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Abstract

Methylobacterium extorquens AM1, a strain serendipitously isolated half a century ago, has become the best-characterized
model system for the study of aerobic methylotrophy (the ability to grow on reduced single-carbon compounds). However,
with 5 replicons and 174 insertion sequence (IS) elements in the genome as well as a long history of domestication in the
laboratory, genetic and genomic analysis of M. extorquens AM1 face several challenges. On the contrary, a recently isolated
strain - M. extorquens PA1- is closely related to M. extorquens AM1 (100% 16S rRNA identity) and contains a streamlined
genome with a single replicon and only 20 IS elements. With the exception of the methylamine dehydrogenase encoding
gene cluster (mau), genes known to be involved in methylotrophy are well conserved between M. extorquens AM1 and M.
extorquens PA1. In this paper we report four primary findings regarding methylotrophy in PA1. First, with a few notable
exceptions, the repertoire of methylotrophy genes between PA1 and AM1 is extremely similar. Second, PA1 grows faster
with higher yields compared to AM1 on C1 and multi-C substrates in minimal media, but AM1 grows faster in rich medium.
Third, deletion mutants in PA1 throughout methylotrophy modules have the same C1 growth phenotypes observed in AM1.
Finally, the precision of our growth assays revealed several unexpected growth phenotypes for various knockout mutants
that serve as leads for future work in understanding their basis and generality across Methylobacterium strains.
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Introduction

Methylotrophy is the ability of microorganisms to grow on

reduced single-carbon (C1) compounds such as CH4 (methane) or

CH3OH (methanol) as a sole carbon and energy source [1–4].

Methylobacterium extorquens AM1 [1] is a facultative methylo-

troph that belongs to the Rhizobiales family of the Alpha-

proteobacteria. Since M. extorquens AM1 is genetically tractable

[5–12], has fast, roughly comparable growth rates on C1

compounds (tD,3–4 h on methanol and methylamine) and

multi-carbon compounds (tD,3 h on succinate) [13,14], it has

emerged as the model system for the study of aerobic methylo-

trophy [15,16]. There are three specific aspects of the genome

architecture and physiology of AM1 that pose challenges [17–24].

First, the AM1 genome has five replicons of different sizes [17].

One of the replicons in the AM1 genome is a 1.3 Mb megaplasmid

that contains many insertion sequence (IS) elements; recombina-

tion events mediated by IS elements often lead to large, beneficial

deletions [18]. Hence, experiments designed to study a variety of

questions have and will commonly result in this particular change

of large benefit [18]. Second, the 174 intact or partial IS elements

across 39 IS families present in the AM1 genome [16,19] lead to

genomic plasticity. In fact, a large number of IS mediated

recombination events have often been observed during genetic

manipulations and evolution experiments with AM1 [20–23].

Such high rates of IS insertion/recombination in AM1 leads to

spurious recombination events across the genome during reverse

genetic manipulations (Nayak, Carroll, and Marx; unpublished)

and skews the mutational spectrum during experimental evolution

[18]. Third, the current strain of AM1 has been domesticated in

laboratory conditions since the late 1950s [1–3] and the growth

characteristics of the ‘modern’ strain have changed [24]. A notable

difference is that the ‘modern’ strain [9] grows ,25% worse than

an archival version under a wide variety of conditions. These

results indicate that aspects of physiology uncovered in the

‘modern’ AM1 may be hard to extrapolate to other environmen-

tally relevant methylotrophs.

Of late, an increasing number of studies have been conducted

with several members of the M. extorquens species and genome

sequence data is now available for six strains [17,25]. Despite 16S

rRNA sequence similarity, these strains vary in terms of their

metabolic breadth, genetic tractability, ecological niche and
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genomic composition [25]. We considered whether one of these

six sequenced strains might overcome the challenges posed by

AM1 and finally narrowed in on M. extorquens PA1 (hereafter

PA1) as it has the most streamlined genome, with a single 5.47 Mb

chromosome, and contains only 20 intact IS elements. These

features can make the design and implementation of genetic

screens more efficient, and prevent beneficial elimination of extra-

chromosomal elements or IS-mediated events from dominating

the spectrum of beneficial mutations. Recent isolation of PA1 from

the leaves of Arabidopsis thaliana [26], and immediate cryopres-

ervation obviate concerns associated with domestication of the

‘modern’ AM1 strain and provide a clear link to a known

ecological niche.

There are some clear advantages of the genome composition

and culturing history of PA1 over AM1. In order to ascertain how

well the decades of characterization of methylotrophy in AM1 will

apply directly to PA1, we identified the shared repertoire of

methylotrophy genes and performed a broad genetic analysis of

the role of various methylotrophy modules in PA1 (Figure 1). In

AM1, reduced C1 compounds such as methanol or methylamine

are oxidized by dedicated periplasmic dehydrogenases to generate

formaldehyde. Once in the cytoplasm, formaldehyde is oxidized to

formate via a tetrahydromethanopterin (H4MPT) dependent

pathway [27,28]. Formate is then either oxidized to CO2 via a

panel of formate dehydrogenases [29]), or is assimilated into

biomass via a tetrahydrofolate (H4F) dependent pathway [30–33].

The C1 unit from methylene-H4F (an intermediate of the H4F

pathway) along with an equal amount of CO2 [34] is assimilated

into biomass via the serine cycle [15] and the ethylmalonyl-CoA

pathway [34].

The genetic and phenotypic analysis in this work demonstrated

that the vast body of knowledge pertaining to methylotrophy in M.
extorquens AM1 is largely transferable to M. extorquens PA1: an

alternate model system for the study of aerobic methylotrophy in

the future. Additionally, our quantitative physiological analysis has

also unveiled novel phenotypes for methylotrophy-specific genes

that generate leads to uncover poorly understood aspects of

regulation in future work.

Materials and Methods

Bacterial Strains and Growth Conditions
The Dcel mutant of the pink-pigmented ‘wildtype’ stock of AM1

(CM2720) and the Dcel mutant of the pink-pigmented ‘wildtype’

stock of PA1 (CM2730) used for growth comparisons are described

elsewhere [13]. Standard growth conditions utilized a modified

version of Hypho minimal medium consisting of: 100 mL

phosphate salts solution (25.3 g of K2HPO4 plus 22.5 g Na2HPO4

in 1L deionized water), 100 mL sulfate salts solution (5 g of

(NH4)2SO4 and 2 g of MgSO4 N 7 H2O in 1 L deionized water),

799 mL of deionized water, and 1 mL of trace metal solution [35].

All components were autoclaved separately before mixing under

sterile conditions. Filter-sterilized carbon sources were added just

prior to inoculation in liquid minimal media with a final

concentration of either15 mM methanol, 3.5 mM sodium succi-

nate, 15 mM methylamine hydrochloride, 7.5 mM ethanol,

5 mM sodium pyruvate, 15 mM glycine betaine, 7.5 mM

methanol and 1.75 mM succinate, or Difco nutrient broth. Difco

nutrient broth (Becton, Dickson and Company, Franklin Lakes,

NJ) was prepared according to the manufacturer’s guidelines.

Growth Rate Measurements
All M. extorquens strains were acclimated, grown in 48-well

microtiter plates (CoStar-3548) in an incubation tower (Liconic

USA LTX44 with custom fabricated cassettes) shaking at

650 rpm, in a room that was constantly maintained at 30uC and

80% humidity [36], containing Hypho medium with the

appropriate carbon source to a volume of 640 mL. All growth

Figure 1. The methylotrophy specific metabolic network in in M. extorquens AM1. All genes, except for the mau cluster (gray), are present
and .95% identical in M. extorquens PA1. M. extorquens AM1 and M. extorquens PA1 were grown on various C1 and multi-C substrates (blue) for this
study. Genes highlighted in red were deleted in M. extorquens PA1 to uncover that the metabolic network involved in methylotrophy in M. extorquens
PA1 is identical to M. extorquens AM1. TCA: Tricarboxylic acid Cycle and EMC: Ethyl-malonyl CoA Pathway.
doi:10.1371/journal.pone.0107887.g001
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regimes consisted of three cycles consisting of inoculation,

acclimation, and growth measurement. All strains were stored in

vials at 280uC in 10% DMSO; growth was initiated by

transferring 10 mL freezer stock into 10 mL of Hypho medium

with 3.5 mM succinate. Upon reaching stationary phase (,2

days), cultures were transferred 1:64 into fresh medium with the

carbon source to be tested, allowed to reach saturation in this

acclimation phase, and diluted 1:64 again into fresh medium for

the measured (experimental) growth. The increase in OD600 for

strains grown in 48-well microtiter plates was measured using an

automated, robotic culturing and monitoring system [13,36]. A

series of robotic instruments (including a shovel, a transfer station,

and a twister arm), all controlled by an open-source control

program, Clarity [36], were used to move the 48-well plates from

the incubation tower (Liconic USA LTX44 with custom fabricated

cassettes) to a Perkin-Elmer Victor2 plate reader for optical density

(OD600) measurements. The dynamics and specific growth rate of

cultures were calculated from the log-linear growth phase using an

open source, custom-designed growth analysis software called

CurveFitter available at http://www.evolvedmicrobe.com/

CurveFitter/(Figure S3). Growth rates reported for each strain

and condition are the mean plus SEM calculated from triplicate

biological replicates, unless otherwise noted.

Generation of Mutant Strains
M. extorquens PA1 deletion mutants lacking the mxa operon,

fae, mptG, ftfL, glyA, or hprA (Figure 1, Table 1) were generated

on the genetic background of CM2730 using the allelic exchange

vector pCM433 [9]. The double deletion mutants lacking mptG
and mch or fhcBACD were generated on the genetic background

of CM3803 (DmptG in CM2730) using the allelic exchange vector

pCM433 [9]. A region upstream and downstream of each of these

genes or operons of ,0.5 kb was amplified using PCR. The

forward primer for the upstream flank was designed to have a

30 bp long sequence at the 59 end homologous to the sequence

upstream of the NotI cut site in pCM433. The reverse primer for

the upstream flank was designed to have a 30 bp sequence at the

59 end homologous to the first 30 bp of the downstream flank. The

reverse primer for the downstream flank was designed to have a

30 bp long sequence at the 59 end homologous to the sequence

downstream of the NotI cut site in pCM433. The PCR products

representing the upstream and downstream flank were ligated on

the pCM433 vector cut with NotI using the Gibson assembly

protocol described elsewhere [37]. Cloning the upstream and

downstream flanks for fae, ftfL, glyA, mptG, the mxa operon,

fhcBACD, mch, and hprA in pCM433 resulted in pDN50, pDN56,

pDN66, pDN68, pDN94, pDN108, pDN109, and pDN125,

respectively (Table S9). Mutant strains of M. extorquens PA1 were

made by introducing the appropriate donor constructs through

conjugation by a tri-parental mating between the competent E.
coli NEB 10b (New England Biolabs, Ipswich, MA) containing the

donor construct, an E. coli strain containing the conjugative

plasmid pRK2073 [38], and PA1 as described elsewhere [9]. All

mutant strains were confirmed by diagnostic PCR analysis and

validated by Sanger sequencing the mutant locus. All strains and

plasmids used and generated for this study are listed in Table 1.

Results and Discussion

Comparison of methylotrophy genes in PA1 versus AM1
As a first step to compare methylotrophy in PA1 and AM1, we

considered the content, similarity and organization of genes in

each genome. Apart from 100% identity at the16S rRNA locus

[25], the two strains also share 95.9% ITS (Internal Transcribed

Spacer) 1 sequence identity, each has five rrn operons, and their

GC contents are quite similar (68.2% versus 68.5%). Of the

identified 5333 coding sequences in the PA1 genome, 4260 are

shared with AM1 (amino acid identity .30%). Of the 90 genes

known to be involved in methylotrophy, 62 have .99% identity

and the remaining 28 have at least 95% identity at the amino acid

level between AM1 and PA1 (Table S1). This repertoire includes

the genes involved in methanol oxidation, the H4MPT- and H4F-

dependent C1- transfer pathways, the four formate dehydroge-

nases, and genes of the serine cycle (Figure 1). The arrangement of

genes is extremely similar between the chromosomes of AM1 and

PA1 (Figure S1). There is one major difference: the cluster of genes

encoding methylamine dehydrogenase (mau) is missing in PA1.

The mau cluster in AM1 and M. extorquens CM4 is flanked by IS

elements, and is also missing in another sequenced strain, M.
extorquens DM4. These data further support the hypothesis that

the mau cluster was acquired by horizontal gene transfer [17,18].

Phenotypic comparison of growth on C1 and multi-C
substrates for PA1 versus AM1

Even though methylotrophy-specific genes are shared and

extremely similar between PA1 and AM1, it does not necessarily

translate into quantitatively similar growth phenotypes on C1- or

multi-C substrates. In order to rigorously compare the growth

capabilities of the two strains, we took advantage of the recent

development of an automated, robotic platform for high-through-

put, quantitative measurements of M. extorquens growth [13,36].

No significant difference in cell shape, cell size and biomass/

OD600 ratio was observed between PA1 and AM1 (Table S2)

hence maximum OD600 during growth was used as a proxy for

yield. Additionally, for all phenotypic analyses we used strains of

PA1 and AM1 that lacked the cel locus for cellulose biosynthesis.

The Dcel manipulation prevents ‘clumping’ of cells in 48-well

plates, thereby made growth measurements more accurate and

consistent [13].

With a few notable exceptions, PA1 grew faster, with

significantly higher yields, than AM1 on C1 and multi-C substrates

(Figure 2a and 2b). PA1 grew 10–15% faster, with 50–75% higher

yield compared to AM1 on methanol as well as formate. On

ethanol, a doubling time of 4.39 h was observed for PA1, but AM1

barely grew (Figure 2b); we were unable to reliably estimate the

doubling time for AM1 since it was below the detection limit (tD
,17.5 h) of our growth measurement platform. At a genomic

level, such a striking difference in ethanol growth rates might be

due to specific genes downstream of primary oxidation, such as an

aldehyde dehydrogeanse (Mext_1295), present in PA1 but absent

in AM1. On multi-C organic acids, PA1 grew faster than AM1 by

5–25% with 12–25% higher yield.

In contrast to the results above, AM1 grew faster than PA1 on

two C1 substrates: methylamine and betaine (N, N, N- tri-methyl

glycine). A small but significant increase in OD600 (Figure 2b)

indicated that PA1 can grow on methylamine, but the growth rate

was extremely slow and below the detection limit of our growth

measurement platform. This observation is consistent with the

slow methylamine growth known for other organisms solely

dependent upon the N-methylglutamate pathway for methylamine

utilization [39,40]. Specific proteins involved in betaine transport

and utilization have not been discovered in AM1, so we can

speculate that these genes may be missing or insufficiently active in

PA1. Growth in rich media i.e. Nutrient Broth did not have the

typical log-linear dynamics that displays a consistent, quantifiable

growth rate (Figure S2) because: a) Nutrient Broth is a composite

of many different growth substrates and b) Nutrient Broth is not

buffered so the pH of the media changes drastically over the
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course of growth. However, since AM1 reached stationary phase

much before PA1, it was evident that AM1 grew significantly faster

than PA1 (Figure S2). As previously hypothesized [24], faster

growth of AM1 on Nutrient Broth may stem from ‘laboratory

adaptation’ since AM1 was stored on nutrient agar slants [41] in

the refrigerator for prolonged periods of time prior to cryopres-

ervation. These conditions could have led to cryptic nutrient

cycling of a wide variety of compounds, perhaps even lysed cell

material, by surviving lineages [24].

Genetic characterization of methylotrophy in PA1
In order to probe the architecture of the metabolic network

involved in methylotrophy in PA1 and ascertain how similar it is to

that described for AM1 (Figure 1), we deleted from the Dcel PA1

strain (referred to as WT from here on) key genes involved each

methylotrophy-specific module and examined the resulting growth

phenotypes on C1, multi-C, and a combination of C1 and multi-C

substrates (Table S3–S8).

Methanol oxidation. There are 15 methanol oxidation

genes in AM1, as well as in PA1. In AM1, 14 of these genes are

co-transcribed [42], including those encoding the large and small

subunit (MxaFI) of methanol dehydrogenase [43] and ancillary

proteins involved in transport, assembly and electron transfer [15].

Deleting the mxa operon in PA1 led a to a drastic growth defect on

methanol (Figure 3) demonstrating that MDH is, the primary

enzyme involved in methanol oxidation. The Dmxa mutant of PA1

had a severe growth defect on ethanol as well (Figure 3 and 4,

Table S6–S8). This observation supported a hypothesis, based on

in vitro studies [44], that MDH in M. extorquens strains can

catalyze the oxidation of ethanol in vivo. Slow growth (as

indicated by an increase in yield in Figure 4, Table S6–S8) for

the Dmxa mutant on methanol or ethanol indicated that alternate,

physiologically relevant alcohol dehydrogenase(s) for each of these

substrates exist in the PA1 genome.

Formaldehyde oxidation. Genetic and biochemical analy-

ses have determined that the tetrahydromethanopterin (H4MPT)

dependent pathway is the sole route for the oxidation of

formaldehyde to formate in AM1 [7,28,31] (Figure 1). In order

to determine if the H4MPT dependent pathway is required for

formaldehyde oxidation in PA1, we individually deleted two key

genes of this pathway: mptG (encoding ribofuranosylaminoben-

zene 59-phosphate synthase that catalyzes the first step of the

H4MPT biosynthesis pathway [45]) and fae (encoding the

formaldehyde-activating enzyme that catalyzes the condensation

of formaldehyde and H4MPT [46]). Deleting either mptG or fae in

PA1 abolished growth on methanol (Figure 3). As observed in

AM1 [28], we suspect PA1 mutants lacking theH4MPT pathway

were sensitive to methanol because of the toxic effects of

formaldehyde buildup [28]. Additionally, we noted that these

two mutants grew slower (without any yield defect) on multi-C

compounds; the DmptG mutant had a more severe growth-rate

defect than the Dfae mutant (Figure 3, Table S3–S5). For

Table 1. M. extorquens strains and plasmids used in this study.

Strain or
plasmid Description Reference

CM2720 Dcel M. extorquens AM1 [13]

CM2730 Dcel M. extorquens PA1 [13]

CM3753 Dfae in CM2730 This study

CM3773 DftfL in CM2730 This study

CM3799 DglyA in CM2730 This study

CM3803 DmptG in CM2730 This study

CM3849 Dmxa operon in CM2730 This study

CM3889 DfhcBACD, DmptG in CM2730 This study

CM3891 Dmch, DmptG in CM2730 This study

CM4122 DhprA in CM2730 This study

pCM433 Allelic exchange vector (AmpR, ChlR, TetR, SucS) [9]

pDN50 pCM433 with Dfae upstream and
downsteam flanks

This study

pDN56 pCM433 with DftfLupstream and
downsteam flanks

This study

pDN66 pCM433 with DglyA upstream and downsteam flanks This study

pDN68 pCM433 with DmptG operon upstream
and downsteam flanks

This study

pDN94 pCM433 with Dmxa operon upstream and
downsteam flanks

This study

pDN108 pCM433 with DfhcBACD upstream and
downsteam flanks

This study

pDN109 pCM433 with Dmch upstream and
downsteam flanks

This study

pDN125 pCM433 with DhprA upstream and
downsteam flanks

This study

pRK2073 Conjugative helper plasmid (StrR) [38]

doi:10.1371/journal.pone.0107887.t001
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example, on pyruvate, the DmptG mutant grew 25% slower (p,

0.001; Student’s two-sided t-test with n = 3) and the Dfae mutant

grew 7% slower (p,0.01) than WT. These results are consistent

with, and build upon, previous work in AM1 that qualitatively

demonstrated that the DmptG mutant has a growth defect on

succinate [28]. Furthermore, ethanol growth was not abolished in

formaldehyde oxidation mutants, suggesting that the overlap

between methanol and ethanol growth includes just primary

oxidation but not any further oxidation steps (Table S3–S8).

As observed in AM1 [28], deletions in the genes encoding the

final two enzymes of the H4MPT pathway, mch and fhc [47–49],

could only be generated in strains with a lesion in mptG [45]. This

result is consistent with the hypothesis [28] that a late block in the

H4MPT mediated formaldehyde oxidation pathway leads to the

accumulation of either methylene- or methenyl-H4MPT, which

may be either be directly toxic and/or lead to a regulatory

response halting growth.

Formate assimilation. In order to determine the role of the

H4F mediated C1 transfer pathway during growth on C1

Figure 2. Quantitative comparison of growth rates and maximum OD600 values. A) Growth rates for the Dcel ‘wild-type’ strain of AM1
(filled) versus the Dcel ‘wild-type’ strain of PA1 (open) on C1 substrates (M, 15 mM methanol; MA, 15 mM methylamine; F, 15 mM formate), the joint
C1 and multi-C substrate betaine (B, 15 mM), multi-carbon substrates (S, 3.5 mM succinate; P, 5 mM pyruvate; E, 7.5 mM ethanol) and a combination
of C1 and multi-carbon substrates (KM+KS, 1.75 mM succinate and 7.5 mM methanol). Error bars represent the 95% C.I. of the average of three
biological replicates. The line indicates the approximate detection limit of our automated growth rate measurement device of 0.04 hr21. Growth rates
for PA1 on MA or B, and for AM1 on E were below this detection limit. B) Maximum OD600 for the Dcel ‘wild-type’ strain of AM1 (filled) versus the Dcel
‘wild-type’ strain of PA1 (open) on C1 substrates (M, 15 mM methanol; MA, 15 mM methylamine; F, 15 mM formate), the joint C1 and multi-C
substrate betaine (B, 15 mM), multi-carbon substrates (S, 3.5 mM succinate; P, 5 mM pyruvate; E, 7.5 mM ethanol) and a combination of C1 and multi-
carbon substrates (KM+KS, 1.75 mM succinate and 7.5 mM methanol). Error bars represent the 95% C.I. (confidence interval) of the average of three
biological replicates.
doi:10.1371/journal.pone.0107887.g002
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Figure 3. Heat map depicting the ratio of growth rate of knockout mutants of PA1 relative to the growth rate of the Dcel wild-type
strain on C1 or multi-C substrates (same concentrations as in Figure 2). Undetectable growth is indicated by grey. A significant difference
(determined by comparing the mean growth rate of three biological replicates using the t-test) in growth rate with a p-value ,0.05 is indicated by a *
and a p-value ,0.01 is indicated by **.
doi:10.1371/journal.pone.0107887.g003

Figure 4. Heat map depicting the ratio of maximum OD600 of knockout mutants of PA1 relative to the maximum OD600 of the Dcel
wild-type strain on several C1 or multi-C substrates (same concentrations as in Figure 2). Maximum OD600 values below 0.01 are
indicated by grey. A significant difference in maximum OD600 (determined by comparing the mean growth rate of three biological replicates using
the t-test) with a p-value ,0.05 is indicated by a * and a p-value ,0.01 is indicated by **.
doi:10.1371/journal.pone.0107887.g004
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substrates, we deleted ftfL (encoding formate-H4F ligase) [30] in

PA1. (Figure 3, Figure 4, Table S3–S8). The DftfL mutant in PA1

could not grow on methanol or formate, most likely because of a

lesion in the first dedicated step toward assimilation of C1

compounds [31,32] (Figure 3). However, the DftfL PA1 mutant,

unlike the DftfL AM1 mutant [50], did not have a significant

growth rate or yield advantage on multi-C compounds (Table S3–

S5).

Serine cycle. Carbon from C1 substrates is converted to

various components of biomass through the serine cycle in AM1

[4,15]. To determine whether the serine cycle plays a key role

during C1 assimilation in PA1, we deleted glyA (serine hydro-

xymethyltransferase), and hprA (hydroxypyruvate reductase)

(Figure 1) [15]. As in AM1, neither mutant could grow on any

C1 substrates (Figure 3). While the DhprA strain had WT-like

growth characteristics on multi-C compounds, the DglyA mutant

exhibited several unexpected phenotypes: a complete inability to

grow on ethanol, extremely slow growth on pyruvate and a 10%

decrease (p,0.01) in growth rate on succinate compared to WT

(Figure 3, Figure 4, Table S3–S8). These results suggest that

alternative pathway(s) used to generate C1-H4F intermediates

during multi-C growth, such as glycine cleavage [51], only

partially rescue growth in the DglyA strain. Future work will be

required to understand why the magnitude of growth defects on

ethanol, pyruvate, and succinate varies for the DglyA mutant.

Figure 5. Comparison of growth rates and maximum OD600 values on methanol with succinate versus on succinate alone. A) Ratio
of growth rates, of the Dcel ‘wildtype’ strain of PA1 and various knockout mutants, on a combination of KM+KS (7.5 mM methanol+1.75 mM
succinate) versus S (3.5 mM succinate). The dotted line depicts the expected ratio for growth rate, if no methanol was oxidized in a combination of
M+S. B) Ratio of yield (measured as the maximum OD600 value during growth), for the Dcel ‘wildtype’ strain of PA1 and various knockout mutants, on
M+S versus S. The dotted line depicts expected ratio for yields, if no methanol was assimilated in a combination of M+S. For all data error bars
represent the 95% C.I. of the average ratio of three biological replicates grown in each condition.
doi:10.1371/journal.pone.0107887.g005
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Growth on the combination of C1- and multi-C substrates
The major goal of this study was to compare the metabolic

network involved in C1- and multi-C metabolism in PA1 to that

established for AM1. In addition, however, we also uncovered a

number of unexpected growth phenotypes, especially on the

combination of C1- and multi-C substrates. In contrast to a

previous study [52], which showed that AM1 grows on a

combination of succinate and methanol at the same rate as

succinate or methanol, PA1 grew 16% faster, with a 35% increase

in yield, on a combination of methanol and succinate, compared

to succinate alone (Figure 5a and 5b). The growth pattern

suggested that cells utilized methanol and succinate simultaneous-

ly; as was previously observed in AM1 as well [52]. Since growth

on succinate is energy-limited and growth on methanol is

reducing-power limited [52,53], it is likely that growth and yield

on methanol and succinate is greater because the combination

compensates for limitations posed by each substrate in isolation.

Based on the growth characteristics of mutants in methylo-

trophy specific modules, we hypothesized likely phenotypes during

growth on the combination of C1 and multi-C substrates. Since the

Dmxa mutant is incapable of methanol growth, we anticipated that

its growth rate on a combination of methanol and succinate would

be the same as that on succinate, but with 50% lower yield since

the combination contains half the concentration of succinate and

methanol. While the observed yield on the combination matched

the expected value, the Dmxa mutant grew 11% faster (p,0.001)

on the combination than on succinate alone (Figure 5a and 5b).

One possibility is that methanol is either being sensed or oxidized

by the XoxFI system; an MxaFI homolog suggested to play a

regulatory role in M. extorquens [54,55] and works as a lanthanide

dependent methanol dehydrogenase in the acidiphilic methano-

troph Methylacidiphilum fumariolicum SolV [56]. We hypothe-

sized that the C1 assimilation mutants (i.e., DftfL, DglyA, and

DhprA mutants) might be able to grow faster on a combination of

methanol and succinate because these mutants are capable of

completely oxidizing methanol to generate reducing power.

Furthermore, the ability to generate additional reducing power

from methanol might also result in a proportional increase in the

yield. Although yields on the combination of methanol and

succinate were significantly elevated for the DglyA and DhprA
strains, growth rate was compromised relative to succinate growth

(DftfL and DglyA by 35% and DhprA by 9%; Figure 4a). This

partial methanol sensitivity, though not as severe as seen for

H4MPT mutants, may be due to build-up of (potentially toxic) C1

intermediates and/or a regulatory mismatch between C1 dissim-

ilation and succinate assimilation. Future work will be required to

understand the physiological basis for these effects, and to

determine whether they hold for other strains of Methylobacterium.

Conclusions

Since extremely closely-related strains sometimes occupy

distinct niches [57] and have distinct metabolic capabilities, we

felt it was critical to compare the growth of PA1 and AM1 on a

range of substrates in order to establish just how much confidence

one should have in transferring knowledge gained from the long-

studied AM1 to the newer option of PA1. The stark difference in

growth rate and yield on certain substrates, such as betaine,

methylamine, and ethanol, between the two strains might reflect

adaptation/s to unique ecological niches by each of these strains

prior to isolation, such as via recent gain or loss of certain

metabolic genes or differential regulation [58].

Our genetic analysis of methylotrophy in PA1 establishes that

the roles of the various methylotrophy specific modules during C1

growth are the same as described in AM1. In addition, owing to

the quantitative nature of our analyses, several knockout mutants

also revealed unexpected phenotypes on multi-C compounds as

well as a combination of C1 and multi-C compounds. These

phenotypes point towards yet-undiscovered aspects of metabolism

in these facultative methylotrophs in terms of regulation that

allows cells to switch between C1 metabolism and multi-C growth,

as well as to establish balanced growth on multiple substrates

simultaneously.

Supporting Information

Figure S1 A line plot of strand conservation (in purple)
and strand inversion (in blue) between the chromosome
of PA1 and the main chromosome of AM1 (bottom).

(PDF)

Figure S2 Growth of three biological replicates of the
Dcel ‘wild-type’ strain of PA1 (gray) and the Dcel ‘wild-
type’ strain of AM1 (black) in nutrient broth. The inset

shows the semi-log plot of the growth curves to emphasize the

deceleration in growth.

(PDF)

Figure S3 Growth curves of three replicates of the Dcel
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