to five volumes

of lysate and heated to 100uC for 59. Samples were separated on

7.5% (c-KIT), 15% (Bad, SCF) or 10% (other proteins) acrylamide

gels and blotted on PVDF membranes (Millipore, Leiden, The

Netherlands) for 2 hours at 100 V. Immunoblots for cell lysates

were blocked in 5% (w/v) non-fat dry milk in Tris buffered saline

with 0.1% Tween 20 (Sigma) (TBS-T) for use with all non-

phospho-specific antibodies and with 5% (w/v) BSA in TBS-T for

all phospho-specific antibodies for 1 hour. Immunoblots for

kidney samples were blocked in 0.2% (w/v) I-Block (Applied

Biosystems, Nieuwerkerk a/d IJssel, The Netherlands) in TBS-T

for 1 hour. Antibodies were diluted in the respective blocking

buffer and blots were incubated O/N at 4uC. Secondary HRP- or

AP-conjugated antibodies were diluted 1/5000 in the respective

blocking buffer and incubated with blots for 30–60 minutes.

Detection of HRP-conjugated antibodies (used with cell samples)

was performed using ECL+ (Amersham) and imaged with a

Typhoon 9400 imager (GE Healthcare, Diegem, Belgium) or ECL

(Thermo Fisher Scientific) using autoradiography films (GE

Healthcare). AP-conjugated antibodies (used with kidney samples)

were detected using the Tropix Western-Star Alkaline Phospha-

tase kit (Applied Biosystems) using autoradiography films (GE

Healthcare). Densitometric analyses were performed using ImageJ

(National Institutes of Health, USA, URL: http://rsb.info.nih.

gov/ij/index.html).

Statistical analyses
Results are expressed as mean 6 standard error of the mean

(SEM). Data were first tested for normality using the Kolmogorov-

Smirnow test and then analyzed using an unpaired t test. Tubular

injury scores were analyzed using the non-parametric Mann-

Whitney U Test. Values of P#0.05 were considered statistically

significant. All statistical analyses were performed using Graphpad

Prism4 (GraphPad Software, San Diego, CA, USA).
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