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With the ability to fully sequence tumor genomes/exomes, the quest for cancer driver genes can now be
undertaken in an unbiased manner. However, obtaining a complete catalog of cancer genes is difficult due to
the heterogeneous molecular nature of the disease and the limitations of available computational methods.
Here we show that the combination of complementary methods allows identifying a comprehensive and
reliable list of cancer driver genes. We provide a list of 291 high-confidence cancer driver genes acting on
3,205 tumors from 12 different cancer types. Among those genes, some have not been previously identified
as cancer drivers and 16 have clear preference to sustain mutations in one specific tumor type. The novel
driver candidates complement our current picture of the emergence of these diseases. In summary, the
catalog of driver genes and the methodology presented here open new avenues to better understand the
mechanisms of tumorigenesis.

T
he identification of the genes that drive carcinogenesis has been regarded in the past 35 years as the first step
to understand the mechanisms of tumor emergence and evolution. Since the identification of the first
somatic mutation in a human cancer gene – G12V in HRAS in a human bladder carcinoma cell line1,2 –

almost 500 cancer genes have been identified and are now included in the Cancer Gene Census (CGC)3. More
recently, fueled by Next Generation Sequencing technologies, large international consortia, like the TCGA and
the ICGC have undertaken whole exome sequencing of thousands of tumor samples. These initiatives share the
explicit goal of detecting all genes and molecular mechanisms underlying tumorigenesis in every major cancer
type4,5.

Tumor genomes contain from tens to thousands of somatic mutations. However, only a few of them ‘‘drive’’
tumorigenesis by affecting genes –drivers– which upon alteration confer selective growth advantage to tumor
cells6–9. While only few driver genes are frequently mutated in cancer, many others are altered in a small fraction
of tumors. Due to these lowly recurrent drivers and to the underlying molecular heterogeneity of cancer, large
number of tumor samples must be sequenced –and the results analyzed employing bioinformatics methods– to
thoroughly detect driver genes in the quest to fully understand the mechanisms of tumorigenesis. Bioinformatics
analyses of exome sequence data from large cohorts of tumor samples produced by these projects are not trivial.
Current approaches are based on identifying genes that exhibit signals of positive selection across a cohort of
tumor samples, all showing particular shortcomings and specific biases9.

Most common methods identify genes that are mutated more frequently than expected from the background
mutation rate (recurrence)10,11. Their biggest challenge is to correctly estimate this background rate to keep the
number of false positives to a minimum9,11. Nevertheless, driver genes mutated at very low frequency are still
difficult to detect with this approach. Other methods attempt to identify genes that exhibit other signals of positive
selection across tumor samples, such as a high rate of non-silent mutations compared to silent mutations16,17, or a
bias towards the accumulation of functional mutations (FM bias)12. One advantage of this latest approach is its
independent of the background mutation rate, although its performance could be affected by drawbacks of the
metrics used to score the putative impact of somatic mutations on protein function13–15. Some metrics, for
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instance, underestimate functional changes in poorly conserved
positions46. Still, other methods exploit the tendency to sustain muta-
tions in certain regions of the protein sequence (CLUST bias)18, based
on the knowledge that whereas inactivating mutations are distribu-
ted along the sequence of the protein, gain-of-function mutations
tend to occur specifically in particular residues or domains18. Finally,
other approaches exploit the overrepresentation of mutations in spe-
cific functional residues, such as phosphorylation sites (ACTIVE
bias)19. Intuitively, different types of driver genes will exhibit the
signals of positive selection exploited by these approaches in varying
degrees. For example, mutations are known to cluster in specific
residues in oncogenes more strongly than in tumor suppressors.
Therefore, one should expect that different subsets of candidate dri-
vers will rank at the top of lists of driver candidates identified by each
method. Moreover, the implementation of each method will prob-
ably influence its results. For example, frequency-based methods
with looser background mutation rates will detect longer lists of
driver candidates probably with a high rate of false positives. On
the other hand, methods implementing stricter models will identify
shorter, more specific lists but might miss some true cancer driver
genes.

Here, we describe the analysis of somatic mutations obtained via
exome sequencing of 3,205 tumor from 12 tumor types by the Cancer
Genome Atlas (TCGA) research network47 (Supplementary Table 1).
This analysis results in the comprehensive detection of the muta-
tional cancer driver genes acting in these tumors. To this aim, we
employed five complementary methods that search for genes
showing the signals of positive selection described in the previous
paragraph. We combined the lists of driver candidates identified
by these five methods both across the whole pan-cancer dataset
and in each individual tumor type using a two-step rule-based
approach. First, gene lists from four methods (MuSiC, Onco-
driveFM, OncodriveCLUST and ActiveDriver) each one consider-
ing a different of positive selection signal are intersected looking
for genes exhibiting several signals of positive selection (see
Results for details), thus composing a list of high-confidence dri-
vers. Second, MutSig significantly mutated genes, which are
probed for three signals of positive selection are incorporated to
the list of high-confidence drivers.

We demonstrate that the combination of approaches based on
complementary signals of positive selection outperforms the use of
individual methods. As a result, the use of this novel approach pro-
vides a comprehensive and reliable list of mutational drivers acting
across 12 tumor types.

Results
We applied methods based on the aforementioned approaches
to detect signals of positive selection (MuSiC10, OncodriveFM12,
OncodriveCLUST18 and ActiveDriver19) to the unified analysis of
all tumors (see methods) (Fig. 1a and b). To evaluate the quality of
the lists of driver candidates produced by each method, and the
combinations thereof, we computed their content of known cancer
genes. To that end, we employed the Cancer Gene Census, CGC3 as
the most reliable catalog of known cancer genes to date. Nevertheless,
due to its biased nature and the fact that arguably, many cancer genes
are yet to be uncovered, we consider the rate of CGC genes in each list
simply as a surrogate estimator of the actual positive predictive value
of each method or combination (see Discussion). Applying this prin-
ciple, we found that the four methods prioritized lists of genes highly
enriched for known cancer drivers. Moreover, increasing the cutoff
of statistical significance increased the proportion of known cancer
genes retrieved (Fig. 2a). This proportion was higher among genes
exhibiting more than one signal of positive selection. In other words,
the likelihood that a gene is involved in tumorigenesis increased
proportionally with the number of methods that identified it
(Fig. 2b and c), probably because the false positives of one method

are likely to be discarded by the others. For example, only 84 out of
232 recurrently mutated genes (MuSiC) –or 87 out of 259 FM biased
genes– are also identified by other methods (Fig. 2b). However, the
proportion of genes in the CGC rises from 22% and 25%, respectively
to 54%. On the other hand, genes missed by one method may be
identified by others designed to detect other signals of positive selec-
tion, as exemplified in Figure 1c. For instance, while RB1 possesses
both clear recurrence and FM bias, it has undetectable CLUST or
ACTIVE biases. Mutations in HRAS are both significantly clustered
and biased towards high functional impact, but are neither signifi-
cantly recurrent nor ACTIVE biased. BRAF, on the other hand
shows all signals of positive selection, except FM bias.

Pooling all pan-cancer samples together (pan-cancer analysis)
increases the statistical power to detect drivers acting across tumor
types, thus facilitating the identification of driver genes that are not
detected when each tumor is analyzed individually. However, the
pan-cancer analysis may also diminish the relevance of mutations
in some drivers acting only in certain tumor types (Supplementary
Fig. 1). To overcome this issue, we also analyzed each tumor type
separately (per-project analysis) and added the genes identified in
each project to those detected across all pan-cancer tumors (see
Methods).

Next, we decided to combine the resulting 48 (four pan-cancer and
44 per-project) lists of driver candidates. We discarded the direct
combination of pvalues or rankings of the genes across the lists,
because they reflect different signals of positive selection in different
tumor-types. For example, a gene exhibiting the four signals of pos-
itive selection to a mild degree across several tumor types is not
necessarily a better candidate than other with one stronger signal
in an individual tumor type. More elaborate combination appro-
aches based, for example on Bayesian classifiers or other machine
learning methods are unfeasible due to the lack of a gold standard
dataset of drivers and passengers to optimize the combination.
Instead, we used a rule-based approach exploiting our current know-
ledge of the features of cancer genes (Supplementary Fig. 2). To
construct a list of high-confidence drivers (HCDs) we first selected
130 genes that exhibit more than one signal of positive selection in
the pan-cancer (or any per-project) analysis. This may leave out
drivers with only one signal of positive selection. To rescue some
of those while keeping the false-positive rate as low as possible within
HCDs, we included 40 CGC genes with one signal of positive selec-
tion. Furthermore, we upgraded to the HCD list 81 genes detected by
a single approach which functionally interact –considering all
Pathway Commons20 database connections, except those less specific
direct protein-protein interactions– with at least one HCD. In addi-
tion, we populated a list of Candidate Drivers (CDs) with 144 one-
signal genes that participate in protein-protein interactions with
HCDs. (See Methods and Supplementary Fig. 2 for details.)
Finally, we included in the HCD list another 40 significantly mutated
genes identified by MutSig’s most recent version –also combining
three signals of positive selection— (Supplementary Fig. 3). (Note
that because these genes are already selected based on a combination
of signals of positive selection, we unite rather than intersect the list
of MutSig significantly mutated list with our own HCD list.) In
summary, we provide a very reliable list of 291 HCDs and a second
one, of 144 CDs, more comprehensive but with an expectedly higher
false-positives rate (Supplementary Table 2).

When HCDs are mapped to a functional interaction network (see
Methods), they appear enriched for biological processes within 5
broad modules –Chromatin remodeling, mRNA processing, Cell
signaling/proliferation, Cell adhesion, DNA repair/Cell cycle– which
loosely correspond to both established and emergent cancer hall-
marks (Fig. 3 and Supplementary Table 3). Thirteen selected non-
CGC, or novel cancer genes are depicted in Figure 4 within their
functional interaction context. These novel driver candidates
appear alongside other well-established cancer genes. One may thus
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hypothesize that as more tumor genomes are sequenced, new lowly
recurrent mutational drivers in these modules will emerge. This idea
is further illustrated in Figure 4a, where, for example well-known
cancer genes within the Cell cycle pathway are schematically repre-
sented together with not well established HCDs. Examples of novel
cell cycle driver candidates include ATR, a kinase which phosphor-
ylates p53 and other proteins, such as CHK1 and RAD1721 and has
been associated to tumors with hypermutator phenotypes when
defective. ATR is included in the HCD list because it is both recur-
rently mutated and FM biased in UCEC (Fig. 4b). CDKN1A and
CDKN1B, inhibitors of cyclin-dependent kinase activity22,23 which
mediate the role of TP53 in the arrest of cellular proliferation after
DNA damage, also appear to drive tumorigenesis in several pan-
cancer samples alongside other well-known cell cycle genes.
CDKN1A is recurrently mutated and FM biased in BLCA and in
the pan-cancer analysis, whereas CDKN1B is recurrently mutated
and FM biased in BRCA. Both genes are also detected by MutSig
(Fig. 4b). On the other hand, in the broad module of signal transduc-
tion and proliferation, PIK3CG and PIK3CB, within the PIK3-AKT

signaling pathway appear to complement the tumorigenic role of
PIK3CA. Collectively, these kinases are key in the transduction of
information from receptors on the outer membrane of eukaryotic
cells to effectors in the nucleus24–26. They receive their names after
their catalytic subunit. De-regulation of PIK3CG and PIK3CB had
been previously linked to tumor progression27–30. PIK3CB exhibits a
significant FM bias and PIK3CG, a significant mutational recur-
rence, both in the pan-cancer analysis. Thus, they are both included
in the HCD list based on their functional interactions with other
HCDs, such as PIK3CA (Fig. 4b). Finally, FOXA1 and FOXA2 are
general transcriptional regulators, involved in opening the chro-
matin to make DNA accessible to the entry of other regulators31,32.
They are both missregulated in several malignancies33–37. While
FOXA1 is both recurrently mutated and FM biased in BRCA,
FOXA2 is recurrently mutated and FM biased in UCEC and recur-
rently mutated and CLUST biased in the pan-cancer analysis. In
summary, these non-CGC likely driver candidates –25 are detailed
in Supplementary Table 4– help to complete the landscape of tumor-
causing mechanisms in known cancer pathways.

A Signals of positive selection used to identify driver genes B High Confidence Drivers (HCDs) detected by each method
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Amongst HCDs, only TP53 and PIK3CA have protein affecting
mutations, or PAMs (non-synonymous, stop, splice site and frame-
shift indels), in more than 10% of pan-cancer samples (Fig. 3).
Another 51 genes –some of which are not well-established drivers–
bear PAMs in more than 10% of samples of at least one tumor type
(Supplementary Fig. 4). Interestingly, 16 HCDs have a clear bias
(Fisher’s odds-ratio . 25) towards sustaining PAMs in one tumor
type with respect to others (Fig. 3 and Supplementary Fig. 5). (We
checked that Fisher’s results were not biased towards tumor types
with higher mutation rates; see Methods and Supplementary Fig. 7).

Further support of the mutational drivers identified by our com-
bined methodology stems from the analysis of copy number changes
(CNAs) across pan-cancer samples. Many HCDs are also affected by
CNAs, and 38 of them are significantly altered according to GISTIC38

and/or highly biased towards misregulation due to CNAs according
to OncodriveCIS39 (Supplementary Fig. 6). Therefore, these are also
likely involved in tumorigenesis upon deletion (tumor suppressors)
or amplification (oncogenes).

It has previously been suggested that tumorigenesis requires 5–7
driver mutations in common epithelial cancers, while hematological
and pediatric malignancies may require fewer8,40,41. Even under the
assumption that the HCD list is not complete, it allows us to explore
this question. Pan-cancer tumors have a median of 4 PAMs in HCDs
(Fig. 5), although this number varies widely depending on the cancer
type; OV and AML tumors exhibit the lowest rate (median of 2),
whereas BLCA (9.5), LUSC (9) and LUAD (9) have the highest. Most
tumors (94%) have at least one HCD bearing a PAM (Fig. 5). Again,
AML tumors present the highest rate of samples without PAMs in
HCDs (16%), highlighting the possible relevance of other alterations
in this cancer type.

Discussion
In this manuscript we provide a comprehensive catalog of driver candi-
dates acting across the 3,205 tumor samples within the pan-cancer
cohort. One hundred and sixty-five of these candidates are novel find-
ings not included in the CGC. Hypotheses regarding their involvement
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in cancer emergence and evolution can be experimentally tested and
might subsequently lead to new insights into this process in the 12
cancer types included within the pan-cancer dataset.

We designed a novel approach to elaborate the catalog of high-
confidence drivers, HCDs, across the pan-cancer dataset combining
the results of multiple methods to identify cancer driver genes. In this
regard, although the newest version of MutSig incorporates other
criteria on top of the frequency assessment, the list of significantly
mutated genes obtained with this method is clearly different to the
one obtained with the other methods (see Supplementary Fig. 3),
further stressing the value of their complementarity. The five meth-
ods whose outputs we combined constitute the state-of-the-art of the
detection of mutational drivers based on the four signals of positive
selection described in this work, however new methods exploiting
the same or other signals of positive selection, or improved versions
of existing ones will likely appear in the near future. Nevertheless, the
rationale of the approach presented here could be used to combine a
different set of methods. The rule based approach employed to com-
bine the 48 lists of driver candidates obtained from the four initial
methods (and the list of MutSig significantly mutated genes) must be
regarded as a first and probably imperfect approach to this problem.
More sophisticated combinations based on the p-values or rankings
of genes from different methods in different tumor types would be
cumbersome and not necessarily more optimal. It is easy to see that
genes showing few signals of positive selection in one specific tumor
type would have a disadvantage compared to genes exhibiting mild

varied signals of positive selection across several tumor types.
Addressing this issue would require more laborious approaches
involving optimization methods, such as Bayesian classifiers, which
will suffer of one common caveat: the lack of a proper training set of
true drivers and passengers to perform the optimization. Therefore,
in summary, we decided to carry out the heuristic approach
described in this work, although more sophisticated combinations
could be assessed once more complete and unbiased datasets of
drivers and passenger genes become available.

Another challenge to combine gene lists from different methods
was related to assessing the quality of both individual and
combined lists of driver candidates. Because there is currently no
gold-standard dataset of driver and passenger genes to correctly
compute the specificity and sensitivity of each prediction method,
we computed a proxy positive predictive value as the rate of known
cancer genes (CGC genes) in each list. Although the CGC is
undoubtedly biased and incomplete, it is to date the most thorough
catalog of bona fide cancer drivers. Nevertheless, due to its incom-
pleteness, the rate of CGC genes is always a low estimator of the
positive predictive value of the lists of drivers uncovered by each
method or the combinations thereof. As a consequence, the goal of
any predictive method is to maintain a relatively high rate of CGC
genes in its list of predicted drivers, but still identify some non-CGC
genes. In practical terms, we used this idea to determine the cutoff to
apply to the list of driver candidates identified by each method and
also to assess whether the combined lists were more accurate than
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individual ones. It is also important to stress that our statement that
the combination of methods outperforms individual methods in the
quality of the lists of driver candidates they produce is based on the
increase of this proxy positive predictive value in the former.

To decide how many signals of positive selection a gene should
exhibit to be considered a driver candidate, we followed the same
compromise between a high rate of CGC genes and the appearance of
some non-CGC genes. While a list of genes bearing three signals of
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positive selection (30; Fig. 1c) possesses a higher rate of CGC genes
(80%) than the equivalent list of two-signals genes (51%), the latter
has a higher chance to include yet unknown drivers. (It is important
to point out here that genes with clearer signals of positive selection
are probably more likely to have been detected to date and thus be
included in the CGC.) In summary, this is the reason why we decided
to use this criterion to do the final combination. Different combin-
atorial rules, such as selecting more stringent cutoffs to produce
individual lists and subsequently uniting them instead of intersecting
them may be attempted and produce slightly different sets of driver
candidates. Note that to incorporate MutSig significantly mutated
genes we carried out a union instead of an intersection with the
results of the other methods, because MutSig already integrates sev-
eral signals of positive selection.

We found that 57 of the novel –non CGC– driver candidates
actually map to well-known cancer pathways, thus complementing
our current knowledge of the emergence of the disease. They there-
fore support the viewpoint that the main subjects of alterations
resulting in tumorigenesis are not individual genes, but rather mod-
ules of functionally related proteins. But their appearance at very low
frequencies also imply that our knowledge of the heterogeneity of
cancer –specially the diversity of molecular alterations underlying
diseases that are very similar in histology and phenotype– is still
incomplete. Future projects that undertake the systematic identifica-
tion of mutational drivers of new tumor types using a combinatorial
approach like the one we have described will probably expand this
picture even further. On the other hand, several novel driver candi-
dates don’t fall within our compiled knowledge on functional inter-
actions. This likely means that –as in the case of the recent findings of
chromatin regulatory proteins and splicing factors– still new path-
ways associated with tumorigenesis remain to be discovered.

In addition, our finding that the median of mutated HCDs across
tumor types is close to numbers previously hypothesized might
imply that the detection of mutational drivers acting on this set of
tumors is close to saturation when a thorough combinatorial
approach is followed. The variability in the number of mutated
HCDs in samples of the same cancer type could be attributed to a
mixture of different stages in the samples that form the cohort or,
alternatively to a variety of mechanisms underlying tumorigenesis.

We have demonstrated for the first time that the combination of
methods based on the detection of complementary signals of positive
selection outperforms the use of a single approach. This improve-
ment relies on two facts: first, driver genes exhibit different signals of
positive selection and thus the use of multiple criteria allows detect-
ing a more comprehensive list of drivers. Second, combining
the results obtained by several methods also allows estimating their
reliability permitting the retrieval of a list of driver candidates highly
enriched by bona fide cancer genes.

In summary, here we provide a comprehensive catalog of putative
mutational drivers acting in 3,205 tumors from 12 different cancer
types of high societal importance, which opens new avenues to better
understand the mechanisms of tumorigenesis. All results of the ana-
lyses described here are available at www.intogen.org/tcga and can be
browsed using www.gitools.org/tcga42. The presence within this cat-
alog of several novel candidate drivers occurring in very few tumors
could help extend our knowledge of tumor emergence to more
patients of these diseases.

Methods
Initial mutation data. Samples with at least one mutation from the pan-cancer
dataset available at Synapse (syn1729383) were retrieved after excluding 71
considered as hypermutators. Hypermutators of a tumor type contained more than
(Q3 1 4.5 * IQR) somatic mutations, where Q3 and IQR are the third quartile and the
interquartile range of the distribution of mutations across all samples of the tumor
type, respectively. After filtering, the dataset was composed of 3,205 samples with
287,822 protein affecting mutations.

Mutational cancer drivers. Somatic mutations generated by all projects within the
pan-cancer were analyzed using four methods based on complementary criteria to
detect likely driver genes.

The input of the four methods were the Mutation Annotation Files (maf) produced
by each tumor type Analysis Working Group carefully filtered as explained in
syn1729383. (The colon adenocarcinoma and rectum adenocarcinoma datasets were
combined into a single colorectal adenocarcinoma dataset for all analyses.) The first
step of each execution consisted in excluding mutations in hypermutated samples
from the input files, as explained in the previous section. MuSiC, a method based on
recurrence is thoroughly described in Dees et al., 201210, and it was employed on the
pan-cancer datasets as described in Kandoth et al, personal communication. The
statistical model and implementation of OncodriveFM12, which identifies genes with
a bias towards accumulation of mutations with high functional impact appear in
Gonzalez-Perez and Lopez-Bigas 201212. Those of OncodriveCLUST, which identifies
genes with significantly clustered mutations are described in detail in Tamborero et al,
201318. These two methods were executed as described in Gonzalez-Perez et al48 (see
below a brief description of this process). The rationale beneath ActiveDriver, which
pinpoints genes whose mutations occur predominantly in protein active sites, and its
implementation are described in full in Reimand and Bader 201319. It was applied as
described in Reimand et al.46.

Each method was applied to all pan-cancer samples, pooled together to increase the
statistical power to detect mutational driver genes across several tumor types (pan-
can analysis). In addition, we analyzed the samples of each cancer type separately to
overcome any potential dilution effect resulting from merging samples from different
projects (per-project analyses).

To execute OncodriveFM and OncodriveCLUST on these datasets, we employed
the IntOGen-mutations pipeline (http://www.intogen.org/mutations/analysis),
described in detail in Gonzalez-Perez et al48. Briefly, we defined configuration files for
each tumor type and one for the pan-cancer analysis. The minimum number of
mutated samples to analyze a gene was set at 12 for both OncodriveFM and
OncodriveCLUST in the pan-cancer analysis. The limit for OncodriveFM in the per-
project analysis was set at 1% of the samples in the case of datasets with median below
100 mutations per sample, and at 5 otherwise. For OncodriveCLUST, these numbers
were 3 and 5, respectively. After completion of the IntOGen-mutations pipeline, both
OncodriveFM and OncodriveCLUST produced twelve results files –one from the
pan-cancer analysis and the other eleven from per-project analyses– comprising FDR
values of the respective statistical tests for each analyzed gene. We received similar
results files from the MuSiC and ActiveDriver teams, totaling 48 files.

0

0.25

0.50

0.75

1.00

A

0

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10

11
-1

5

16
-2

0

21
-2

5

26
-3

0

>
30

 

PANCANCER

Number of PAMs in HCDs

P
ro

po
rt

io
n 

of
 s

am
pl

es

3038(0.95)
4(4)

49(63)

Samples with at least one PAM in HCDs
Median (IQR) of PAMs in HCDs per sample

Median (IQR) of PAMs in all genes per sample

165 (0.85) 312 (0.99) 393 (0.94) 710 (0.93) 272 (0.94) 193 (1.0) 299 (0.99) 228 (0.99) 221 (0.98) 172 (0.99) 98 (1.0)
2 (3) 2 (2) 3 (3) 3 (2) 4 (3) 5 (2) 6 (5) 6 (9) 9 (8) 9 (7) 9.5 (7.5)
8 (7) 40 (276) 45 (24) 28 (27) 51 (23) 65 (47) 97 (79) 48 (153) 183 (248) 209 (123) 160 (157)

Samples with at least one PAM in HCDs
Median (IQR) of PAMs in HCDs per sample

Median (IQR) of PAMs in all genes per sample

P
ro

po
rt

io
n 

of
 s

am
pl

es

B

LAML OV KIRC BRCA GBM COAREAD HNSC UCEC LUAD LUSC BLCA

Figure 5 | (A) Histogram of the proportion of samples in the pancancer dataset with PAMs in HCDs. (B) Proportion of samples in each cancer type with

PAMs in HCDs.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2650 | DOI: 10.1038/srep02650 7

www.intogen.org/tcga
www.gitools.org/tcga42
http://www.intogen.org/mutations/analysis


Genes that are not expressed in any pan-cancer tumor type were excluded from the
resulting list of candidate drivers; this filter was based on pan-cancer data and criteria
included in syn1734155. Finally, TTN and OBSCN were also excluded from the list as
they have been proposed as likely false positives from the methods identifying drivers.

Lists of putative mutational drivers. After running the four methods on the pan-
cancer dataset (pan-cancer analysis) as explained above, we retrieved the four
corresponding lists of putative driver genes reported. The cutoff of each method
(MuSiC, OncodriveFM, ActiveDriver, FDR , 0.01; OncodriveCLUST FDR , 0.05)
was selected ad hoc after visual inspection of the lists’ enrichment for CGC genes
(Fig. 2a). The methods were also run on the datasets of each individual tumor type
(per-project analysis), and the same cutoffs were set to select the lists of putative
drivers. This process thus produced 48 lists of putative driver genes which were then
combined following an elaborate rule-based approach, as follows.

Genes with several signals of positive selection formed the Various-Signals Genes
(VSG) group, while genes exhibiting only one signal of positive selection were clas-
sified as One-Signal Genes, or OSGs. (Genes detected within per-project analyses
were required to posses the signals in the same tumor type to be considered VSGs.)
We assumed that detection by two methods (a quasi-majority vote) was sufficient to
nominate cancer drivers. This thought was supported by the observation that genes
detected by more than one method had much higher rates of CGC genes than those
exhibiting only one signal (Fig. 1c). Nevertheless, true cancer genes may possess only
one signal of positive selection and may have been left out of the VSG list. In order to
rescue them –but at the same time keep the false positives rate under control– we
performed two actions.

First, we pooled OSGs included in the Cancer Gene Census, CGC3, within a
separate group referred to as Known Cancer Genes, or KCG. Second, we made the
assumption that genes exhibiting one signal of positive selection which in addition are
known to functionally interact with VSGs and KCGs were more likely to be involved
in tumorigenesis than otherwise ‘disconnected’ genes. This would include in our
high-confidence candidates list likely bona fide drivers still not uncovered by genetic
or genomic cancer studies. Therefore, we retrieved from the Pathway Commons
database20 the subset of candidates which either directly interact, take part in the same
molecular process, or are enzyme or substrate/product of a biochemical reaction with
genes included in the VSG and KCG groups. VSGs, KCGs and their functional
interaction partners finally integrated the list of high-confidence drivers (HCDs).

Second, genes exhibiting one signal of positive selection and connected with VSGs
and/or KCGs by protein-protein interactions populated a separate list of candidates
drivers (CDs), given that the potential promiscuity of such physical interactions may
undermine the elucidation of relevant events. Finally, note that the remaining genes,
i.e. those picked up by a single method and with no interaction with VSGs or KCGs,
are presumed to contain a higher proportion of false positives and thus were excluded
from any further analysis. In order to complete the HCDs list, we considered the
results of MutSig, a well-established method to detect mutational drivers11. Initially, it
was developed to detect frequently mutated genes11, but at present includes additional
criteria to detect other signals of positive selection, such as the accumulation of
mutations in specific regions and in conserved residues. The MutSig results on the
pan-cancer data set were retrieved from syn1715784. Forty genes stated as significant
according to this method but not by our aforementioned analysis were considered as
valid additional findings, and as thus were included in the list of putative drivers of the
present analysis.

HCDs biased towards mutations in one tumor type. Fisher’s exact test was used to
check whether mutations on a certain gene were evenly distributed across tumor
types. Mutations in a gene were defined as biased towards a certain cancer type if the
Fisher’s odds ratio of their occurrence in samples of that tumor type, with respect to
the expected frequency was greater than an arbitrary cutoff of 25. We checked that
Fisher’s results were not biased towards tumor types with higher mutation rates by
comparing the number of specific HCDs with the mutation rate in each tumor type
(Supplementary Fig. 7). Tumors with lower mutation rates, such as LAML and KIRC
actually possess longer lists of specific HCDs. On the other hand, both lung cancer
types, with very high mutation rates only contribute one specific HCD. This is
probably because, independently of the mutation rate of the tumor type, driver
mutations tend to concentrate in genes that drive tumorigenesis in that specific tumor
type.

Biological modules analysis. We constructed a functional interactions (FI) network
with the 291 HCDs employing the Cytoscape FI plugin43. We then clustered the
resulting network into modules and analyzed these for their enrichment for Biological
Processes of the Gene Ontologies44 (GOBPs). Several very significantly enriched
GOBPs (FDR , 0.001) and other connector genes were manually selected to
construct the trimmed version of the Functional Interactions network of Figure 2a.
The broad biological modules depicted in the figure were constructed by grouping the
genes in similar GOBPs. We then selected 13 HCDs, whose role as mutational drivers
had not been previously established to highlight their possible involvement in tumor
emergence via their contribution to the alteration of well-studied cellular pathways.
(Their corresponding nodes are marked with a thicker border in Fig. 2a.) Using
KEGG pathways diagrams45, along with the information collected in Supplementary
Table 2, and the functional interactions retrieved from the Pathway Commons
database20, we built a schematic network of interactions linking these 13 genes to
others in several well-studied pathways (shown in Figure 3).

Cancer drivers due to amplifications and deletions. Copy number alteration (CNA)
data was retrieved from syn1703335, retaining only multi-copy amplifications and
homozygous deletions. In addition, platform-corrected RNA-seq data retrieved from
syn1834628 was used to assess whether these CNAs significantly changed the
expression of affected genes. To this end, we used OncodriveCIS39. Briefly, this
method ranks genes according to their bias towards overexpression (or
underexpression) due to changes of their copy numbers. The OncodriveCIS analysis
was performed solely for all tumor samples pooled together. Therefore, and to avoid
tissue specific expression bias, the expression impact score caused by CNAs was
calculated per each individual by taking into account only samples of the same cancer
type; thereafter, the bias of the gene towards misregulation was calculated across all
the tumors, and we have evaluated the top-ranking genes of this method. Finally,
genes identified by Gistic38 as bearing recurrent CNAs were retrieved from Synapse
(syn1703357).

Navigation of pan-cancer mutational drivers. The results of the analysis described
here –including the functional impact of mutations, their frequency in different
tumor types, the detected signals of positive selection in each gene and the
classification of genes as HCDs or CDs– were loaded into a website (available at
http://www.intogen.org/tcga) using Onexus. The website is designed following the
lines described in the paper describing the IntOGen-mutations platform (http://
www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2642.html), and allows
navigation to and from other IntOGen-like webservers. In addition, all pan-cancer
mutations data can be interactively navigated employing our Gitools 2.0 enhanced
heatmap browser42. To that purpose, we have prepared multidimensional data
matrices, data annotations files and video tutorials available at www.gitools.org/tcga.
The results are also available in Synapse (syn1962006).
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