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Abstract: Lactobacillus acidophilus is a common kind of lactic acid bacteria usually found in the human
gastrointestinal tract, oral cavity, vagina, and various fermented foods. At present, many studies have
focused on the probiotic function and industrial application of L. acidophilus. Additionally, dozens of
L. acidophilus strains have been genome sequenced, but there has been no research to compare them
at the genomic level. In this study, 46 strains of L. acidophilus were performed comparative analyses
to explore their genetic diversity. The results showed that all the L. acidophilus strains were divided
into two clusters based on ANI values, phylogenetic analysis and whole genome comparison, due to
the difference of their predicted gene composition of bacteriocin operon, CRISPR-Cas systems and
prophages mainly. Additionally, L. acidophilus was a pan-genome open species with a difference in
carbohydrates utilization, antibiotic resistance, EPS operon, surface layer protein operon and other
functional gene composition. This work provides a better understanding of L. acidophilus from a
genetic perspective, and offers a frame for the biotechnological potentiality of this species.

Keywords: Lactobacillus acidophilus; comparative genomics; CRISPR-Cas; bacteriocin; antibiotic
resistance

1. Introduction

Lactobacillus acidophilus, a Gram-positive bacterium with low GC content (34–37%),
belongs to phylum Firmicutes, class Bacilli, order Lactobacillales, Family Lactobacillaceae,
and Genus Lactobacillus. L. acidophilus, originally isolated from the infant feces in the 1900s
and mostly found in the human gastrointestinal tract, oral cavity, vagina, and various
fermented foods. Additionally, NCFM (a typical L. acidophilus strain) is one of the most well
commercially and clinically well-researched probiotics. Since it was isolated, it has been
studied and found to have a variety of beneficial properties for gastrointestinal and general
health. Alleviating inflammatory bowel disease through reducing cytokines is the most
well-known benefit of L. acidophilus [1–3]. Additionally, other health-associated functions
of L. acidophilus have also attracted much attention, such as in alleviating cancer [4,5],
regulating immunity [6,7], reducing cholesterol [8], and relieving diarrhea [9]. According
to recent reports, it had been found that L. acidophilus could directly or indirectly interfere
with the intestinal microbiota or host metabolism by some active substances, such as
extracellular polysaccharides (EPS), surface layer protein (SLP) and bacteriocin.

Microorganisms 2021, 9, 1992. https://doi.org/10.3390/microorganisms9091992 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-7204-2259
https://orcid.org/0000-0002-6724-7011
https://orcid.org/0000-0003-4876-8839
https://orcid.org/0000-0002-9192-4684
https://orcid.org/0000-0002-1347-3718
https://doi.org/10.3390/microorganisms9091992
https://doi.org/10.3390/microorganisms9091992
https://doi.org/10.3390/microorganisms9091992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9091992
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms9091992?type=check_update&version=2


Microorganisms 2021, 9, 1992 2 of 23

With the development of high-throughput sequencing technology and comparative
genomics approaches, numerous reports focused on genomes of lactobacilli, such as Lactica-
seibacillus rhamnosus [10], Lacticaseibacillus paracasei [11], Limosilactobacillus reuteri [12,13], Lig-
ilactobacillus salivarius [14], Limosilactobacillus fermentum [15], Limosilactobacillus mucosae [16],
and Ligilactobacillus ruminis [17]. These studies used comparative genomics methods to
reveal general genome characteristics, phylogenetic relationships and functional genes
related to niche adaptation and probiotic activity of different strains, which let researchers
have a new understanding of the metabolic capabilities and function roles of lactobacilli at
the genetic level.

Although L. acidophilus possesses many probiotic characteristics, for instance, L. aci-
dophilus NCFM, ATCC 4356 and ATCC 53544 were well-known probiotics and had been
genomic sequenced; rare research on comparative genomics of this species has been re-
ported [18,19].

In current researches, the probiotic functions of different L. acidophilus strains showed
both similarities and differences which might be resulted from the diversification of L. aci-
dophilus. Analysis of comparative genomes is possible to excavate the diversification of this
species to expose the correlation between genotypes and phenotypes, and to predict the
potential probiotic functions for new L. acidophilus isolates strains based on past researches.
Hence, the purpose of this study was to sequence more genomes of L. acidophilus and to
carry out comparative genomics analyses. These works will consolidate the foundation for
future exploration of L. acidophilus, especially some typical physiological characteristics
and synthetic beneficial metabolites.

2. Materials and Methods
2.1. Bacterial Strains Culturing and Genome Sequencing

Eleven strains of L. acidophilus were isolated from healthy human feces from different
regions of China (Table 1), then 16S rRNA genes were sequenced for species identification.
Additionally, L. acidophilus CCFM137 is another strain deposited at the Culture Collection
of Food Microorganisms in Jiangnan University, Wuxi, China (CCFM). These 12 determined
L. acidophilus strains were cultured with de Man, Rogosa and Sharpe (MRS) medium in an
anaerobic workstation for 24 h [20] The draft genomes of these 12 strains were sequenced
by Majorbio BioTech Co. (Shanghai, China), and SOAPde novo and GapCloser were used
to assemble and fill the reads of draft genomes [21]. Additionally, another thirty four
publicly available genomes of L. acidophilus from the National Centre for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/) (accessed on 15 August 2021) were
used for comparison (Table 1).

Table 1. Source information, BioSample and general genome features of 46 L. acidophilus strains.

Strain BioSample Size(Mb) GC(%) CDS no. Source

ATCC 4356 SAMN03105773 1.9567 34.6 1730 Human
ATCC 4796 SAMN00001471 2.0205 34.7 1747 Human

ATCC 53544 SAMN07357495 1.99191 34.7 1773 Human
BIO6307 SAMN12856535 1.96977 34.6 1790 Unknown

CCFM137 SAMN19655193 1.951495 34.58 1904 Human
CIP 76.13 SAMEA2272342 1.95182 34.6 1741 Human

CIRM-BIA 442 SAMEA2272381 1.98699 34.7 1787 Dairy product
CIRM-BIA 445 SAMEA2272655 2.00201 34.6 1782 Dairy product

DS10_1A SAMN05583778 1.97072 34.6 1787 Commercial Probiotic Products
DS13_1A SAMN05583782 1.96427 34.6 1780 Commercial Probiotic Products
DS13_1B SAMN05583783 1.96393 34.6 1785 Commercial Probiotic Products
DS2_1A SAMN05583785 1.98202 34.6 1812 Commercial Probiotic Products
DS20_1 SAMN06464087 1.96947 34.6 1795 Commercial Probiotic Products
DS24_1 SAMN06464090 1.96837 34.6 1790 Commercial Probiotic Products

https://www.ncbi.nlm.nih.gov/
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Table 1. Cont.

Strain BioSample Size(Mb) GC(%) CDS no. Source

DS5_1A SAMN05583788 1.96883 34.6 1784 Commercial Probiotic Products
DS8_1A SAMN05583791 1.96757 34.6 1787 Commercial Probiotic Products
DS9_1A SAMN05583792 1.96901 34.6 1792 Commercial Probiotic Products

DSM 20079 SAMN06606133 2.00997 34.7 1760 Human
DSM 20242 SAMEA2272474 2.04786 34.7 1814 Unknown
DSM 9126 SAMEA2272239 1.99176 34.6 1790 Unknown

FAHWH11L56 SAMN19655182 1.975822 34.591 1881 Human
FCQHC4LH1 SAMN19655183 1.962741 34.569 1877 Human

FFJND6L5 SAMN19655184 1.960445 34.562 1878 Human
FFJND7L5 SAMN19655185 1.989652 34.581 1905 Human

FGSYC48L79 SAMN19655186 1.990393 34.662 1984 Human
FHNXY41L162 SAMN19655187 2.051142 34.733 2112 Human

FNMGHHHT12L40 SAMN19655188 1.992905 34.658 1894 Human
FSHXBX32L130 SAMN19655189 2.140788 34.893 2218 Human

FSI4 SAMN03274004 1.99197 34.7 1790 Fermented dairy product
FXJSW24L139 SAMN19655190 2.115801 34.647 2059 Human
FXJSW48L59 SAMN19655191 2.048808 34.753 2100 Human
FZJTZ18L25 SAMN19655192 2.115442 34.846 2170 Human
LA_AVK1 SAMN13198235 1.96274 34.6 1690 Unknown
LA_AVK2 SAMN13198280 1.96264 34.6 1690 Unknown

LA1 SAMN05631052 1.9912 34.7 1787 Fermented dairy product
La-14 SAMN02603216 1.99158 34.7 1781 Human

LA-G80-111 SAMN15165794 1.99198 34.7 1788 Unknown
LMG P-21904 SAMN07187785 1.96566 34.6 1780 Commercial Probiotic Products

NCFM SAMN02603047 1.99356 34.7 1760 Human
P2 SAMN07665576 2.04684 35.7 1904 Commercial Probiotic Products

s-13 SAMN15579847 1.96575 34.6 1778 Unknown
s-4 SAMN15579838 1.95327 34.6 1724 Unknown

UBLA-34 SAMN10136005 1.95104 34.6 1762 Fermented foods
WG-LB-IV SAMN04628015 1.95169 34.6 1780 Fermented dairy product

YT1 SAMN08142761 2.09254 34.7 1878 Unknown

The underline represented that draft genomes of these strains were sequenced in this study.

2.2. The Average Nucleotide Identity (ANI) Values and Phylogenetic Analyses

The ANI values of any two genomes were calculated through a python script (https:
//github.com/widdowquinn/pyani) (accessed on 19 January 2021)and the resulting matrix
was clustered and visualized using Seaborn, a Python data visualization library [22].

2.3. Pan-Genome and Core-Genome Analysis

Pan-genome and core-genome calculation of the L. acidophilus was performed using
PGAP-1.2.1 [23]. Curve fitting of the pan-genome and core-genome were performed
using a power-law regression based on Heaps’ law and an exponential regression model,
respectively [24,25]. PanGP software was used to conduct fitting and visualize the core-
and pan-genomes [26]. Venn diagram of core-genome and specific genome of those strains
was made by using Orthomcl software [27].

2.4. Phylogenetic Comparison

Orthologous sequences of those forty-six strains were extracted by Orthomcl-v2.0.9
software for clustering orthologous genes [28]. A phylogenetic tree was constructed using
the neighbor-joining (NJ) algorithm with default parameters in MEGA 7.0 software [29],
and the phylogenetic tree was decorated with Evolgenius (http://www.evolgenius.info/
evolview/) (accessed on 10 February 2021) [30].

https://github.com/widdowquinn/pyani
https://github.com/widdowquinn/pyani
http://www.evolgenius.info/evolview/
http://www.evolgenius.info/evolview/
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2.5. Whole Genome Comparison

Genome wide visualization of coding sequences identity among all strains was used
BLAST ring image to perform generator (BRIG). Additionally, L. acidophilus ATCC33323
was taken as a reference genome [31].

2.6. Genotype Analysis of Carbohydrate Metabolism

Those L. acidophilus genomes were annotated by HMMER-3.1, and the carbohydrate
active enzymes were analyzed by Carbohydrate Active Enzymes Database7 (CAZy) (http:
//www.cazy.org/) (accessed on 10 February 2021) [32,33]. Additionally, L. acidophilus strains
were clustered by software HEMI version 1.0.

2.7. Genotype Analysis of Antibiotic Resistance

The resistance gene identifier (RGI) software based on a comprehensive antibiotic
resistance database (CARD) was used to analyze the antibiotic resistance of all L. acidophilus
strains [34].

2.8. Prediction of the EPS and Surface Layer Protein Gene Operon

The sequences of those L. acidophilus strains were aligned with the EPS-encoding
operon by the basic local alignment search tool (BLAST) program [35]. The presence
of genes was determined based on the alignment fragment size and identity [36]. Easy
sequencing in PostScript (ESPript) online program was used to display the aligned se-
quences [37].

2.9. Prediction of Bacteriocin Operon

The genes for potential bacteriocin operons were mined by using BAGEL4 web-
server [38]. Additionally, BLASTP was used to analyze the domains of bacteriocin against
the non-redundant protein databases created by BLASTP based on the National Center for
Biotechnology Information (NCBI).

2.10. Identification of CRISPR-Cas Systems and Prophage

The CRISPRCasFinder with default parameters was used to identify the clustered
regularly interspaced short palindromic repeats (CRISPR) regions and CRISPR-associated
(Cas) proteins [39]. The PHASTER (PHAge Search Tool Enhanced Release) webserver was
used to identify and annotate the prophages within all the strains [40].

2.11. Ethics Statement

This study was approved by the Ethics Committee in Jiangnan University, China
(SYXK 2012-0002). All the fecal samples from healthy persons were for public health
purposes and these were the only human materials used in the present study. Written
informed consent for the use of their fecal samples was obtained from the participants or
their legal guardians. All of them conducted health questionnaires before sampling and
no human experiments were involved. The collection of the fecal sample had no risk of
predictable harm or discomfort to the participants.

3. Results
3.1. Genome Characteristics of L. acidophilus

In this study, 11 strains of L. acidophilus were isolated from human feces in different
areas in China (Table 2), and in total 46 genomes were compared in this study (Table 1).
The genome size of all the strains ranged from 1.95 Mb to 2.09 Mb, and the average size
was 1.98 Mb. The average G + C content and number of coding sequences was 34.66% and
1780, respectively. Compared with the strains isolated from humans, those from fermented
foods and commercial probiotic products possessed more coding sequences.

http://www.cazy.org/
http://www.cazy.org/
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Table 2. Host Information of 11 New Isolated L. acidophilus.

Strain Age Gender Modernization

FAHWH11L56 3 Female City
FCQHC4LH1 20 Male Rural

FFJND6L5 24 Male City
FFJND7L5 24 Female Rural

FGSYC48L79 NA NA Rural
FHNXY41L162 80 Female Rural

FNMGHHHT12L40 23 Female City
FSHXBX32L130 59 Female Rural
FXJSW24L139 2.3 Female Rural
FXJSW48L59 12 Female Rural
FZJTZ18L25 79 Male Rural

3.2. Pan-Genome and Core-Genome of L. acidophilus

Pan-genome is the general term for all the genes of a species. In this study, the genetic
diversity of L. acidophilus was shown by the core- and pan-genome curves. Additionally,
the curve presented an asymptotic trend (Figure 1a). The number of new gene cluster incre-
ments gradually decreased from 141 to 13 (Figure 1b). According to the regression equation
of the pan-genome, its size increased infinitely as new genomes were added sequentially,
which indicated the pan-genome of L. acidophilus could be considered as an open state,
which meant that the pan-genome size of species increased with the number of sequenced
genomes. With the equation of core-genome, there were approximately 1117 genes har-
bored in the core-genome of L. acidophilus (Figure 1a). The specific and homologous core
genes were represented by the Venn diagram among all the 46 L. acidophilus strains, which
showed that there were 1178 shared genes among all the strains. Additionally, the number
of distinctive genes for each L. acidophilus strain ranged from 1 to 180 (Figure 2).

Figure 1. Pan-genome and core-genome of L. acidophilus. (a) Pan-genome plot is represented by the accumulated number of
new genes against the number of genomes added. Core-genome plot is represented by the accumulated number of genes
attributed to the core-genomes against the number of added genomes. (b) The new gene cluster number plot shows the
changes in new genes of all strains genomes as the number of L. acidophilus strains increases.
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Figure 2. Venn diagram of L. acidophilus. The middle circle of the Venn diagram shows the number of homologous genes of
these 46 L. acidophilus. Additionally, every branch shows the number of their unique genes.

3.3. ANI, Phylogenetic Analyses and Whole Genome Comparison of L. acidophilus

ANI analysis is a common standard for species classification and clustering. A pre-
vious study found that in most lineages, there was a clear dividing line of ANI within
and between species, in which the ANI value of the same species was higher than 95%,
and the ANI value of different species was less than 95% [41]. The results showed that
all the 46 strains with ANI values above 97% belonged to L. acidophilus. However, all the
strains were significantly divided into two regions, in which a small region consisted of
FZJTZ18L25, FSHXBX32L130, FGSYC48L79, FHNXY41L162 and FXJSW28L59 and a large
region consisted of all the other 41 strains (Figure 3).
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Figure 3. ANI Heatmap of L. acidophilus. Proposed species cut-off boundary is above 97%, showing identity within
these strains.

A phylogenetic tree was performed based on the homologous genes of 46 L. acidophilus
genomes in order to analyze the phylogenetic relationship of L. acidophilus strains (Figure 4).
The phylogenetic tree revealed that all the 46 L. acidophilus strains formed three branches,
which were rooted by L. gasseri ATCC33323 as an outgroup, and the L. acidophilus strains
were divided into three clades (clade A, B and C). Clade A and clade B included six strains
which could synthesize Helveticin-J, while all the strains in clade C predictably had the
Operon Acidocin_J1132_beta_peptide_N-terminal. Interestingly, the composition of clade
a on phylogenetic tree was the same as the small region in the ANI heatmap.
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Figure 4. Phylogenetic analysis of L. acidophilus. Phylogenetic tree showing the relationship among
46 L. acidophilus strains with L. gasseri ATCC33323 as outgroup. The tree was grouped into three
clades signed by different colors of lines (red represented clade A, blue represented clade B and
black represented clade C). The dots represented strains that contained the operon of bacteriocins.
In specific, dark purple dots represented Acidocin_J1132_beta_peptide_N-terminal, claret dots
represented Bacteriocin_helveticin_J, orange dots Enterolysin_A, mazarine dots Helveticin-J, green
dots Lanthipeptide. Additionally, circular dots represented one bacteriocin gene operon while square
dots represented two. Orange font represented strains isolated in this study, black represented
obtained from NCBI. Pink frames represented strains that contained a complete CRISPR/Cas system.
Wathet highlight represented strains contained intact prophage.

With L. acidophilus NCFM as a referenced genome, the whole genomes of all the
46 strains were analyzed through BRIG software. Most strains had no significant difference
in their genome composition, apart from the clade A and small region clustered strains
FZJTZ18L25, FXJSW28L59, FSHXBX32L130, FHNXY41L162, FGSYC48L79 and YT1, whose
genome sequences located at rings 2, 4, 5, 7, 8 and 14, counting from the outside in the
ring image (Figure 5). Those six genetically similar strains had similar gene deletion, such
as ftsK, celB, repB and marR, which encoded putative cell division proteins, cellobiose-
specific PTS IIC, putative replication initiator proteins and transcriptional regulators,
respectively. Additionally, some genes related to ribose encoding including rbsB, rbsK and
rbsR were absent.
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3.4. Genotype Analysis for Carbohydrates Utilization in L. acidophilus

In this study, the CAZy database was utilized to analyze the 46 L. acidophilus genomes
in order to explore how those strains using different carbohydrates. The results revealed
that there were 54 genes encoding predicted enzymes which could activate carbohydrates,
including 24 glycoside hydrolases (GH) families, 12 glycosyl transferases (GT) families,
three auxiliary activities (AA) families, 9 carbohydrate-binding modules (CBM) families
and six carbohydrate esterases (CE). GH1 (β-glucosidase, EC 3.2.1.21), GH3 (β-glucosidase,
EC 3.2.1.21), GH13_20 (α-amylase, EC 3.2.1.1), GH13_31 (α-amylase, EC 3.2.1.1), GH25
(lysozyme, EC 3.2.1.17), GH73 (lysozyme, EC 3.2.1.17), GT2 (cellulose synthase, EC 2.4.1.12),
GT4 (sucrose synthase, EC 2.4.1.13), GT8 (lipopolysaccharide α-1,3-galactosyltransferase,
EC 2.4.1.44), GT41 (lipopolysaccharide α-1,3-galactosyltransferase, EC 2.4.1.44), GT51
(murein polymerase, EC 2.4.1.129), AA3 (cellobiose dehydrogenase, EC 1.1.99.18), AA6
(1,4-benzoquinone reductase, EC. 1.6.5.6), CE7 (acetyl xylan esterase, EC 3.1.1.72), CE10
(arylesterase, EC 3.1.1.-) and CE12 (pectin acetylesterase, EC 3.1.1.-) were distributed among
all the L. acidophilus strains, while the remaining families had different distribution in those
strains (Figure 6a).
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Figure 6. Carbohydrate utilization families identified in L. acidophilus. (a) Heatmap showing the distribution of carbohy-
drates utilization families. (b) Pie chart indicating the number of each GH family identified.

In carbohydrate metabolism, glycosyl hydrolases are the key enzymes. Among all
the 24 predicted GH families, 15 of them were present in each strain. Additionally, those
15 families were involved in the metabolism of common carbohydrates, such as glucose,
galactose, fructose, sucrose, starch and maltose in the human diet. In all GH families, GH3
(β-glucosidase, EC 3.2.1.21), GH23 (lysozyme type G, EC 3.2.1.17), GH43_14 (β-xylosidase,
EC 3.2.1.37) and GH57 (α-amylase, EC 3.2.1.1) were the least four GH families (Figure 6b).

3.5. Genotype Analysis for Antibiotic Resistance of L. acidophilus

The number of different genes in all L. acidophilus was analyzed and annotated by
RGI software. Genetically, macB and lmrB were the top two genes of antibiotic resistance
in those strains whose numbers were nine to ten and four to five, respectively, while the
number of other genes was less than four. In contrast, vanRM, ugd, poxtA, telT, ErmB, mel
and mef(B) genes were the least seven genes related to antibiotic resistance in L. acidophilus
(Figure 7a).

With all the genes of antibiotic resistance, there were 18 different classes of antibi-
otic (acridine dye, aminocoumarin antibiotic, cephamycin, elfamycin antibiotic, fluoro-
quinolone antibiotic, fosfomycin, fusidic acid, glycopeptide antibiotic, lincosamide antibi-
otic, macrolide antibiotic, mupirocin, nitroimidazole antibiotic, oxazolidinone antibiotic,
peptide antibiotic, pleuromutilin antibiotic, rifamycin antibiotic, streptogramin antibiotic
and tetracycline antibiotic) resistant genes in L. acidophilus. Fluoroquinolone, glycopeptide,
lincosamide, macrolide and tetracycline antibiotics were the most five classes of antibiotics
that L. acidophilus could tolerate. There were more than 300 relevant genes of these five
antibiotics distributed in L. acidophilus. (Figure 7b). For the resistance pattern, L. acidophilus
could resist antibiotics through antibiotic efflux, antibiotic target alteration and antibiotic
target protection (Figure 7c).
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Figure 7. Antibiotic resistance gene of L. acidophilus. (a) Heatmap showing number of antibiotic resistance gene. (b) Pie
chart indicating the classes of antibiotics. (c) Bar plot showing gene number of different kinds of resistance mechanism.

3.6. Comparative Analysis of Functional Gene Composition of L. acidophilus

The Clusters of Orthologous Groups (COG) database is a database for identifying
orthologous genes. After COG comparison and analysis of the difference in the number of
functional genes, the results showed that there was a significant difference in some func-
tional genes, such as amino acid transport genes, carbohydrate transport and metabolism
genes, cell wall/membrane/envelope biogenesis genes, coenzyme transport genes, de-
fense mechanisms genes, energy production genes, mobilome (prophage and transposons)
genes and transcription genes in L. acidophilus (Figure 8a–i). Furthermore, from PCA anal-
ysis, most L. acidophilus strains were clustered together except a small clustered group
consisted of five strains including YT1, FZJTZ18L25, FSHXBX32L130, FGSYC48L79, FH-
NXY41L162 and FXJSW28L59, which was consistent with the phylogenetic tree clustering
result (Figure 8j).
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Figure 8. COG analysis of L. acidophilus. (a) Composition of COG function categories. (b–i) Number of amino acid
transport genes; carbohydrate transport and metabolism genes; cell wall/membrane/envelope biogenesis genes; coenzyme
transport genes; defense mechanisms genes; energy production genes; energy production genes; mobilome (prophage and
transposons) genes; transcription genes in clade A and C L. acidophilus strains. ***: p < 0.001, ****: p < 0.0001. All data are
presented as mean ± SEM. (j) PCA analysis of composition of COG function categories in different L. acidophilus strains.

3.7. Prediction of the EPS Operon in L. acidophilus

EPS is a key structural and functional composition in L. acidophilus. To figure out
whether the newly genome-sequenced L. acidophilus could produce EPS, Orthomcl software
and BlastN were used to predict the gene operon of EPS. All the protein sequences of
EPS gene clusters were integrated together according to NCFM after Orthomcl analy-
sis. For NCFM, the EPS gene cluster mainly composed of 14 genes including the highly
conserved proteins LCP family protein (EpsA), exopolysaccharide biosynthesis protein
(EpsB), CpsD/CapB family tyrosine-protein kinase (EpsC), exopolysaccharide biosynthesis
protein (EpsD), phospho-glucosyltransferase (EpsE), DUF4422 domain-containing protein
(EpsF), flippase (EpsI), UDP-galactopyranose mutase (EpsJ) and six variable proteins repre-
senting glycosyltransferases and polysaccharide polymerases (Figure 9). Among all the
46 L. acidophilus strains, there were only nine strains (CIRM_BIA_442, FAHWH11L56, FC-
QHC4LH1, FFJND6L5, FNMGHHHT12L40, FXJSW24L139, La-14 and NCFM) consisting
of whole EPS-producing operons (Figure 10).
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Figure 9. EPS gene cluster in L. acidophilus NCFM.

Figure 10. Heatmap of EPS gene cluster in L. acidophilus. Black green regions represented the specific
genes exist in strains. The orange regions represented the specific genes do not exist in strains.
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3.8. Prediction of the Surface Layer Protein Operon in L. acidophilus

Surface layer protein was one of the contents that could possess the biological prop-
erties of L. acidophilus. To explore whether the L. acidophilus newly isolated in this study
could produce surface layer protein, the homologous gene operon that could encode this
protein was predicted by Orthomcl software and BlastN. In most L. acidophilus strains,
there were three independent genes relevant to surface layer protein, slpA could encode for
the pore-forming S-layer protein SlpA (44,884 Da), and other two genes were identified
as absent genes called slpB (43,636 Da), which could encode hypothetical SLAP domain-
containing protein SlpB with 53% similarity to SlpA in the N-terminal and middle parts
and only one amino acid residue difference in the C-terminal if this silent gene could
express. With homologous gene analysis and multiple alignments of protein sequences,
eight L. acidophilus strains including CCFM137, CIP_76.13, CIRM_BIA_445, DSM_9126,
FCQHC4LH1, FGSYC48L79, FSHXBX32L130 and FZJTZ18L25 could not encode SlpA
protein while other thirty-eight strains could encode it predictively. For putative protein
SlpB, each strain had the corresponding genes (Figure 11).

Figure 11. Heatmap of surface layer protein gene in L. acidophilus. Black green regions represented
the specific genes exist in strains. The orange regions represented the specific genes do not exist
in strains.
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3.9. Prediction of the Bacteriocin Operon in L. acidophilus

The potential operon of bacteriocin in the 46 L. acidophilus strains was mined using the
BAGEL4 webserver in this study. The results showed that in total five different bacteriocins
including acidocin_J1132_beta_peptide_N-terminal (6.2), bacteriocin_helveticin_J (6.3),
enterolysin_A (64.3), helveticin-J (70.3) and lanthipeptide were predicted (Figure 4). In
general, the bacteriocins synthesized by L. acidophilus covered all three classes, of which
class II was the main one. Each strain was predicted that they could synthesize bacte-
riocin_helveticin_J and enterolysin_A, while only six and three strains could synthesize
helveticin-J and lanthipeptide, respectively. Acidocin_J1132_beta_peptide_N-terminal
was another common bacteriocin, which was identified in forty strains. Among all the
46 L. acidophilus, La-14 and WG-LB-IV were two special strains which could synthesize
acidocin_J1132_beta_peptide_N-terminal, bacteriocin_helveticin_J and enterolysin_A and
with two operons, respectively, while the other 44 strains only possessed one operon. Each
bacteriocin gene operon in L. acidophilus contained its core peptides (Figure 12).

Figure 12. Predicted bacteriocin gene operon in L. acidophilus.

3.10. Prediction of Prophages and CRISPR-Cas Systems in L. acidophilus

The prophages of L. acidophilus were predicted by PHASTER, and only six strains
(FGSYC48L79, FHNXY41L162, FSHXBX32L130, FXJSW48L59, FZJTZ18L25 and YT1) con-
tained intact prophages sequences (Table 3). Among them, FGSYC48L79 and FHNXY41L162
carried out two prophages, FSHXBX32L130 carried out three prophages, while FXJSW48L59,
FZJTZ18L25 and YT1 only possessed one prophage, respectively. Interestingly, FGSYC48L79,
FHNXY41L162, FSHXBX32L130, FXJSW48L59 and FZJTZ18L25 were clustered into same
clade (clade A), while YT1 was clustered into their neighboring clade (clade B) on the
phylogenetic tree (Figure 4).
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Table 3. CRISPR-Cas systems and prophages in L. acidophilus.

Strain CRISPR-Cas Prophage

ATCC 4356 incomplete incomplete
ATCC 4796 incomplete incomplete
ATCC 53544 incomplete incomplete

BIO6307 incomplete incomplete
CCFM137 incomplete incomplete
CIP 76.13 incomplete incomplete

CIRM-BIA 442 incomplete incomplete
CIRM-BIA 445 incomplete incomplete

DS10_1A incomplete incomplete
DS11_1A incomplete incomplete
DS13_1A incomplete incomplete
DS13_1B incomplete incomplete
DS2_1A incomplete incomplete
DS20_1 incomplete incomplete
DS24_1 incomplete incomplete
DS5_1A incomplete incomplete
DS8_1A incomplete incomplete
DS9_1A incomplete incomplete

DSM 20079 incomplete incomplete
DSM 20242 incomplete incomplete
DSM 9126 incomplete incomplete

FAHWH11L56 incomplete incomplete
FCQHC4LH1 incomplete incomplete

FFJND6L5 incomplete incomplete
FFJND7L5 incomplete incomplete

FGSYC48L79 incomplete intact
FHNXY41L162 complete intact

FNMGHHHT12L40 incomplete incomplete
FSHXBX42L130 incomplete intact

FSI4 incomplete incomplete
FXJSW24L139 incomplete incomplete
FXJSW48L59 complete intact
FZJTZ18L25 incomplete intact
LA_AVK1 incomplete incomplete
LA_AVK2 incomplete incomplete

LA1 incomplete incomplete
La-14 incomplete incomplete

LA-G80-111 incomplete incomplete
LMG P-21904 incomplete incomplete

NCFM incomplete incomplete
P2 incomplete incomplete

s-13 incomplete incomplete
s-4 incomplete incomplete

UBLA-34 incomplete incomplete
WG-LB-IV incomplete incomplete

YT1 complete intact

All the 46 genome sequences were uploaded to CRISPRCasFinder and predicted
by orphan CRISPRs, which had no Cas proteins. Only three strains (FHNXY41L162,
FXJSW48L59 and YT1) had complete CRISPR-Cas systems and all of them contained intact
prophages (Figure 4). However, none of their spacers in CRISPR could correspond to the
prophages’ sequences within them.

4. Discussion

L. acidophilus is a kind of lactic acid bacteria that has been widely used in industry for
a long time and has excellent health-associated benefits. In previous studies, L. acidophilus
was reported as a member of L. acidophilus group for phylogeny and comparative genome
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analysis [19]. However, due to the limitation of sequencing technology development and
genome predictive analysis tools at that time, the results of gene prediction and annotation
have an era limitation. With the development of sequencing technology and bioinformatics
tools, researchers have the possibility of deeper analyzing the genomes. In this study,
for the first time, L. acidophilus was analyzed to figure out the differences among strains
through the comparative genomics approaches, including generally genomic characteristics,
phylogenetic analysis, and prediction of some functional genes.

The average G + C content of L. acidophilus, one of the standard features in bacterial
taxonomy, was 34.66%, and this value could reflect the genetic relationship in evolution
to some extent. This value was consistent with that in Bergey’s Manual of Systematics of
Archaea and Bacteria [42], but it was lower compared to other lactobacilli (with more than
40% G + C content). Additionally, its average size of genome was 1.98 Mb with ~1800 CDSs.
Combined with COG analysis, the core genes of those strains were mainly carbohydrate
transport and metabolism, defense mechanisms, translation, ribosomal structure and
biogenesis and other basic functions.

The pan-genome consists of the core genome and the dispensable genome. The genetic
plasticity and environmental adaptation potential of a species could be indicated from
the relative size and content of the pan-genome. In the context of rapid development of
high-throughput sequencing technology, it is convenient and quick to generate the whole
genome for a strain of bacteria. Additionally, it is valuable to sequence its pan-genome to
estimate the size of the entire gene repertoire and the diversity of this species [25]. Through
the prediction of mathematical models, even if hundreds of genomes of each species were
sequenced, there would be newly discovered genes in subsequent studies [43]. However,
compared with the pan-genome of other lactobacilli, such as Limosilactobacillus mucosae
(8100 genes) [16], Ligilactobacillus ruminis (10,000 genes) [17], Lacticaseibacillus rhamnosus
(8200 genes) [44] and L. gasseri (6500 genes) [45], the pan-genome of L. acidophilus was
smaller (5200 genes) and open. From the perspective of habitat, with Limosilactobacillus
mucosae as an example, in addition to human feces and fermented dairy products, they had
different habitat sources such as piglets, dogs and cattles. Their wide habitat range made
them have larger gene pools for lateral gene transfer. The source of L. acidophilus used in
this study was not sundry, and those strains were isolated from human feces and fermented
products mainly. Hence, the open and narrow pan-genome status of L. acidophilus indicated
that its genetic diversity could be further enriched, and it also had the ability to continue
to adapt to various ecological niches. The similar inference had also been mentioned
in previous study of Streptococcus [46]. From another point of view, the pan-genome
of L. acidophilus may be due to its relatively stable intestinal niche, the small intestine
environment, which was different from other lactobacilli colinized in the large intestine,
and the living conditions abundance of the microflora of small intestine were lower than
that in the large intestine, therefore, the living environment and niche for L. acidophilus was
more stable, and there were fewer external changes and interferences, which contributed
to that L. acidophilus did not need a wider pan-genome range to adapt to its niche.

ANI has been used to substitute DNA-DNA hybridization as the gold standard for
prokaryotic species genetical circumscriptions [22]. Based on ANI, some phenotypically
and genotypically closely related species, such as L. casei, Lacticaseibacillus paracasei and
Lacticaseibacillus rhamnosus, that were difficult to distinguish on taxonomic level, had a
new method to be identified [47–49]. Therefore, this study followed previous methods
and carried out ANI analysis on L. acidophilus with the aim to explore the diversity of the
species and the existence possibility of subspecies. All the 46 strains with ANI value above
97% were classified into two clusters, with five strains showing an ANI value over 99%,
and the other group consisted of 41 strains including L. acidophilus NCFM with an ANI
range 97–98% compared with another group. The ANI value of L. acidophilus was rela-
tively narrow, compared with Limosilactobacillus mucosae (95.5%) [16] and Ligilactobacillus
ruminis (96%) [17], representing that the proportion of variable genes was less, and the
diversity was not rich. Combining the results of pan-genome analysis, it was speculated
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that L. acidophilus may not need many genes to adapt to different niches. Phylogenetic
analyses and whole genome comparison of L. acidophilus were performed to further mine
the relationship of the two classified groups. Interestingly, the five strains gathered in ANI
analysis were also clustered in the branch on the phylogenetic tree. Meanwhile, they had
similar levels of gene deletion. It was speculated that those five strains may be potential
subspecies in L. acidophilus. However, due to the small sample size, this hypothesis still
needs further verification.

For bacteria living in the intestine, their ability to use nutrients partly determined
their ability to reside and survive in the intestine. In different nutrient environments,
the carbohydrate utilization genes in L. acidophilus will be differentially expressed [50].
In silico, there were 24 GH series involving carbohydrate metabolism showed that GH1
accounted for a relatively high proportion of GH, showing that the main carbon source of
L. acidophilus was glucose. Additionally, the number of genes in carbohydrate transport and
metabolism in COG analysis showed that there was a significant difference between clade
A and C, which meant that in L. acidophilus there might be two branches with different
carbohydrate utilization.

Similar to other probiotics, L. acidophilus can easily obtain different antibiotic resistance
genes in the intestine through mobile genetic elements. If it is to be added to food as a food
additive, it needs to undergo safety verification [51]. In this study, predictions of antibiotic
resistance genes have been made for each strain. Additionally, L. acidophilus has the most
resistance genes of fluoroquinolone, glycopeptide, lincosamide, macrolide and tetracycline,
which was consistent with previous reports [52–55].

The lactobacilli EPS had the effect of regulating intestinal immunity. Additionally,
L. acidophilus NCFM had been reported that its EPS induced genes expression related to im-
munity both in vitro and in vivo [56]. Additionally, the EPS (LA-EPS-20079) of L. acidophilus
DSM20079 had been proved that exerted a direct cytotoxic action on the tumors cells in
addition to stimulating the immune response and inflammatory pathway [4]. Referring to
NCFM as the standard [2005NCFM], the EPS cluster showed high synteny to EPS cluster of
L. gasseri [45], L. johnsonii [57], Lacticaseibacillus casei [58] and streptococci [59]. The relation-
ship between EPS gene clusters and EPS synthesis in Lacticaseibacillus casei was investigated,
and that glucose-1-phosphate thymidyltranseferase gene (LC2W_2179), uncharacterized
EPS biosynthesis protein (LC2W_2188), and EPS biosynthesis protein (LC2W_2189) were
related to EPS biosynthesis. According to these results, epsB (exopolysaccharide biosyn-
thesis protein gene) and epsD (exopolysaccharide biosynthesis protein gene) may exert
the same effect in L. acidophilus NCFM. Although not all the L. acidophilus strains had a
complete EPS gene cluster composing of 14 genes, similar to NCFM, each strain had epsB
and epsD, indicating that all the 46 strains may have the potential to synthesize EPS.

Surface layer protein A (SlpA) of L. acidophilus is a key factor in probiotic–host crosstalk
and could trigger immunomodulation in the host [2,60,61]. Different from EPS, SlpA
is a protein regulated by a single gene. There were eight out of all the L. acidophilus
strains that possessed no SlpA encoding gene. However, the expression of surface layer
protein is related to some environmental factors, such as anaerobic conditions [62], bile salt
concentrations [63], mucin, pancreatin and pH [64]. Therefore, whether L. acidophilus could
produce SlpA or not need more experiments to verify.

Since the discovery of antimicrobials, compounds that could kill or inhibit the growth
of bacteria, human life expectancy was improved. Nevertheless, antibiotic resistance has
become a major threat. The bacteriocin derived from the intestinal microflora has shown
great potential in maintaining intestinal homeostasis and biological control of pathogenic
bacteria [65]. Bacteriocin production is one of the characteristics of L. acidophilus. For
example, L. acidophilus JCM 1132 produced acidocin J1132 that had a narrow inhibitory
spectrum [66], in addition, TK9201 produced acidocin A [67], DSM20079 generated acidocin
D20079, and PNW3 produced a bacteriocin predicted to be helveticin J [68]. Additionally,
a novel class III bacteriocin gene (NX371) was mined by bioinformatic analysis in L. aci-
dophilus NX2-6, which had 98.15% homology of helveticin J [69]. Combining the results
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of previous researches and bioinformatics predictions in this research, it can be inferred
that, L. acidophilus mainly produce a variety of class II (acidocin) and class III (helveticin
J) bacteriocins. Acidocin was the most common bacteriocin in L. acidophilus [66,69–75].
However, in the prediction of bacteriocin operon, six strains did not have the gene cluster of
acidocin-like bacteriocin. Coincidentally, all of them had hypothetical operon of helveticin-J.
It was inferred that they may inhibit other bacteria by encoding helveticin-J instead of
acidocin-like bacteriocin. Gene cluster of enterolysin A was predicted in all strains, and
there were no relevant reports that it can be purified from L. acidophilus. Enterolysin A, an
antimicrobial protein that could inhibit the growth of specific bacteria, was purified from
an Enterococcus faecalis LMG 2333 [76]. Enterococcus has a high tendency to acquire and
express new determinants of resistance, and the acquired resistance can then be transferred
to other bacteria through mobile genetic elements [77]. That may be the reason why some
L. acidophilus had the operon of enterolysin A. Lanthipeptide is not a typical bacteriocin in
lactobacilli, but three L. acidophilus strains possessed the potentially synthetic genes.

In this study, only six strains carried out intact prophages sequences, and the number
was very few compared to other lactobacilli [16,17,44,46]. Moreover, as the result of COG
analysis, the number of prophages and transposons genes of those six strains clustered in
clade A were more than twice as much as clade C. The reason could be due to the niche of
L. acidophilus, which is the small intestine, a place where the living environment is much
worse than the colon and cecum. This will result in not many prophages being able to exist
in such a niche and L. acidophilus may not integrate the sequences of the prophages into
their own genomes. Similarly, only three strains had complete CRISPR-Cas systems, which
meant that they did not need the existence of CRISPR-Cas system, whose possession could
be non-adaptive for strains [78] to resist foreign DNA invasion.

5. Conclusions

Based on ANI values, phylogenetic analysis and whole genome comparison, 46 L.
acidophilus strains could be divided into two parts, which could be caused by the difference
of predicted gene composition of bacteriocin operon, CRISPR-Cas systems and prophages
mainly. In addition, predictably, genes related to carbohydrate utilization, EPS production,
surface layer protein production, and antibiotic resistance of different L. acidophilus strains
were all different. Hence, genome sequencing and genetic analysis enabled this research to
deeply understand and exploit the biotechnology potential of L. acidophilus.
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