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The formation and decomposition of inclusion compounds with a solid-solid phase

transition may be very selective to the guest molecular structure. This selectivity may

function in essentially different ways than defined by the classical concept of molecular

recognition, which implies the preferential binding of complementary molecules. Solid

inclusion compounds may take part as an initial or/and final state in several processes of

different types summarized in this review, which selectivity is boosted by cooperativity of

participating molecular crystals. Some of these processes resemble switching electronic

devices and can be called smart giving practically absolute molecular recognition.

Keywords: molecular recognition, selectivity, inclusion compound, clathrate, phase transition

INTRODUCTION

Molecular recognition of neutral molecules is one of the key problems in chemical technologies
and in analytical and biotechnological applications (Reinhoudt, 2013; Persch et al., 2015; Shu et al.,
2018). To reach a sufficient selectivity, host compounds with very complex structure are synthesized
(Ariga et al., 2012; Zhang et al., 2019) to fit the well-known key-to-lock concept of molecular
recognition formulated by Fischer (1894). This concept later developed in supramolecular
chemistry is based on complementarity of two interacting molecules, where the host interacts with
guest cooperatively through several more or less strong coordinate, donor-acceptor, and hydrogen
bonds having a specific spatial arrangement (Joyce et al., 2010; Sonnenberg et al., 2012). The most
studies of molecular recognition are conducted in liquid solutions (Ariga et al., 2012; Persch et al.,
2015; Shu et al., 2018; Zhang et al., 2019) and perform a sufficient selectivity only if guest forms at
least two such bonds with host (Yao et al., 2018).

This review describes the possible alternatives to the classical key-to-lock principle with a
higher selectivity of molecular recognition. These alternatives are based on cooperativity of phase
transitions, which adds up the small differences in molecular structure of different included guests.
Some of the described recognition principles can be called smart because they resemble the function
of electronic devices.

Quantitatively, the cooperativity of phase transition at guest inclusion by solid host can
be seen in a stepwise sigmoidal shape of guest sorption isotherm (Gorbatchuk et al., 1997a;
Dewa et al., 1998). According to the Gibbs phase rule, a sorption isotherm in system with two
independent components (guest and host) should have a threshold concentration, vapor pressure
or thermodynamic activity of guest corresponding to formation of three phases of guest, host,and
clathrate (inclusion compound) at constant temperature, Figure 1A (Gorbatchuk et al., 2002).
Below this threshold activity, the guest is not included, and below and above this threshold the
composition of the solid phase does not change.
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FIGURE 1 | Stepwise inclusion selectivity of solid hosts. (A) Stepwise selectivity by inclusion Gibbs energy; (B) crystallization selectivity of an amorphous host;

(C) stepwise size exclusion effect; (D) inversed size exclusion effect (“anti-sieve”).

In solid state, this phase transition is observed if the initial
host is non-porous (Gorbatchuk et al., 2002). If the host has a
permanent porosity combined with flexible structure, like that
of some metal organic frameworks (MOFs) (Hiraide et al., 2016;
Engel et al., 2017) or silicalites (DeJaco et al., 2019), the initial part
of sorption isotherm may have the shape of Langmuir isotherm
followed by a sigmoidal step. This step is called the gate-opening
or breathing (Afonso et al., 2012; Lee et al., 2019). A similar
cooperative phenomena were observed for biological objects, e.g.,
for oxygen binding by aqueous solution of hemoglobin (Yuan
et al., 2015).

The sigmoidal isotherms of guest inclusion by solid host
and related cooperativity of guest release from the inclusion
compound may boost the selectivity of these processes.
Depending on the initial and final states of host, several specific
types of selectivity may be observed, which are described in
this review.

CRYSTALLIZATION SELECTIVITY OF
AMORPHOUS HOST

Selectivity of guest inclusion may be visualized if the initial state
of host is amorphous. The amorphous state is a high-energy
state, so its transition to the crystalline state may be spontaneous
(Faizullin et al., 2019). The activation of this process with guest
vapors may be selective. Such selectivity was observed visually for
a compact glass of calixarene (Gataullina et al., 2015, 2017) and

using an atomic force microscopy for thin amorphous films of
dipeptides (Ziganshin et al., 2015). Amorphous dipeptides may
have three options in contact with guest vapors depending on the
guest molecular structure: (1) crystallization, (2) gel formation,
(3) intact host morphology (Ziganshin et al., 2017).

The amorphous calixarenes in the form of a compact
transparent glass can be used to detect visually the composition
of a binary guest mixture, where only one (good) component has
an ability to induce the host crystallization. The mixture should
have the concentration of this guest above a certain threshold
value for this crystallization to be apparent, Figure 1B. For
example, glassy tert-butylthiacalix[4]arene derivative crystallizes
in contact with vapors of the aqueous solution of ethanol if its
concentration is above 24 vol.% (Gataullina et al., 2015). The
glass of the same calixarene in another conformation allows
detecting 1% vol. of benzene in hexane (Gataullina et al., 2017). A
similar crystallization behavior was observed for glassy polymers
(Gao et al., 2012), which have a less pronounced concentration
threshold for the good component in binary solvent due to the
incomplete crystallization.

SELECTIVITY BY CAPACITY AND GIBBS
ENERGY OF GUEST INCLUSION

The guest inclusion by the host with the phase transition
complicates much the structure-property relationships for
this process. The related selectivity can be described using
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approximation parameters of sigmoidal isotherms of guest
inclusion, Figure 1A. These isotherms may be fitted with Hill
equation adjusted to “guest uptake A vs. relative vapor pressure
P/P0” coordinates (Gorbatchuk et al., 1997a):

A = SC(P/P0)
N/[1+ C(P/P0)

N] (1)

where S is guest contents in a saturated inclusion compound
(clathrate) in mol of guest per 1mol of host, C is a sorption
constant, N is a cooperativity parameter, which in ideal case of
phase transition should have an infinitely high value, N→ ∞.
The integration of sigmoidal sorption isotherms fitted by this
equation gives the inclusion Gibbs energy 1Gc of guest transfer
from its pure liquid or solid state to the saturated inclusion
compound (Gorbatchuk et al., 1999a):

1Gc = RT

∫ 1

0
ln (P/P0)dY (2)

1Gc = RT lna0.5S = −RT (lnC)/N (3)

Here Y = A/S is the extent of host saturation with guest, a0.5S is
the guest activity P/P0 at Y = 0.50.

The thermodynamics defined by Equations (1–3) means the
stepwise selectivity of guest inclusion. If two guests have very
small difference in molecular structure, but the first guest has
sorption constant C slightly below unity and for the second
one this parameter should be slightly above this level, only
the first guest will be included, Figure 1A. As a result, a high
selectivity of guest inclusion may be observed discriminating
the close homologs. For example, tert-butylthiacalix[4]arene
includes methanol from the vapor phase, but not ethanol
(Galyaltdinov et al., 2012).

The same inclusion thermodynamics may produce a stepwise
change in the guest inclusion capacity S at the variation of the
guest molecular structure, Figure 1C. A good example is tert-
butylcalix[4]arene including a lot of guests inside its molecular
cavity (Ripmeester et al., 2006) with a regular stepwise size
exclusion effect between the inclusion capacity S and guest
molar refractionMRD, which is a good molecular size parameter
(Gorbatchuk et al., 1999b). The exclusions are the guests,
which can break the host intramolecular cyclic H-bond, like
1-butylamine (Udachin et al., 2002).

In those cases, where also interstitial guest inclusion
is possible, the structure-property relationship for the
host inclusion capacity S may be more complex. tert-
Butylcalix[5]arene with such structure of inclusion compounds
has a very irregular relationship between S and MRD values
(Ziganshin et al., 2007). The same was observed for diol host
(Gorbatchuk et al., 2000), adamantylcalix[4]arene (Yakimova
et al., 2008), and tert-butylcalix[6]arene (Safina et al., 2013).

Rather regular size exclusion effect may be expected for
hosts with strong intermolecular H-bonding in their crystals.
This was observed for dry hydrophilic receptors α-cyclodextrin
(Gatiatulin et al., 2018) and β-cyclodextrin (Gatiatulin et al.,
2016). In both cases, hydrophilic guests are included better than
hydrophobic ones. In this relation, the inclusion selectivity of
dry cyclodextrins is similar to those of dry glassy hydrophilic

receptors like human serum albumin (Gorbatchuk et al., 1997b,
1999c), β-lactoglobulin (Mironov et al., 2003), and cross-linked
polyacrylamide derivative (Gorbatchuk et al., 2004).

The second type of host selectivity to the guest size is an
inverted size exclusion or “anti-sieve” effect, where the host
prefers larger molecules, while the smaller are not included,
Figure 1D. Such selectivity was observed for thiacalix[4]arene,
which may include guests into the interstitial space formed by
too many calixarene macrocycles where a sufficient driving force
apparently needed to push them aside (Galyaltdinov et al., 2014).

The solid-phase transition at guest inclusion by solid host
implies also the host selectivity by inclusion threshold of
guest thermodynamic activity, and accordingly, by inclusion
Gibbs energy 1Gc, Figure 1A. The range of the observed 1Gc

values depends much on the size of host cavity that does not
require work to be created (Gorbatchuk et al., 2002; Gatiatulin
et al., 2018). For example, for the tert-butylcalix[4]arene, which
includes the most guests studied inside its molecular cavity
(Ripmeester et al., 2006; Ramon et al., 2011), there is a significant
variation in 1Gc from −1.2 to −8.9 kJ/mol for different
guests (Gorbatchuk et al., 2002). tert-Butylthiacalix[4]arene
with the same type of guest inclusion but with a smaller
effective cavity has the 1Gc values from −0.4 to −2.0 kJ/mol
(Gorbatchuk et al., 2002). tert-Butylcalix[5]arene (Ziganshin
et al., 2007), adamantylcalix[4]arene (Yakimova et al., 2008), and
β-cyclodextrin (Gorbatchuk et al., 2013), which may include
guests into interstitial space of their crystal packing, have an
intermediate position by this parameter: with 1Gc less negative
than −4.6, −3.6 and −3.8 kJ/mol, respectively. If the interstitial
inclusion is possible, the higher values of inclusion capacity S
corresponds mostly to the less negative 1Gc values (Ziganshin
et al., 2007; Yakimova et al., 2008).

This type of selectivity explains the described above stepwise
size exclusion effect in the guest inclusion by solid hosts.
When the guest molecule is too big for the host molecular
cavity, the structure-property relationship may have two options.
Either there is a stepwise change to no inclusion, e.g., for tert-
butylthiacalix[4]arene (Gorbatchuk et al., 2002), or a stepwise
change to a different packing pattern with a lower guest content
observed for tert-butylcalix[4]arene (Gorbatchuk et al., 1999b).
One should not compare the selectivity by inclusion Gibbs energy
1Gc and the selectivity by host-guest association constants Ka

in liquid solutions from NMR titration experiments, which may
give a huge overestimation ofKa values (Gorbatchuk et al., 2017).

SELECTIVITY OF INCLUSION
IRREVERSIBILITY

Cooperativity of the guest inclusion process creates the
additional selectivity options that can be used to enhance the
efficient molecular recognition. Molecular structure of host
and guest may have a strong impact also on the process
of guest release, Figure 2A, e.g., in host regeneration of
the sensor experiment. Being kinetically controlled through
a strong sorption/desorption hysteresis (Dewa et al., 1998),
guest release from the host-guest clathrate may have a
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FIGURE 2 | Specific types of molecular recognition using solid-solid phase transitions. (A) Selectivity by inclusion irreversibility; (B) selectivity of guest exchange;

(C) selectivity by number of inclusion steps; (D) selectivity by number of decomposition steps; (E) selectivity by host memory.

different structure-property relationship than guest inclusion,
which is under a thermodynamic control described above.
This irreversibility may be detrimental in sensor experiments
(Yakimova et al., 2008; Gorbatchuk et al., 2017), and the

undesired history effect may be removed by high-temperature
treatment of the host layer giving a normal sigmoidal shape of
sorption isotherm by sensor unit (Matsuura et al., 2000).

The dependence of inclusion irreversibility on the guest
molecular structure may be used to increase the selectivity of
sensor experiment. A good example is the vapor sensor with a

thin layer of adamantylcalix[4]arene on the quartz microbalance

(Yakimova et al., 2008). The first run of this sensor experiment at
25◦C and the second run after the host intermediate regeneration

at 45◦C by air purge give the sensor responses R1 and R2,

respectively. The ratio of these responses R2/R1 is mostly

different for different guests being a parameter of guest inclusion
reversibility with R2/R1 ≤ 1. Using this parameter helps to
increase the selectivity of single sensor analysis and to ensure
recognition of more individual guests.

SELECTIVITY OF GUEST EXCHANGE IN
INCLUSION COMPOUND

Along with the inclusion selectivity in binary host-guest systems,
the selectivity of guest exchange in the solid phase of inclusion
compound may be used for molecular recognition, Figure 2B.
An efficiency of this exchange may depend on guest molecular
structure in a different way than that of guest inclusion
in binary system (Galyaltdinov et al., 2012; Amombo Noa
et al., 2016). This gives an additional dimension to molecular
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recognition of guest compounds using the same host. For
example, for thiacalix[4]arene (Galyaltdinov et al., 2014) and
tert-butylthiacalix[4]arene (Galyaltdinov et al., 2012; Morohashi
et al., 2019), the guest exchange increases the range of included
compounds thus decreasing the inclusion selectivity. Still, this
selectivity remains essentially stepwise. In some cases, the guest
capable of inclusion in binary system cannot replace another
guest in inclusion compound.

The guest inclusion by the host with a partial exchange of the
already included water is a standard experimental procedure for
solid hydrophilic hosts, such as native cyclodextrins (Ho et al.,
2011, 2016; Gatiatulin et al., 2019) that do not include large
hydrophobic guests in binary host-guest systems in the absence of
water (Gorbatchuk et al., 2013; Gatiatulin et al., 2018). To activate
this inclusion without water, the guest exchange in anhydrous
inclusion compounds of cyclodextrins may be used (Gorbatchuk
et al., 2013; Gatiatulin et al., 2014), which selectivity and efficiency
depends much on molecular structure of the leaving guest. For
example, 1-propanol and propionitrile cannot replace water in
the saturated β-cyclodextrin hydrate but can exchange benzene,
ethanol and acetonitrile in anhydrous clathrates with this host
(Gorbatchuk et al., 2013; Gatiatulin et al., 2016).

SELECTIVITY BY A NUMBER OF STEPS OF
GUEST INCLUSION AND RELEASE

The geometric constraints for guest inclusion changing with the
variation of guest content in inclusion compound (clathrate) may
give another type of selectivity. This is the selective formation
of stable intermediate clathrates, Figures 2C,D, which can be
seen in two-step sorption isotherms (Ziganshin et al., 2007;
Safina et al., 2010) and thermogravimetric (TG) curves (Yakimov
et al., 2008). Sorption isotherms and TG curves of this type
are relatively rare. So for tert-butylcalix[4]arene (Ziganshin
et al., 2007), tert-butylcalix[5]arene (Ziganshin et al., 2007),
and adamantylcalix[4]arene (Yakimova et al., 2008), two-step
sorption isotherms or TG curves are observed for 2 out of 15,
3 out of 8, 2 out of 7 studied guests, respectively.

An example of absolute molecular recognition of benzene
by a number of guest inclusion steps was observed for
tetra(ethoxycarbonyl)methoxy thiacalix[4]arene (Safina et al.,
2010). This calixarene performs a two-step inclusion only
for benzene in experiments with quartz-crystal microbalance
sensors, while all other studied guests are included in one
step. This type of selectivity was observed also for benzene in
mixtures with its close homologs. It fundamentally differs from
the classical key-to-lock model.

SMART MOLECULAR RECOGNITION:
SELECTIVITY BY HOST MEMORY FOR
PREVIOUSLY INCLUDED AND RELEASED
GUEST

The irreversibility of guest inclusion and release with solid-solid
phase transition can be a source of one more type of selectivity.
This is selectivity of guest-induced polymorphism, which is a

well-studied phenomenon used for screening of polymorphs
(Braga et al., 2010; Petkune et al., 2012; Newman, 2013; Lee,
2014). A corresponding screening technique involves preparing
the inclusion compound and removing the included guest (Lee
et al., 2013; Gataullina et al., 2017). This is a smart process, where
the host may remembermolecular structure of a released guest by
formation of a specific metastable polymorph (Gataullina et al.,
2015).

An ideal case for molecular recognition is the host
ability to form two polymorphs: stable and metastable ones,
Figure 2E, where the metastable polymorph is formed after
inclusion and release of only one guest and not of any other.
Such an absolute selectivity for chloroform and methanol
was found for N-(2-hydroxyethyl)carbamoylmethoxy) tert-
butylthiacalix[4]arene (Safina et al., 2011) and for tert-
butylthiacalix[4]arene (Galyaltdinov et al., 2012), respectively.
For tert-butylthiacalix[4]arene, metastable polymorph is formed
from its clathrate prepared only by solid-phase exchange of
included 1,2-dichloroethane with methanol. In both cases,
the formation of metastable polymorph can be detected by
exothermic solid-solid phase transition of guest-free host in
simultaneous experiment of TG and differential scanning
calorimetry (DSC).

For comparison, tert-butylcalix[6]arene is less selective
breaking the studied guest compounds into two groups:
(1) remembered guests inducing formation of metastable
polymorphs, and (2) non-remembered guests without
such ability (Yakimov et al., 2008). This selectivity of tert-
butylcalix[6]arene may be used in the analysis of binary mixtures
if at least one of their components is from the first group.
The efficiency of this analysis was demonstrated using DSC
for the binary mixtures with one (Safina et al., 2013) and two
(Gabdulkhaev et al., 2016) remembered components.

Guest-induced metastable polymorphs of calixarenes capable
of an exothermic solid-phase transition have also a potential
in 100% separation of binary mixtures of close homologs
(Morohashi et al., 2017; Morohashi and Hattori, 2018) or
compounds with close boiling points (Gabdulkhaev et al., 2016).

The phenomenon of polymorphism is more variable than the
examples given in this review. In many cases, metastability of a
polymorph is in its lower melting point than that of the stable
form. Such polymorphs may have more than one melting point
with an intermediate exothermic cold crystallization to the more
stable forms (Gataullina et al., 2017, 2019). The formation of
such polymorphs by guest inclusion and release may be also
a kind of molecular recognition when it is selective enough,
but in this case the problem is to find sufficient experimental
proofs that the host treatment with different guests gives
different polymorphs.

CONCLUSIONS

Cooperativity of guest inclusion by solid host with phase
transition provides specific types of selectivity for neutral guest
compounds that cannot be observed in liquid solutions. In
some cases, this selectivity gives practically absolute molecular
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recognition and may be called smart because it uses the host
polymorphism with a very selective and easily detectable
memory of the guest included and released. Besides, of
the same molecular recognition level is the very selective
formation of stable intermediate inclusion compounds,
which may be detected by mass-sensitive sensor and in
thermogravimetric curves. This process resembles a smart switch
of the initial host crystals recognizing only one guest or few
guest compounds.

The specific types of structure-property relationships and
molecular recognition caused by phase transition at guest
inclusion and release may be expected for any solid host capable
of clathrate formation. Still, discovery of the host-guest systems

with a genuine selectivity for neutral molecules requires an
extensive screening, which success cannot be predicted.
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