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In today’s environment, electronics technology is growing rapidly because of the availability of the numerous and latest devices
which can be deployed for monitoring and controlling the various healthcare systems. Due to the limitations of such devices, there
is a dire need to optimize the utilization of the devices. In healthcare systems, Internet of things (IoT) based biosensors networking
has minimal energy during transmission and collecting data. *is paper proposes an optimized artificial intelligence system using
IoT biosensors networking for healthcare problems for efficient data collection from the deployed sensor nodes. Here, an
optimized tunicate swarm algorithm is used for optimizing the route for data collection and transmission among the patient and
doctor. *e fitness function of the optimized tunicate swarm algorithm used the distance, proximity, residual, and average energy
of nodes parameters. *e proposed method is attributed to the optimal CH chosen under TSA operation having a lower energy
consumption. *e performance of the proposed method is compared to the existing methods in terms of various metrics like
stability period, lifetime, throughput, and clusters per round.

1. Introduction

Nowadays, technologies are developing rapidly due to their
enhancement in electronics devices, especially in their cost
and effectiveness of performance. *ese technologies have
many applications that provide many effective solutions
from healthcare to agriculture and military to industry. *e
innovative solutions are significantly implemented in
healthcare organizations, enhancing the treatment and its
performance. *ese innovative solutions transform the in-
dustrial revolution significantly. In the healthcare systems,
these technologies provide a complete and new paradigm for
the treatment of the patients where patients’ health can be
monitored entirely, and management of patient health can
be done on a real-time basis in an efficient and effective
manner [1]. *ere are various areas in the healthcare system
where the Internet of things (IoTs) based systems can be

implemented such as web health portals mobile applications,
biosensors, blockchain-based electronic medical record
systems, smart devices, home virtual assistants, wearables,
predictive analytics, etc. When we are looking for improving
the existing healthcare systems then only one thing that
came into mind is digital healthcare. In digital healthcare,
the existing infrastructure can be improved by improving
the automated diagnoses decisions, data analysis in an in-
telligent way, enhancing the treatment process, continuous
patient state monitoring, and healthier existing customer
services [2].

As a result of technological breakthroughs in the dis-
ciplines of microelectromechanical systems (MEMS) and
wireless communication systems, IoT-enabled wireless
sensor networks have emerged as one of the fastest-growing
sectors in the world. IoT-enabled WSNs are made up of
many tiny battery-operated devices known as sensor devices
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that communicate with one another. *ey are equipped with
three fundamental principles: (1) data sensing from the
external environment, (2) processing on the detected data,
and (3) data transfer through radio frequency (RF).*e IoT-
enabled WSNs are comprised of sensors that are capable of
providing expert solutions in contexts where human in-
volvement is complicated, such as military surveillance,
structure health monitoring, natural catastrophe forecasting,
and traffic management, among others. Following their
installation in the IoT-enabled WSNs, these sensor devices
collect data from their surroundings, perform computer
processing on the data they receive, and then communicate
the data to the BS for further processing [3]. Being compact
in size, sensor devices have restricted power backup, storage
capacities, and computing potentials due to their small size.
Once deployed in the network field, these sensor devices are
left unattended, giving rise to the fundamental problem of
ensuring that each sensor device’s energy is utilized as ef-
ficiently as possible.

As a result, the development of energy-efficient protocols
can aid in the efficient usage of energy by each SN, hence
ensuring the network’s long-term viability. *e organization
of these sensor devices into tiny groups to create clusters is
critical in the construction of such efficient protocols, and
clustering plays an essential part in this. Clustered networks
are used in the clustered network strategy, in which aWSN is
partitioned into smaller groups. Each cluster is made up of a
small number of sensor devices and a cluster head (CH), who
serves as a leader. All sensor devices transfer the data they
have collected to their respective CHs, which in turn relay
the data to the BS. As a result, effective CH selection, the
optimal number of clusters, cluster maintenance, and data
routing to the BS are all essential considerations in the
creation of clustering-based energy-efficient protocols,
among other things [4]. In order to address the concerns
raised above, several clustering procedures have been de-
veloped by a variety of writers. However, identifying these
clustering concerns is only one aspect of the problem;
sustaining quality of service (QoS) and balancing trade-offs
between contradicting requirements such as lifespan, cov-
erage, and throughput need also be addressed professionally.
Recently, bioinspired or metaheuristic approaches and ex-
pert systems have received a great deal of interest for their
ability to deal with these difficulties [5, 6].

Various energy-efficient protocols have been developed
in recent years for either homogeneous or heterogeneous
networks, depending on the application. According to
conventional wisdom, homogeneous networks are made up
of sensor devices that have the same amount of energy
resources at the start of the network. In contrast, hetero-
geneous networks have sensor devices with varying amounts
of energy resources. Initially, a homogeneous model is a
specific type of WSN. Each sensor device has the same
energy resources but eventually becomes a heterogeneous
model as the network operates. Each SN cannot waste the
same energy resource due to differences in radio commu-
nication characteristics. *e incidence of random events or
the geometrical factors of the network field is a result of these
differences. Notably, it demonstrates that developing an

energy-efficient protocol capable of functioning in both
homogeneous and heterogeneous networks is a significant
issue [7–9]. In this study, we offer a method that considers
both homogeneous and heterogeneous network models.

*e rest of the paper is structured as follows: In Section 2,
the literature review of the existing techniques is discussed.
Sections 3 and 4 discuss the system model and proposed
methodology, respectively. *e simulation results and dis-
cussion are given in Section 5 and finally, the paper is
concluded in Section 6.

2. Literature Review

In this section, a review of the various existing techniques is
given as follows: *e clustering technique has been shown to
be a significant component in the design of energy-efficient
protocols in IoT-enabled wireless sensor networks (WSNs).
Many clustering-based protocols have been developed over
the last two decades, including LEACH [10], LEACH-C [11],
LEACH-M [12], HEED [13], and others. Furthermore,
LEACH is used as a benchmark and as the ascendant
protocol for the majority of protocols in this industry.
LEACH is a self-organizing, distributed clustering tech-
nology that assumes that each SN in the WSN consumes the
same amount of energy. *e LEACH working module is
separated into the setup phase and the steady-state phase. As
part of the setup phase, each SN conducts a CH election
operation that is guided by a probabilistic methodology.
Once clusters are created in a steady phase, each SN senses
its surroundings in order to gather data, which is then
forwarded to the corresponding CH. Each CH combines the
data received from its cluster members and delivers it to the
BS, which is located thousands of miles distant, through a
direct connection. LEACH-C is a centralized variation of
LEACH, in which the BS is in charge of the CH selection
process rather than the CH. At the start of each round, all
sensor devices transmit their current position information
and their current energy level to the BS. Accordingly, the
network’s average energy is calculated. Only those sensor
devices can participate in the CH selection process with
values more significant than the average energy for the
current round. Once the BS has chosen the CHs, it
broadcasts the positions of the CHs in the network, and all
other sensor devices join the CH that is closest to them.
Because of the centralized method, LEACH-C, on the other
hand, suffers from scalability difficulties.

LEACH-M is a variation on the LEACH technique that
includes multiple hops. Between CHs and BSs, writers
compared the performance of a multihop communication
scheme and a single-hop communication strategy using this
method to see which performed better. *e results clearly
demonstrated that LEACH-M outperformed LEACH in
terms of performance. HEED, which is one of the most well-
known protocols in this field, is a hybrid, distributed, and
iteration-based clustering protocol that uses a hybrid ap-
proach. According to this technique, the selection of the CH
is determined by using a hybrid combination of residual
energy and intracluster communication cost. First and
foremost, HEED is hampered by the creation of a large
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number of clusters. Second, owing to the random selection
of CHs at the beginning of the process, there is a great deal of
variance in the number of CHs in each successive round.
Huang and Wu [14] provide an expansion on the HEED
concept.

In HEED, sensor devices that were left unnoticed by the
CHs and were compelled to elect themselves as CHs resulted
in the creation of extra CHs in the system.*is difficulty was
solved by employing a re-election process on uncovered
sensor devices, which increased the efficiency of the HEED
algorithm. MiCRA [15] is another innovation in HEED that
employs a two-level hierarchy on the approach for selecting
the best candidate. At the first level, CHs are selected in the
same way as HEED; however, at the second level, only those
CHs who were elected at the first level are eligible to par-
ticipate in the CHs selection procedure. In the network, this
sort of hierarchical cluster creation aids in distributing
energy among the nodes (sensor devices). Sabet and Naji
[16] suggested a distributed clustering strategy using mul-
tihop routing algorithms that may efficiently limit the energy
consumption caused by control packets while yet main-
taining high performance. Du et al. [17] presented an EESSC
protocol that employed the residual energy parameter for
clustering methods and used a specific packet header to
update the sensor devices’ residual energy during data
transmission in the network while data transmission was
taking place. Gupta and Sharma [18] suggested an ICHB
method for the CH selection procedure that was based on
the BFOA algorithm [19]. With the aid of artificial bacteria,
ICHB is completely capable of looking for greater residual
energy nodes in the network and locating them. When it
comes to initialization, ICHB is a fully distributive method
that does not require centralized assistance (i.e., BS). Fur-
thermore, the authors proposed the ICHB-HEED protocol,
in which the ICHB algorithm was implemented on the
HEED platform, which demonstrated efficient performance
in the selection of better CHs (in terms of residual energy),
the determination of an optimal and stable CH count per
round, and the extension of the network lifetime when
compared to the HEED protocol. When there is insufficient
information, a fuzzy logic system (FLS) can create efficient
results. FLS is a rule-based expert system that has the ca-
pability of producing efficient outcomes even when there is
little information. In addition, FLS is very competent in
creating real-time judgments by manipulating a semantic set
of rules in order to deliver cutting-edge capabilities [20, 21].

A clustering technique for WSNs based on FLS
employing battery level, node concentration, and distance
factors was addressed by Gupta et al. [22] in their pub-
lication. Using FLS based on energy level and local dis-
tance characteristics, Kim et al. [23] reduced the
overheads incurred during the CH selection operations in
LEACH by a factor of two. Mao and Zhao [24] proposed a
UCFIA protocol based on an uneven clustering technique
using FLS and an enhanced ACO for intercluster routing
operations, which was based on an unequal clustering
procedure using FLS and an improved ACO for inter-
cluster routing procedures. A type-2 FLS for clustering
methods with better ACO has been addressed by Xie et al.

[25], and this approach has been followed for intercluster
communication in this paper. It was proposed by DUCF
[26] to use FLS in the establishment of unequal-sized
clusters in order to improve the network’s load balancing
capability.

Papers [27–32] discuss the various methods of the CH
election process like CHs that are selected based on the amount
of residual energy present, distance, and node density. Once a
set of CHs has been selected, amessage is broadcast by the CHs
to the sensor devices in order to initiate cluster formation. At
this point, when the sensor device receives messages from
different CHs, it utilizes the intracluster communication cost to
determine which CH is the best choice.*is strategy aids in the
correct load balancing of clusters among themselves. If any SN
does not get this message, it automatically elects itself as a CH
after each round inwhich it participates.*e paper discusses an
energy enhancement in LEACH using fuzzy logic called EE-
LEACH [33–35]. *is method prolongs the lifespan of WSNs
and also performs load balancing using equal energy dissi-
pation. *e CH and cluster formation elections are conducted
using rank-based fuzzy inference systems. However, this work
does not consider the various other parameters in CH election
and construction, such as average energy and number of
neighbor’s nodes. Papers [36–38] consider the IoT environ-
ment for enhancing the lifetime of heterogeneous networks.
Moreover, the works presented are efficient and prolong the
lifetime. Alshamrani [39] introduce a study of the IoT and
artificial intelligence implementations for remote healthcare
monitoring systems.*iswork categorizes the various things of
the IoMT systems in the field of healthcare. Saba et al. [40]
discuss a secure and energy-efficient framework using IoMTfor
e-healthcare systems.*is workmanages the data transmission
in a secure manner but suffers from a large network overhead.

3. System Model

In today’s scenarios, biosensors-based IoT networking sys-
tems play a vital role in digital healthcare. In IoTnetworking
systems biosensors are used to collect medical information
and transmit the same using the wireless networks over the
server or any web or mobile application. By using the
abovementioned technology and drastic improvement in the
healthcare systems, the healthcare systems can control pa-
tient treatment remotely over the Internet. *ese sensors
collect the data and measure the human activities from
physical to sleep level and mental to stress levels such as
arterial pressure, oxygen level, blood alcohol level, glucose
level, heart rate, and pulse. *ese sensors systems also alert
the doctor if any health issue is detected during the mea-
surement. Most of the devices collect data in a compas-
sionate manner that is very useful for the treatment of the
patient remotely on a real-time basis in case of various acute
diseases. *us, these systems can avoid the complication of
the disease and treatment can be improved. A scenario is
considered for the same and a detailed description is shown
in Figure 1. Figure 1 shows a scenario of the optimization of
an artificial intelligence system using IoT biosensors net-
working for healthcare problems where three IoT sensor
nodes are deployed (for explanation point of view but in the
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real environment, 100 nodes are available). Each node has
numerous sensors like ECG sensor, airflow sensor, body
temperature, and position sensor, blood sugar sensor, glu-
cose sensor, EEG sensor, EMG sensor, and galvanic skin

sensor. *ese sensor nodes collect data from the patient and
transfer the collected data to the database server with the
help of sink nodes. Doctor monitoring devices are connected
with the data server or control server. After getting the
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Figure 1: Scenario of the optimization of artificial intelligence system using IoT biosensors networking for healthcare problems.
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information doctor can suggest the prescription to the
particular patient with the defined patient ID. Some of the
significant assumptions are given as follows:

(i) Links are symmetric in nature and have equal ca-
pabilities for transferring data.

(ii) Both homogeneous and heterogeneous sensor
nodes are considered for deploying in the moni-
toring area evaluated in terms of their initial energy.

(iii) Nodes are capable of transmitting and receiving
data at the same time.

(iv) Nodes are static after deployment but they can be
relocated manually if required.

*e homogeneous and heterogeneous sensor nodes are
deployed in the monitoring area of the hospital healthcare
systems. In the case of homogeneous networks, all the sensor
nodes have the same amount of energy whereas three types
of sensor nodes in terms of their energy heterogeneity are
deployed in the case of heterogeneity networks. *e n sensor
nodes are deployed in the healthcare environment. Here,
one and three levels of heterogeneity are considered for
homogeneous and heterogeneous networks, respectively.
One level of heterogeneity considers the only single type of
node in terms of their battery power, i.e., n1 nodes [27, 41].
*is network contains n nodes with Eo initial energy nodes.
*us, the sum of energy of the network is ETotal � Eo ∗ n.

In the case of 3 levels of heterogeneity, n3, n2, and n1
nodes are deployed in the monitoring area of the healthcare
environment. En3

, En2
, and En1

represent the energy of the
number of n3, n2, and n1 nodes. *e n2 and n3 nodes have Ψ
and ω times higher energy than n1 nodes. Ψ and ω describe
the energy fraction of n3 and n2 nodes, respectively. *e J

and Jo describe the proportion of n3 and n2 nodes, re-
spectively. *e number of different types of nodes is
n3 � n∗ J, n2 � n∗ Jo, and n1 � n∗ (1 − J − Jo). *e ener-
gies of En3

, En2
, and En1

are Eo ∗ (1 + ω)∗ nn3
,

Eo ∗ (1 + Ψ )∗ nn2
, and Eo ∗ nn1

, respectively. *e prelimi-
nary energy of n3 nodes is more by a factor of (1 +ω) and by a
factor of (1 +ψ) for n2 nodes. *e total energy of the
network ETotal is Eo ∗ n∗ (1 + Ψ∗ ko + k∗ω).

*e consumption of energy by the sensor nodes for data
transmission over the short and long distance is given as
follows [10, 11]:

Etxs � L ∗Eelec + L∗Efs ∗d
2
, if d≤ d0,

Etxl � L ∗Eelec + L∗Emp ∗ d
4
, if d>d0.

(1)

*e consumption of energy by the nodes is for data
receiving and data sensing is given as follows:

Erx � Esx � L∗Eelec. (2)

where Eelec, Efs, and Emp are the consumption of energy in
the electronic circuit, free, and multipath spaces, respec-
tively, and d0 is threshold distance as given below:

d0 �

����
Efs

Emp

􏽳

. (3)

4. Proposed Methodology

In this section, an artificial intelligence-based algorithm is
discussed, which effectively collects and transfers the data
from the various deployed sensor nodes. *e sensors (like
ECG sensor, airflow sensor, body temperature and position
sensor, blood sugar sensor, glucose sensor, EEG sensor,
EMG sensor, and galvanic skin sensor) are deployed in the
hospital scenario with the help of sensor nodes. *e sensors
collect the information and forward the collected data with
the help of sinks to the control server where doctors are
connected to the monitoring devices and after getting that
information, doctors can suggest the prescription remotely
on a real-time basis. *e detailed description of the data
collection and transfer is indicated in Figure 1. Here, a
metaheuristic method called the tunicate swarm algorithm
(TSA) is considered for selecting the effective routing path
for transferring the data. *e TSA metaheuristic method has
high-speed and efficient capabilities of exploitation and
exploration, and based on that feature it has a very high
convergence rate. *e complete process of the tunicate
swarm algorithm (TSA) for the efficient routing is given as
follows:

Step 1: Initially, set the population (tunipop) of the tunicate.

Step 2: After initializing the tunicate population (tunipop),
initialize the parameters with the maximum number of it-
erations such as α, β, c, δ, and itrtotal.

Step 3: Calculating the new search positions and avoiding
the conflicts among the various tunicates, a vector consid-
ered as A

→
is considered as follows:

α �
β
δ
, (4)

where gravity force β � a2 + a3 − c and water flow advection
c � 2 × a1, where a1, a2, a3 are the random number between
the range of 0 and 1. δ is calculated as follows which is a
social force during the search agents.

δ � tunipop(min) + a1 × tunipop(max) − tunipop(min),

(5)

where tunipop(max) and tunipop(min) are the subordinates
and initial speeds for social interaction and their values are
considered as 4 and 1, respectively.

Step 4: Drive the fitness function (FitFun(tunipop)) and
calculate the fitness values of each search agent (tunipop).

Step 5: Compute the random value between 0 and 1 for a1,
a2, a3, and rrn d using random function.

Step 6: Determine the value of α, β, c, and δ, as mentioned in
Step 3. Also, calculate the movement in the direction of
neighbor (Bestneigh) as follows:

Bestneigh � abs FitFun tunipop􏼐 􏼑 − rrnd × tunipop(x)􏼐 􏼑. (6)
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Step 7: *e updated position of the swarm is calculated as
follows and swarm behavior can be converged as the best
search agent:

Set swarm � 0.

swarm �
Fit Fun tunipop􏼐 􏼑 + α × Bestneigh if rrnd ≤ 0.5,

Fit Fun tunipop􏼐 􏼑 − α × Bestneighif rrnd > 0.5.

⎧⎪⎨

⎪⎩

(7)

Step 8: By using the above steps calculate the two best
solutions of the tunicate swarm behavior and update the best
search position of the search agents as follows:

tunipop(x) �
swarm
2 + a1( 􏼁

. (8)

Step 9: *en set swarm � 0.

Step 10: After that update the parameters α, β, c, and δ.

Step 11: Repeat Steps 8–10 for each value of x.

Step 12: Return the best obtained optimal solution in terms
of fitness function value FitFun(tunipop).

*e complete process of the proposed work is divided
into two parts called the network setup phase and the data
collection and transmission phase. In the network setup
phase, the various types of sensors such as ECG sensor,
airflow sensor, body temperature, and position sensor, blood
sugar sensor, glucose sensor, EEG sensor, EMG sensor, and
galvanic skin sensor are deployed with the help of sensor
nodes. A high capability-based sink node is also deployed
which collects data from the various existing sensor nodes.
*e deployed nodes are homogeneous and heterogeneous in
nature. After sensor nodes deployment, the process of
routing will start in which first of all cluster heads (CH)
election process will start. We use the tunicate swarm al-
gorithms for calculating the fitness value using various
parameters.*e highest fitness value node will be the CH for
the current round.

CH selection: Initially, the process of selection of CH is
based on the LEACH [7] protocol which is the very first
protocol in WSNs. *is process is based on probability
which helps in electing in the cluster heads. Additionally, a
threshold value is calculated for checking the eligibility to
become the cluster head. *is probability and threshold
values of nodes depend on the various parameters which are
given as follows:

(i) Networks Residual Energy refers to the ratio of the
sum of the energy of each node to the total energy of
the networks.

F1 � Eres �
􏽐

nn

i�1 Eres(i)

Et

, (9)

where Eres andEt are the residual and total energy of
the networks.

(ii) Node density refers to the number of nodes in the
range of the cluster head. *is factor also helps in
the CH selection of the dense area where more
nodes are deployed.

F2 � nnD �
􏽐

nn

i�1 D nn(i)−nnNS(i)( )

nn

×
1

D nn(i)−f SNs( )
, (10)

where nnD is the node density, f SNs is the farthest
sensor node, D(nn(i)−Sink) is the Euclidean distance
from ith node and sink, Davg(nn(i)−Sink) is the average
distance at the center of ith node and sink, and
D(nn(i)−f SNs) is the Euclidean distance from ith
node and the farthest SNs.

(iii) Average energy of node (Eavg) refers to the ratio of
the sum of the energy of each node to the total
number of nodes in the networks.

F3 � Eavg �
1
nn

􏽘

nn

i�1
Ei. (11)

(iv) Number of neighbors surrounded of a node (nnNS):
this parameter indicates the number of sensor nodes
in the surrounding of other sensor nodes.

F4 � nnNS �
􏽐

nn (CH)

i�1,j�1 Dnn(i)−nn(j)

nn(CH)
, (12)

where Dnn(i)−nn(j) is the distance among the ith and
jth nodes in the cluster and nn(CH) is the total
number of SNs in the cluster.

(v) Distance between sensor node and sink: it refers to
the distance between the sensor nodes and sink. It
helps in reducing the communication distance.

F5 � DSNs−sinks �
􏽐

nn

i�1 D nn(i)−Sink( )

Davg(f SNs−Sink)

×
1

􏽐
nn

i�1 D nn(i)−Sink( )/nn

.

(13)

*e final fitness function will be the integration of the
above defined parameters. For optimizing the CH election
process, the main aim is to maximize the fitness function F

as follows:

F � a × F1 + b × F2 + c × F3 + d × F4 + e × F5, (14)

where a, b, c, d and e are the weights that are considered for
electing the CH with the inequality a + b + c + d + e � 1.
*ese weights’ system depends on the applications for that
sensor network designed.

In the second phase of the algorithm, gathered data is
collected by the sensor nodes and sent to the CH; thereafter
CH forwarded the collected data to the sinks with the help of
various other CHs or directly.
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5. Simulation Results and Analysis

In this section, the performance of the proposed scenario is
compared with the existing protocols. Figure 1 shows a
scenario of optimizing an artificial intelligence system using
IoT biosensors networking for healthcare problems where
three IoT sensor nodes are deployed (for explanation point
of view but in the real environment, 100 nodes are available).
*e sensor nodes are homogeneous and heterogeneous in
nature in terms of their battery power. Each node has nu-
merous sensors like ECG sensor, airflow sensor, body
temperature, and position sensor, blood sugar sensor, glu-
cose sensor, EEG sensor, EMG sensor, and galvanic skin
sensor. *ese sensor nodes collect data from the patient and
transfer the collected data to the database server with the
help of sink nodes and doctor monitoring devices are
connected with the data server or control server. After
getting the information doctor can suggest the prescription
to the particular patient with the defined patient ID. In this
work, we are trying to improve the performance of the
sensor networks in terms of stability period and longevity
along with reducing the consumption power.

*e performance of the proposedmethod is compared to
GAOC [38] and OptiGACHS-StSS [38] protocols with
different fitness functions depending on different fitness
factors. *ese cutting-edge procedures GAOC [38] and
OptiGACHS-StSS [38] protocols were chosen based on a
comprehensive performance in the literature review. GA-
based optimized clustering called GAOC is the existing
work, and in this work, the clustering process is optimized
using GA fitness function. Moreover, OptiGACHS-StSS
protocol is the further extension of the GAOC. *e same
performance measures are used to compare proposed
protocols to existing protocols. *e following is a discussion
of the aforementioned procedures with the various per-
formance metrics. When comparing the performance of
GAOC [38], OptiGACHS-StSS [38], and proposed protocol
certain important performance indicators are used. *e
following are the points that will be covered.

(a) Period of Stability: *is element is crucial to network
stability since it guarantees the network’s data is
distributed reliably. *e stability time is defined as
the number of rounds covered until the first node of
any type, such as advanced, intermediate, normal
nodes, has depleted the whole supply of energy. It
becomes an important performance parameter to
evaluate for performance evaluation in some ap-
plications, where even a small loss of data can have a
large magnitude of effects on the network’s perfor-
mance. *us, the longer the stability period, the
more reliable the recommended routing protocols in
any network.

(b) Longevity of Networks: *e network lifespan is
critical for many applications in which information
distribution is the consequence of continual moni-
toring. *e number of cycles completed until all
nodes run out of energy during the data transfer
phase is known as network lifespan.

(c) *e number of dead nodes in relation to the number
of rounds: *e performance of the networks can be
measured by a factor that indicates the state of the
number of dead nodes as rounds pass. *e network
performance is considered to be increased when a
certain number of rounds are completed in com-
parison to the number of live nodes.

d) *roughput: It is the number of data packets suc-
cessfully transferred to the sink. *is is a recurrent
parameter for nurturing the quality of services (QoS)
to ensure the network’s resilience. *e single eval-
uation of network endurance is insufficient for
obtaining the best of the best. As a result, the net-
work’s performance and the QoS parameter improve
network performance while also boosting the
trustworthiness of the suggested routing scheme.

(e) *e remaining energy of the network: *e network’s
total energy eventually decreases due to the energy
consumed by nodes while connecting with other
nodes or with the sink as data transmission prog-
resses.*is measure aids in revealing the total energy
status of nodes after each round.

*is section describes the simulation environment used
to simulate the GAOC [38] and OptiGACHS-StSS [38]
protocols. *e simulation programme MATLAB version
2016 is used for simulation, which runs on Windows 10 and
has an Intel Core i7 CPU 540 processor running at 3.74GHz
and 8GB of RAM. A network of 100m × 100m is simulated
with 100 number of nodes, with 70 J energy homogeneous
and heterogeneous nodes distributed at random. *e n1
nodes have initial energy of 0.5 Joules, the fraction of n3 and
n2 nodes is ω � 2, ψ � 1, respectively, and the number of
n3 and n2 nodes is J � 0.1 and J0 � 0.2, respectively.*e Eefs,
Eamp, Eda, and d0 are the amplification energy for d ≤ d0,
amplification energy for d > d0, data aggregation energy
consumption, and threshold distance parameter which are
10pJ/bit/m2, 0.0013 pJ/bit/m4, 5nJ/bit/signal, and 87 m,
respectively. *e search agents, number of rounds, confi-
dence interval, and data packet size are considered as 80,
1000, 95%, and 2000 bits, respectively. *e analysis of ho-
mogeneous networks is given as follows.

5.1. Analysis of Stability Period. As shown in Figure 2, the
first node in the proposed protocol depletes its energy after
5176 rounds, but in OptiGACHS-StSS [38] and GAOC [38]
protocols, the first node consumes its energy after 4035 and
3784 rounds, respectively. Compared to the OptiGACHS-
StSS [38] and GAOC [38] protocols, the proposed protocol
leads to a massive improvement in the stability period of
28.27 percent and 37.84 percent, respectively. Unlike the
protocols OptiGACHS-StSS [38] and GAOC [38], which are
considered for comparison, the proposed protocol ensures
optimal energy-efficient CH selection, which improves the
stability period. *e addition of energy-efficient fitness
factors in the fitness function formulation is a significant
reason for the improvement in the stability period. Distance
is taken into account. *e use of an energy factor in the
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selection of CH helps to avoid uneven and sudden energy
usage while also aiding in energy conservation. Furthermore,
the node density factor guarantees that the nodes and sink
have the shortest intracluster distance.

5.2. Network Lifetime. *e proposed method covers 20429
cycles, whereas OptiGACHS-StSS [38] and GAOC [38]
protocols cover 12426 and 12176 rounds, respectively, before
total energy exhaustion of all nodes in the network, as shown
in Figure 3. Compared to the OptiGACHS-StSS protocol, the
proposed protocol has 8003 additional cycles, resulting in a
64.40 percent increase in network lifespan. Furthermore,
compared to the GAOC [38] protocol, the proposed pro-
tocol improves network lifespan by 67.78 percent,
respectively.

*e energy-efficient fitness characteristics taken into
account for the selection of CH are credited with this im-
provement. *e node density factor lowers the communi-
cation cost of a cluster’s sensor nodes. Because the node
density factor promotes the CH selection of a node that is
surrounded by more nearby nodes, this is the case. As a
result, overall network energy is conserved, resulting in a
more extended network lifetime. According to the primary
data, the proposed protocol covers a more significant
number of rounds at various phases of alive nodes. It is
attributed to the optimal CH chosen under TSA operation
having a lower energy consumption.

5.3. Network Remaining Energy. *is indicator measures the
pace at which the network’s energy is consumed. As data
transmission progresses, the network’s energy consumption
decreases. Compared to OptiGACHS-StSS [38] and GAOC
[38] protocols, the proposed protocol performs better in that
it covers a higher number of cycles when data transmission is
in progress, as seen in Figure 4. *e proposed protocol
covers the most rounds during network operation, whereas
GAOC [38] covers the least amount of rounds. *is is the
case because energy-efficient CH selection costs a small
amount of energy across all nodes. Furthermore, intracluster
communication conserves node energy in the most effective
way possible.

5.4.Number of CHper Round. Figure 5 shows the number of
cluster heads with respect to the number of rounds. *e
number of CHs varies up to 16 in the proposed method
along with the OptiGACHS-StSS [38] and GAOC [38]
procedures.*e rate of generating the CH per round is more
constrained in the proposed method, i.e., 15 to 16, whereas it
is varied 10-12 in the case of OptiGACHS-StSS [38] and
GAOC [38] procedures.

5.5. ?roughput. As shown in Figure 6, the throughput of
the proposed protocol is significantly increased, as it suc-
cessfully sends 9.1 × 105 data packets, whereas GAOC [38],
respectively, transmits 4.4 × 105 and 4.5 × 105 data packets.
*e proposed protocol enhances throughput by 98.24
percent and 102.67 percent, respectively, compared to
OptiGACHS-StSS [38] and GAOC [38] procedures, as seen
in the throughput comparison study. *is improvement can
be attributed to the network’s optimal CH selection, which
also aids in network lifetime. As a result, nodes send data
packets for extended periods, dramatically increasing
throughput.

Analysis of the heterogeneous networks is given as
follows: As shown in Figure 7, the first node in the proposed
protocol depletes its energy after 7188 rounds, but in
OptiGACHS-StSS [38] and GAOC [38] protocols, the first
node consumes its energy after 6607 and 6107 rounds, re-
spectively. Compared to the OptiGACHS-StSS [38] and
GAOC [38] protocols, the proposed protocol leads to a
massive improvement in the stability period of 8.79 percent
and 17.70 percent, respectively. Unlike the protocols
OptiGACHS-StSS [38] and GAOC [38], which are con-
sidered for comparison, the proposed protocol ensures
optimal energy-efficient CH selection, which improves the
stability period. *e addition of energy-efficient fitness
factors in the fitness function formulation is primary in
enhancing the stability period. Distance is taken into ac-
count. Using an energy factor in the selection of CH helps
avoid uneven and sudden energy usage while also aiding in
energy conservation. Furthermore, the node density factor
guarantees that the nodes and sink have the shortest
intracluster distance.

5.6. Network Lifetime. *e proposed method covers 25572
cycles, whereas OptiGACHS-StSS [38] and GAOC [38]
protocols cover 21311 and 19487 rounds, respectively, before
total energy exhaustion of all nodes in the network, as shown
in Figure 8.

Compared to the OptiGACHS-StSS protocol, the pro-
posed protocol has 4261 additional cycles, resulting in a
19.99 percent increase in network lifespan. Furthermore,
compared to the GAOC [38] protocol, the proposed pro-
tocol improves network lifespan by 31.22 percent, respec-
tively. *e energy-efficient fitness characteristics taken into
account for the selection of CH are credited with this im-
provement. *e node density factor lowers the communi-
cation cost of a cluster’s sensor nodes. Because the node
density factor promotes the CH selection of a node that is
surrounded by more nearby nodes, this is the case. As a
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Figure 2: First, half and last node dead information for the GAOC
[38], OptiGACHS-StSS [38], and proposed method.
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result, overall network energy is conserved, resulting in a
more extended network lifetime.

5.7. Network Remaining Energy. *is indicator measures the
pace at which the network’s energy is consumed. As data
transmission progresses, the network’s energy consumption
decreases. Compared to OptiGACHS-StSS [38] and GAOC
[38] protocols, the proposed protocol performs better in that
it covers a higher number of cycles when data transmission is
in progress, as seen in Figure 9. *e proposed protocol
covers the most rounds during network operation, whereas
GAOC [38] covers the least amount of rounds. *is is the
case because energy-efficient CH selection costs a small
amount of energy across all nodes. Furthermore, intracluster

communication conserves node energy in the most effective
way possible.

5.8. Number of CH per Round. Figure 10 shows the number
of cluster heads with respect to the number of rounds. *e
number of CHs varies up to 16 in the proposed method
along with the OptiGACHS-StSS [38] and GAOC [38]
procedures. *e rate of generating the CH per rounds is
more constrained in the proposed method, i.e., 15 to 16
whereas it is varied 10-12 in the case of OptiGACHS-StSS
[38] and GAOC [38] procedures.

5.9. ?roughput. As shown in Figure 11, the throughput of
the proposed protocol is significantly increased, as it
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Figure 8: Number of alive nodes vs. number of rounds for heterogeneous networks.
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successfully sends 9.2 × 105 data packets, whereas GAOC
[38], respectively, transmits 6.8 × 105 and 6.9 × 105 data
packets. *e proposed protocol enhances throughput by
35.29 percent and 33.33 percent, respectively, compared to
OptiGACHS-StSS [38] and GAOC [38] procedures, as seen

in the throughput comparison study. *is improvement can
be attributed to the network’s optimal CH selection, which
also aids in network lifetime. As a result, nodes send data
packets for extended periods, dramatically increasing
throughput.
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Figure 10: Number of cluster heads vs. number of rounds for heterogeneous networks.
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Figure 9: Remaining network energy vs. number of rounds for heterogeneous networks.
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6. Conclusion

*is paper proposes an optimized artificial intelligence
system using IoT biosensors networking for healthcare
problems, efficiently collecting and transmitting the data
from the deployed sensor nodes. *is work has discussed
an optimized tunicate swarm algorithm with the fitness
parameters such as distance, proximity, number of
neighbors surrounded of a node, and various energies. *e
proposed protocol leads to network stability compared to
OptiGACHS-StSS [38] and GAOC [38] protocols to a
massive improvement in stability period of 28.27 percent
and 37.84 percent, respectively. *ere are many reasons for
such modification, which are as follows: first, the addition
of energy-efficient fitness factors like distance, energy, and
proximity in the fitness function formulation. Secondly,
using an energy factor in the selection of CH helps avoid
uneven and sudden energy usage while also aiding in
energy conservation. Furthermore, intracluster commu-
nication conserves node energy in the most effective way
possible.
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