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Abstract: Water-transport pathways through the leaf are complex and include several checkpoints.
Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs). To
date, neither the relative weight of the different water pathways nor their molecular mechanisms are
well understood. Here, we have collected evidence to support a putative composite model of water
pathways in the leaf and the distribution of water across those pathways. We describe how water
moves along a single transcellular path through the parenchyma and continues toward the mesophyll
and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points
to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport
system and the movement of water between these paths as a result of the integration of multiple
signals, including transpiration demand, water potential and turgor. We also present a new theory,
the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation
and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf
water-balance management may lead to the development of crops that use water more efficiently,
and responds better to environmental changes.

Keywords: hydraulic conductance; turgor; transcellular water movement; membrane osmotic
permeability (Pf)

1. A Composite Model of Water Transport in the Leaf

Land plants evolved 450 million years ago from aquatic algae [1]. Vascular plants have
evolved adaptations to extreme differences in environmental conditions while competing for light.
Land plants’ dependence on soil water increases the need for efficient water transport along the
soil-plant-atmosphere continuum (SPAC), making efficient hydraulic conductance regulation and
dynamic response to the environment extremely advantageous [2–7]. Stomatal aperture governs the
exchange of gases between the mesophyll cells (MCs) and the atmosphere. Wide apertures enable
CO2 uptake, as well as the simultaneous loss of water. Therefore, sufficient hydraulic conductance of
the vascular tissue can allow for greater water loss via open stomata, as well as increased CO2

assimilation [2,5,8,9]. In fact, higher crop yields have been correlated with increased stomatal
conductance [10], high leaf hydraulic conductivity (Kleaf) [5] and greater water loss. Kleaf changes in
response to environmental factors such as stress and light [5,11–18]. Water moves through the leaf
across a number of tissues via several parallel paths. Despite the great efforts that have been made to
clarify our understanding of the regulation of water movement in the leaf and the relative weight of
each path, that understanding remains elusive.

The movement of water through the plant has been compared with the movement of current
through an electrical circuit [5,19–23]. In that analogy, the potential difference between soil and
atmosphere are analogous to the driving electrical potential in a circuit and water flux is analogous to
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electron flux based on a steady-state assumption. However, this analogy may be too simplistic, as the
rates at which water enters and exits a plant are not entirely equal, which causes fluctuations in the
plant’s water status (relative water content and water potential) over the course of a typical day, as
well as in response to stress [24–28].

An alternative hydraulic flow model was recently suggested [29]. In this model, the leaf hydraulic
resistance is not constant, but dynamic, and varies nonlinearly with water potential. This dynamic
capability is controlled by aquaporins (AQPs) that are part of the plasma membrane (PIPs). In this
hydraulic model, AQPs play a crucial role in the regulation of hydraulic conductance, aided by their
quick reaction time (seconds to minutes), and the cell vacuole is the main water capacitor buffering
against changes in the volume of the cytoplasm. It is important to mention that in addition to water,
AQP were shown to facilitate the diffusion of additional small neutral solutes, including CO2. Therefore
AQP presence and activity may effect CO2 transport and carbon metabolism (reviewed by [14,30–33]).
Nevertheless, this review will focus on water movement in the leaf.

In 1997, Ernst Steudle suggested a composite transport model for the movement of water through
the root [34]. That model suggests that the movement of water between parallel radial pathways
(i.e., apoplast, symplast and transcellular) can be regulated by switching the apoplast path on and off.
Moreover, the high degree of variability in the hydraulic resistance of a given root can be explained by
the dynamics of the forces involved in moving water. In other words, the model presents dynamic
regulation of water uptake in response to shoot demand (transpiration). In this review, we will try
to use Steudle’s composite transport model to describe the movement of water through the leaf,
emphasizing the different compartments and factors involved in the regulation of leaf hydraulic
conductance and the possible role of AQPs in the dynamic regulation of the movement of water
through the leaf.

2. Hydraulic Regulation of the Xylem and Leaf Veins

Tracheids and vessel elements are highly modified cells that have no membranes and are arranged
to provide low-resistance axial pathways for apoplastic water transport. Venation architecture varies
widely among plants and tends to be phylogenetically conserved [6,9,35,36]. The contribution of
vascular components to the movement of water through the leaf (i.e., minor and major veins) also
varies within species and can influence leaf and whole-plant hydraulic conductance [5,9,36,37]. For
example, vein density can limit transpiration [6], providing an hydraulic link between venation and the
rate of photosynthesis [2]. Hierarchical reticulate and redundant venation patterns are common among
angiosperms, providing vascular-mesophyll economic constraints and risk tolerance [35,36]. Xylem
structure can be altered by environmental factors such as water stress [38–40], irradiance [9,40–42]
and CO2 concentration [43]. However, such adjustments occur relatively slowly since they require
developmental changes. This passive structural conductance pathway might be a bit more dynamic
due to the pit membrane. The biochemical composition, macromolecular structure and hydraulic
conductance of this membrane may change in response to ion concentrations in the xylem sap, to
control the hydraulic properties of the vessel [44,45]. The vascular architecture and structure may play
a less dominant role with regard to the rapid and dynamic regulation of Kleaf.

In this review, we present studies that point to a cellular regulation mechanism that plays a central
role in controlling leaf vascular radial conductance. This rapid regulation is most likely controlled
by the membrane selectivity of the parenchymatic cells that surround the dead trachea elements and
control the radial flow of water from the vessels into the leaf MCs.

3. The Leaf Vascular Bundle Sheath Cells (BSC) as a Selective Barrier

Leaf bundle sheath cells (BSCs) form a layer of compact parenchyma that surrounds the entire
vasculature [46,47], except for the ends of the vessel elements, the hydathodes [47], and maintain
hydraulic integrity along the vasculature [48]. In recent years, evidence has appeared to indicate that
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the bundle sheath acts as a dynamic hydraulic barrier around the xylem tracheids. The evidence is
as follows:

1. No symplastic continuum appears to exist between the bundle sheath and the phloem and
xylem [49].

2. Hydraulic pressure builds up in the xylem, usually at night, and is released only from the
hydathodes (as guttation drops) and not through the vascular tissue (i.e., the air spaces within
the mesophyll are flooded) [50].

3. Several plant bundle sheath cell walls include lipophilic components similar to the endodermal
Casparian strips found in the root [5,51,52].

4. The fact that the bundle sheath is selectively permeable to small molecules such as Boron (B), Na+

and H2O2 [50,53–55] suggests that it may act as a xylem–mesophyll apoplastic barrier.

While the vascular system transports water axially throughout the leaf, the bundle sheath serves
as a radial membrane gateway and may regulate the identity and quantity of substances transported
between the vascular system and the rest of the leaf [5]. Thus, hydraulic isolation of the bundle sheath
together with dynamic transport control could theoretically increase or decrease the efficiency of
water transport.

The dynamic regulation of Kleaf by the AQPs of BSCs has been addressed in a few recent studies.
Gene expression patterns of PIP2s showed dominant (PIP2;1) or exclusive (PIP2;6) expression in
Arabidopsis veins [15]. In addition, immunohistochemical work revealed vacuolar and plasma
membranes (PM) of Brassica napus BSCs contain more γ-TIP/VM 23 and PIP1 (respectively) than
MCs do, and high PIP1 levels were observed in invaginations of vascular parenchyma plasmalemma
(plasmalemmasome). These findings led those researchers to speculate that BSCs play an important
role in facilitating the movement of water between the apoplastic and symplastic routes next to
vascular tissues [56]. Kleaf generally increases as light intensity increases [9,12,13,57,58]. Indeed, light
increases AQP transcript levels in walnut (Juglans regia) (blue light in particular in this study [13]) and
also increases the hydraulic conductivity (Lp) of Zea mays midrib parenchyma cells [59]. In addition,
light-dependent phosphorylation of PIP2;1 in Arabidopsis BSCs has been linked to increased rosette
conductivity (Kros) [15]. These findings further emphasize the hydraulic properties of the bundle
sheath and Kleaf dynamic, suggesting a molecular mechanism (AQP) for the dynamic regulation
of Kleaf.

However, a different study found that light reduced the osmotic water permeability (Pf) of BSCs
while increasing Kleaf [60]. The authors of that study suggested that this may indicate a decrease in
the hydraulic resistance of the leaf apoplast, but also indicated that more studies will be required to
explain this response.

ABA was reported to affect BSC hydraulic properties, decreasing the Pf of BSCs by downregulating
the activity of their AQPs [18]. The application of ABA through petioles decreased Kleaf and reduced
transpiration [18,61]. In addition, reactive oxygen signaling processes integrating light and ABA
signaling have been shown to be regulated within BSCs [55], yet the authors of that work did not refer
to any role for AQP in that process.

It has been suggested that BSCs may also act as a control center to coordinate xylem hydraulic
conductance with the hydraulic demand of MCs [5,62], strengthening the involvement of hydraulic
signals in the regulation of leaf water balance [63]. The substantial effect of the BSC on the hydraulics
of MCs was demonstrated by Sade [64], who reported that Bundle Sheath (BS)-specific silencing of
several members of AQP family reduced the Pf of MCs, without reducing their conductance of CO2,
suggesting that the BS-MC hydraulic continuum acts as a feed-forward control signal. Recently, it
has also been suggested that reductions in water permeability within leaf vascular tissues indirectly
induce stomatal closure via ABA signals or via a hydraulic (hydro-passive) signal [18,61,65,66].

The architecture, location, and biochemical and physiological properties of the BS enable radial
water transport, apparently involving AQP, strongly supporting the BS’s role as a key regulatory
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hydraulic checkpoint that determines the rate at which water and minerals flow through the leaf. This
radial hydraulic control plays a major role in controlling whole-leaf water balance.

However, the pathways between the BSC and stomata are not clear. Passing through the
BS, water can proceed toward evaporation sites in the mesophyll via three alternative pathways:
(1) a transcellular path via AQPs; (2) a symplastic cell-to-cell path via plasmodesmata and (3) an
apoplastic path along the cell wall (Figure 1). The relative distribution of the quantities of water
transported via each of these pathways is poorly understood and seems to vary by species, leaf
structure, developmental stage and physiological conditions [5,14,33]
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amount of water moving out of the leaf (transpiration, E) is greater than the amount entering the leaf 
(via the BSC), a hydraulic signal can be induced or strengthened; (b) From the bundle sheath,  
water moves toward the mesophyll Cells (MCs) and Guard Cells (GCs) via three pathways:  
(1) a transcellular pathway; (2) the symplast (plasmodesmata) and (3) the apoplast. We propose that 
the relative amounts of water moving through each of these pathways can be altered by AQPs in 
response to changes in leaf water status, i.e., under optimal conditions (high water potential, ΨW, and 
turgor), high levels of transpiration (E, dash line arrow) will encourage the transport of water through 
the apoplast by reducing the activity of AQPs in the mesophyll. In contrast, under less favorable 
conditions (plasmolysis, low ΨW, and turgor), there may be an increase in AQP activity that 
encourages the transport of water through the symplast. However, the regulation of the distribution 
of water among these pathways is not yet understood; (c) Stomatal AQPs can affect the rate at which 
stomata open and close, in accordance with the turgor of neighboring cells. The destination of the 
liquid water that leaves the guard cells is unknown. This water may enter neighboring cells or  
the apoplast of the stomatal cavity, or be lost through transpiration. Hydraulic conductance of the  
leaf (Kleaf). 
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The leaf mesophyll is a spongy tissue that includes the majority of the leaf cells. The spongy 
structure of the mesophyll cells results in large surface areas facing air spaces inside the leaf, which 
facilitates CO2 uptake, as well as the loss of water. This extensive sub-epidermal surface area is up to 
40 times greater than the leaf’s exterior surface area [67,68]. These extensive airspaces also limit 
contact between MCs, complicating apoplastic liquid water movement. However, it is important to 
note that MCs might not be homogenous in its hydraulic properties. Canny et al. [68] showed that 
the MCs of cotton (Gossypium hirsutum) includes shrinking cells (spongy and cavity cells) from which 
water evaporates, as well as non-shrinking cells (matrix cells) from which water probably does not 
evaporate, and suggested that evaporation is limited to only a portion of MCs. 

Among terrestrial plants, the hydraulic conductivity of the MCs is consistently low. Therefore, 
we can presume that the length of the hydraulic pathway through the MCs influences Kleaf [2]. Plants 
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Figure 1. Composite model of water transport in the leaf. (a) From the vascular system, water (dashed
line) is transported transcellularly via regulated Aquaporins (AQPs) into Bundle Sheath Cell (BSC).
The amount of water allowed to enter the leaf is determined by hydraulic and chemical signals. If
the amount of water moving out of the leaf (transpiration, E) is greater than the amount entering the
leaf (via the BSC), a hydraulic signal can be induced or strengthened; (b) From the bundle sheath,
water moves toward the mesophyll Cells (MCs) and Guard Cells (GCs) via three pathways: (1) a
transcellular pathway; (2) the symplast (plasmodesmata) and (3) the apoplast. We propose that the
relative amounts of water moving through each of these pathways can be altered by AQPs in response
to changes in leaf water status, i.e., under optimal conditions (high water potential, ΨW, and turgor),
high levels of transpiration (E, dash line arrow) will encourage the transport of water through the
apoplast by reducing the activity of AQPs in the mesophyll. In contrast, under less favorable conditions
(plasmolysis, low ΨW, and turgor), there may be an increase in AQP activity that encourages the
transport of water through the symplast. However, the regulation of the distribution of water among
these pathways is not yet understood; (c) Stomatal AQPs can affect the rate at which stomata open and
close, in accordance with the turgor of neighboring cells. The destination of the liquid water that leaves
the guard cells is unknown. This water may enter neighboring cells or the apoplast of the stomatal
cavity, or be lost through transpiration. Hydraulic conductance of the leaf (Kleaf).

4. Hydraulic Properties of Mesophyll Cells

The leaf mesophyll is a spongy tissue that includes the majority of the leaf cells. The spongy
structure of the mesophyll cells results in large surface areas facing air spaces inside the leaf, which
facilitates CO2 uptake, as well as the loss of water. This extensive sub-epidermal surface area is up
to 40 times greater than the leaf’s exterior surface area [67,68]. These extensive airspaces also limit
contact between MCs, complicating apoplastic liquid water movement. However, it is important to
note that MCs might not be homogenous in its hydraulic properties. Canny et al. [68] showed that
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the MCs of cotton (Gossypium hirsutum) includes shrinking cells (spongy and cavity cells) from which
water evaporates, as well as non-shrinking cells (matrix cells) from which water probably does not
evaporate, and suggested that evaporation is limited to only a portion of MCs.

Among terrestrial plants, the hydraulic conductivity of the MCs is consistently low. Therefore,
we can presume that the length of the hydraulic pathway through the MCs influences Kleaf [2].
Plants have adapted different strategies for overcoming the hydraulic resistance of the mesophyll,
such as a reticulated vein system to allow maximal proximity to evaporation sites, as well as more
unique strategies such as a heterobaric leaves that include bundle sheath extensions that connect the
epidermis and vascular bundles [69,70] or directed lignification and apoptosis of a proportion of the
MCs [2]. All of these strategies provide ways to bypass the slow movement of water through live MCs,
affecting Kleaf. Yet, the exact contributions of these adjustments to the plant’s hydraulic balance are not
fully understood.

Cell-to-cell water transport constitutes a significant part of the leaf hydraulic path from xylem to
epidermis and AQPs may play a role in this pathway [71]. Numerous AQPs have been localized to the
PM of MCs [33,72], including invaginations of the PM (plasmalemmasomes) [73].

The Pf of MCs varies widely, within the range of 0 to more than 60 µm¨ s´1, with the majority of
cells exhibiting Pf levels between 0 and 10 µm¨ s´1 under control conditions [18,72,74]. A study that
examined water loss from MCs of epidermis stripped leaf found that the hydraulic conductance of
MCs varies approximately 5-fold over an approx. 24-h cycle, and the author of that study suggested
that AQPs mediate the regulation of MCs to produce cyclic changes in the rates of water loss and
transpiration [68]. Indeed, Arabidopsis MCs Pf was reduced in AtPIP1;2-knockout protoplasts [72]
and was also dramatically reduced when the whole PIP1 subfamily was silenced [66], pointing to a
possible role for AtPIP1;2 in MCs’ water transport.

Morillon et al. [74] showed that transpiration intensity affects the Pf of mesophyll cells,
apparently due to the inactivation of AQPs, for example, an increase in transpiration suppresses
the activity of AQPs in MCs, which lowers the Pf of those cells. This reduction in the use of the
transcellular path is congruent with the suggested predominance of apoplastic water movement
during transpiration [5,15,23,75,76], as well as an earlier suggestion that AQPs may be involved in the
movement of water between the apoplast and symplast [77] or vacuole [73].

In this way, AQPs may act as dynamic valves to modulate the movement of water between the
three possible pathways. Accordingly, the AQP valves may control the wetting rate of the walls of MCs
(assuming the PM of a turgid cell is in close contact with the cell wall). Hence, under stress conditions,
when these cells reach their turgor loss point (TLP) and undergo plasmolysis, the separation of the
PM from the cell wall limits the ability of AQP to sustain the apoplastic pathway, thereby acting
as a hydraulic fuse (Figure 2). When the size of the area of contact between the PM and cell wall is
reduced (yet the PM and endoplasmic reticulum remain in close contact with the plasmodesmatal
pore, maintaining continuity between cells via the central desmotubules [78,79]), cell-wall wetting will
be reduced and this will affect the apoplastic pathway, regardless of any AQP activity. Transpiration
serves as a pump, generating a negative water potential within the cell wall microcapillary of MCs,
pulling water from the xylem. Water will continue to leave the cell until the protoplast physically
disconnects from the cell wall [80]. Furthermore, as Morillon et al. [74] suggested, AQP can play a
role in the movement of water between neighboring cells. According to this theory, the TLP acts as
a hydraulic fuse, distancing AQP from the cell wall. This provides over-flux protection to MCs and
sharply reduces the cell wall water potential (as described by the capillarity model [81]), which might
serve as a signal for stomatal closure.

Interestingly, a global meta-analysis revealed that relative water content (RWC) at the TLP is
a strongly preserved parameter across many plant species [82]. TLP was previously proposed to
act as a notable hydraulic stress signal in plant water balance, possibly triggering an ABA signal in
the shoot [63,83]. Moreover, a very recent study showed that biosynthesis of ABA is triggered by
a reduction in leaf turgor in angiosperms, and turgor pressures that trigger increases in foliar ABA
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correlate with Ψtlp. However, in that study, foliar ABA levels significantly increased when leaf turgor
was positive, before the turgor loss point was reached [84]. Control of the rate of cell-wall wetting by
PM AQPs in accordance with plasmolysis rate may be an additional outcome of the cell TLP-signaling
mechanism, acting together or in parallel with mechanical sensing of water balance. However, it is not
clear whether the gaps formed between PM and the cell wall during plasmolysis are filled with liquid
or gases, so this hypothesis should be considered with skepticism.Int. J. Mol. Sci. 2016, 17, 1045 6 of 13 
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observed. The water which evaporates from the cell wall leaves the leaf via the Guard Cells (GC). 
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Figure 2. Mesophyll Cell (MC) turgor as a hydraulic fuse altering water path through the leaf.
(a) When turgid, cells Plasmamembrane (PM) is in contact with cell wall so that water exiting trough
AQP substantially wet cell wall, sustaining apoplastic water flow; (b) When water statues is low,
plasmolysis cause distancing of PM from cell wall, and as a fuse, cuts off water supply to the cell wall.
The negative water potential (ΨW, arrows indicate high or low) generated within the microcapillary
structure of the mesophyll cell walls serves as a transpiration (E) pump pulling water from the
xylem [80]. This negative water potential is highest (absolute value) next to the mesophyll membrane
and may serve as a pump (i.e., difference in water potentials between the cell wall and the protoplast)
resulting in water leaving the cell until physical disconnection between the protoplast and its wall,
at which point no further reduction in Relative Water Content (RWC, arrows indicate high or low) is
observed. The water which evaporates from the cell wall leaves the leaf via the Guard Cells (GC).

5. Permeability of Guard Cells to Water and Regulation of Stomatal Aperture

Water leaves the plant through the stomatal pore as vapor. The site of evaporation and the
role of AQPs in this process are still not clear and may vary according to leaf anatomy (reviewed
by [3,5]). Nevertheless, stomatal movement requires the transport of liquid water from and into guard
cells, aside from the movement of water vapor. Guard cells are an integral part of the epidermis and
changes in their volume are partially controlled by subsidiary cells that play a mechanical role as their
turgor pressure restricts the distancing of guard cells from one another, thereby affecting stomatal
apertures [85,86].

It is important to mention the relationship between transpiration and plant hydraulic
conductance [2,5,24,27,38,61]. According to Steudle [34] and others [74,87], the hydraulic conductivity
of the plant depends on the nature and intensity of the forces driving the movement of water within
the plant. Transpiration through stomata determines the shoot demand for water and serves as
the driving force for water movement. Nonetheless, few studies have reported greater sensitivity
(i.e., faster decline) of the leaf hydraulic conductance, as compared with stomatal conductance (gs),
in response to stress [16,88]. This suggests the interdependence of transpiration rates, hydraulic
conductance and water potential (i.e., dynamic regulation of hydraulic conductance can influence
transpiration dynamics via changes in leaf water potential). This observation turns our attention to the
soil-plant-atmosphere signal transduction pathway, which induces stomatal responses, particularly
under stress (e.g., hydraulic, osmotic, ABA). Additionally, changes in leaf hydraulic conductance
such as alternations in the hydraulic conductance of MCs (as mentioned above) are confounded with
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stomatal flux when gs is measured using steady-state and diffusion porometers, making it difficult to
pinpoint the specific contributions of internal tissues and possibly leading to inaccurate estimates of
stomatal aperture [68].

Guard cells respond to many internal and external signals. However, while their electrochemical
core mechanism of ion movement and accumulation has been well characterized [89–92], the facilitated
diffusion membrane osmosis (i.e., AQP regulation) of guard cells has received less research attention.
Guard cells are symplastically isolated, as plasmodesmata between neighboring epidermal cells are
absent or rare [93,94]. Therefore, it is likely that the movement of water through guard cells, although
passive, is regulated by membrane water permeability mechanisms. An additional unresolved question
is whether the water that exits the guard cells is allocated to neighboring subsidiary cells, the apoplast
or lost through transpiration.

During stomatal opening, the movement of water into the guard cell is substantial to the point
of exocytic addition of membrane, permitting up to a 25% increase in cell volume [95]. This massive
transport of water across the guard-cell membrane raises the question of whether and to what extent
AQPs are involved in the process. However, the number of studies linking AQP activity and stomatal
movement (in particular, opening) is surprisingly low. In sunflower (Helianthus annuus), the guard-cell
aquaporin SunTIP7 was suggested to facilitate water exit, being associated with a decrease in guard
cell volume. SunTIP7 increased the osmotic water permeability of Xenopus oocytes and its transcript
levels increase systematically during daily stomatal closure. Transcript levels of an additional AQP in
this study, SunTIP20, remained constant during the day, indicating that SunTIP genes are differentially
regulated within the same cell [96]. In Zea mays, stomatal PIP subfamily transcript levels generally
followed a diurnal pattern [97].

A more recent study showed a direct effect of AQP (PIP2;1) on guard-cell Pf. In that study,
phosphorylation of PIP2;1 by OST1 (a protein kinase involved in guard-cell ABA signaling) induced
a two-fold increase in the Pf of guard-cell protoplasts, supporting the theory that ABA-triggered
stomatal closure requires an increase in the permeability of these cells to water [98]. In a study
involving the observation of stomata in a whole-plant context, GC-specific expression of NtAQP1
had no significant effect on gs under normal conditions or when NaCl was added to the irrigation
solution [64]. Nonetheless, Grondin et al. [98] reported differences between a PIP2;1 knockout and
Wild Type (WT) stomata behavior following ABA treatment, but not under control conditions. In
addition, it has been suggested that the guard-cell TIP subfamily may act as a sensor that responds
to changes in the osmotic gradient and is involved in the dilution of the cytosol as the volume of the
guard cells changes [99]. High concentrations of extracellular Ca2+ may also affect stomatal aperture
by directly influencing water channels to retard aperture change [100].

6. Possible Water-Related, Post-Translational Regulation of AQPs

AQPs facilitate the movement of water through membranes and play an integral part in
maintaining water-balance in the plant. Therefore, we would expect that AQP responses to dynamic
environmental changes would be rapid and regulated (at least in part) in response to water-related
parameters (i.e., RWC, water potential). AQP responses to membrane tension (as reflecting cell
volume) can be found not only among plants [101,102], but also among yeasts [103], rabbits [104] and
humans [105]. The prompt responses in plant water status and water-related regulation of AQP are
expected to be regulated by post-translation modifications and not by transcription regulation.

Generally, phosphorylation is considered to be a main mechanism by which AQPs are
activated [106]. In spinach (Spinacia oleracea), phosphorylation of PIP by a protein kinase associated
with the PM is dependent on both apoplastic water potential and submicromolar concentrations of
Ca2+, suggesting that AQP plays a role in the regulation of cell turgor [107]. The phosphorylation of
AQP in a Ca2+-dependent manner was also observed in the context of temperature-dependent water
transport in tulip (Tulipa gesnerina) that allowed the flower to open [108]. Drought-related [109] and
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ABA-related [110] dephosphorylation of PIP each seem to cause the closure of the water-transporting
AQP gate.

X-rays of the spinach PM AQPs in its closed and open conformations indicate that during drought
stress, these PIPs close in response to the dephosphorylation of two highly conserved serine residues.
An additional mechanism reported to induce AQP closure is reduction in cytosolic pH (due to flooding
in this case), PIPs response to the protonation of a fully conserved histidine facing the cytosol [106]. To
the best of our knowledge, there have been no reports of any AQP response to apoplastic pH, yet fungal
AQPs have been reported to play a role in regulating spore germination in acidic media (aquaporin
activity increased with decreasing external pH), thanks to two histidine residues, positioned on two
loops facing the outer side of the cell [111]. In addition to protons, divalent cations have also been
shown to gate PIP [112,113].

Aquaporin re-localization (trafficking) from tonoplast to vesicular membranes as a result of
mannitol-induced water imbalance [114] and salt treatment [115] has also been demonstrated. The
formation of heterotetramers (AQP quaternary structures consist of tetramers) altering AQP activity
was suggested as a post-translation modification that might alter water transport capacity [116–119],
but the signal that might trigger such regulation requires further study.

Other water- and stress-related parameters may affect AQP function via additional mechanisms
that are not yet understood. Such mechanisms may include: (1) changes in water flow intensity across
the channel [102], with mechanical input perceived as the input of kinetic energy to the channel, which
causes a conformational change of the protein, or the creation of tension at the constriction, in a manner
analogous to Bernoulli’s principle for macroscopic pores (cohesion-tension model); (2) changes in cell
turgor [59,101,120]; (3) concentration and molecular size of osmotic solutes [121] as described by the
cohesion-tension model, with the size and concentration of solutes excluded from AQPs affecting
whether they are open or closed; and (4) divalent cations and Ca2+ in particular [113], decreasing Pf of
Arabidopsis cells in suspension.

For mechanical/physical parameters such as turgor, water flow across the channel and the size
of osmotic solutes, the alteration of the protein conformation by a mechanical signal is the proposed
mechanism triggering channel-gating [102,121,122]. Yet, these mechanisms are still unclear. For a
summary of water-related post-translational regulation of AQPs, please see Table S1.

7. Conclusions

In this review, we have discussed several key control points along the xylem-to-stomata water
pathway and suggested a possible role for AQP in the regulation of the flow along that route.
Our composite model of water movement in the leaf includes parallel apoplastic, symplastic and
transcellular water pathways through which water can be dynamically re-distributed, with that
distribution regulated at least in part by AQP. AQP may provide a dynamic hydraulic adjustment
to the fixed anatomical arrangement of the leaf, in response to the dynamic environment. We also
propose a larger role for the mesophyll in regulating leaf hydraulics via the physical disconnection
of the apoplast from the symplast: the hydraulic fuse theory. The plant’s ability to move water via
different pathways in response to environmental signals may play a key role in the plant’s interactions
with its environment. Together with stomatal regulation, this ability enables a wide range of plant
hydraulic plasticity. An improved understanding of the role of AQPs in this mechanism could be
useful for the development of crops with greater tolerance of abiotic stress.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
7/1045/s1.
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