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Abstract: In this paper, a new method is proposed for motion vector steganalysis using the entropy
value and its combination with the features of the optimized motion vector. In this method,
the entropy of blocks is calculated to determine their texture and the precision of their motion
vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low
texture, while the membership function of each block to a high texture class indicates the texture of
that block. These membership functions are used to weight the effective features that are extracted by
reconstructing the motion estimation equations. Characteristics of the results indicate that the use of
entropy and the irregularity of each block increases the precision of the final video classification into
cover and stego classes.
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1. Introduction

Steganography is the basis of hidden communication. In contrast to steganography methods,
steganalysis methods have been developed to detect the existence of a message in digital media
such as audio, image and video. In the last decades, image steganalysis has mainly been more
focused due to its popularity and simplicity, while compressed video steganalysis had received partial
attention [1]. Recently, with the popularity of video sharing over the Internet, compressed videos have
become the best media for steganography and have provided sufficient space for hiding messages.
The compressed video has various components such as motion vectors, transformed coefficients,
prediction modes and partition modes which are suitable and attractive for steganography. Research
shows that video traffic will make up 82 percent of all consumer Internet traffic by 2021. Consequently,
video steganography and steganalysis have been growing recently. Motion Vector (MV) is more
focused for video steganography because MV based steganography has high security and embedding
capacity [2].

Video steganography techniques can be divided into three generations [3]. In the first-generation
methods, the MV for hiding a message is selected based on the magnitude of the motion vector and
the message is embedded in the least-significant bit of a motion vector [4]. These methods do not
preserve the statistical properties of a motion vector and can be detectable by statistical steganalysis
methods. Second-generation methods define the proper distortion function to embedding the message.
The principle of these methods is to design a suitable distortion function expressing the embedding
impact on motion vectors. The purposed principle of second-generation methods is to embed a higher
number of hidden message bits for changing one of the motion vectors [5–7], on the other hand
decreasing the distortion for a given payload. These approaches include the syndrome trellis code
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(STC) [8], the wet paper code [9] and so forth. Formerly, STC also used in image steganalysis with
different distortion functions [10]. The drawbacks of the second-generation methods are the lack of
optimal localization of the motion vector and are detectable with the add-or-subtract-one method
(Aoso) [11]. Third-generation methods often involve changing the motion vector to areas where some
of absolute differences (SAD) are locally optimal. Motion Vector Modification with Preserved Local
Optimality (MVMPLO) can be called from these methods [2]. Also, the methods that change the angle
of the motion vector are from this generation [12–14]. In this methodology, the selection of the local
optimal motion vector in the area is corresponding to the message and, as a result, preserves the
motion vector optimality. The detection of methods as such is difficult even with the Aoso when the
bit rate is low or the message length is low. Of course, these algorithms do not guarantee that the
motion vector changes to another optimal location. So, if the local optimal estimator is performed with
higher precision, these algorithms can also be detected. According to the above-mentioned reason,
the near perfect estimation for the local optimality method (NPE) [3] has been able to reveal this
generation with the right precision. Based on the NPE method, both bit rate and distortion parameters
are simultaneously used to reconstruct the Lagrange equation for motion compensation.

The main purpose of steganalysis is to determine the existence of a hidden message. Steganalysis
methods in the motion vector of the video can be divided into two general categories. The first group
consists of methods that extracted the statistical characteristics of the motion vector. In this group,
the process of embedding the message modeled as a noise signal that is added to the vertical and
horizontal components of the motion vector [15]. Moreover, such methods attempt to detect the
existence of messages by examining the continuity of motion vector values in horizontal, vertical and
time directions [16]. In Reference [17], the rich model contains 44,875 features, which are extracted by
applying different filters to the spatio-temporal plates of motion vectors and benefit from both spatial
and temporal correlations of motion vectors. This method has a very high computational complexity
due to the high number of features. These steganalysis methods have low accuracy when the embedding
capacity is low due to the lack of use of the SAD parameter. The second group of steganalysis includes
methods that use motion vector information and motion vector optimization criteria (such as SAD,
cost function, prediction error) [18,19]. The second group has higher accuracy than the first group.
The reason for the higher accuracy of the second group is the extraction of more effective and more
sensitive features to embedding message. The Aoso [11] with 18 features and NPE [3] with 36 features
are of this category. In references [3,11], by reconstructing the motion vector estimation formula and
extracting properties of the motion vectors, its corresponding SAD and their respective encoded values,
attempt to detect the embedding message. The weakness of Aoso features contrasts with low-level bit
rate compression. This creates features that are very close to the extracted ones from stego video. So,
this methodology makes the distinction between the two categories difficult. As a result, the accuracy
of detecting the existence of the message is greatly reduced. The NPE [3] method has remedied this
weakness but does not consider the effects of different statistical features of the video.

In this research work, a new feature has been investigated compared to previous studies.
This feature considers a special weight for each block, in which such weight adaptation has been
selected from the entropy of each block. Accordingly, the paper is organized as follows: In Section 2,
motion estimation and the effect of motion vector steganography is expressed in the H.264 compressed
video. In Section 3, the proposed algorithm is presented using the concept of entropy, fuzzy clustering
and support vector machine (SVM) classification. By using entropy, the intrinsic statistical features of
different videos are considered. In Section 4, computer validation results and the comparison with the
results of related works are presented and discussed. Finally, the paper is concluded in Section 5.

2. Motion Compensation in H.264 Compressed Video

The latest video coding standards have inter-prediction and intra-prediction to reduce temporal
and spatial redundancy, respectively. How to optimize rate and distortion (rate-distortion optimization)
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is a constant challenge [20,21]. In the inter-prediction modes, encoders commonly optimized rate and
distortion using Lagrangian optimization techniques [22,23].

Block matching inter-frame prediction for a block in the current frame investigates the best
matching region in a search area of the encoded reference. The offset from the current block to the
best matched block in a reference frame is called MV and this difference is encoded to decrease
statistical redundancy. Such a procedure is identified as motion estimation (ME). The goal of ME is to
reduce temporal redundancy. The difference between these blocks form a residual block (or prediction
error) and then the prediction error is transformed and quantized. Also, quantized coefficients of
prediction error are encoded to decrease statistical redundancy (entropy encoding). In this research,
the H.264/AVC encoder has been adopted because of its popularity in video coding standards and
more specifically it is often chosen for video steganography [24]. The following concepts on motion
H.264 compensation are necessary to be introduced further.

2.1. Motion Estimation Optimization

Commonly Lagrangian optimization techniques are used for rate-distortion optimization because
of their simplicity and effectiveness [3]; minimizing the distortion subject to the bit rate constraint.
A Lagrange multiplier handles the trade-off between distortion and bit rate. Rate-distortion optimized
ME by utilizing the Lagrangian method minimizes the cost function as follows:

J = D + λR (1)

where J is the Lagrangian cost; D denotes the distortion; R denotes the bits needed for motion vector
difference (MVD) entropy coding; λ is the Lagrangian multiplier, which is found experimentally as the
following expressions for H.264/AVC standard [25]:

λ =

√
0.85× 2(

QP−12
3 ) (2)

where QP denotes a quantization parameter defined in the H.264 standard whose values are typically
30 and can be from 0 to 51 [26]. Equations (1) and (2) show that the distortion increases with increasing
the QP and λ. In the other words, Lagrangian cost controls the bits more than distortion.

Also, Equation (1) shows that for a given MV, the corresponding Lagrangian cost must be the
local minimum in a neighborhood related to the motion estimation (ME) method but because of the
lossy compression and QP effect, MVs can be non-local optimum in their neighborhood regions. In the
next section describes how to use this feature for steganalysis.

2.1.1. Block Size

The macro block size is 16 × 16. With the purpose of a more precise ME, the macro block (MB)
is generally separated into several blocks. A MB can be divided into one block 16 × 16, two blocks
8 × 16, two blocks 16 × 8, or four blocks in the size of 8 × 8. For every block, motion estimation is
performed and then it’s MVD and quantized (prediction error) PE coefficients are entropy coded and
transmitted. Form Equation (1), the smaller the sized blocks lead to higher bits for transmitting MVD
and less distortion. The steganalytic methods for the H.264 video must have the ability to adapt to
different block sizes to extract features.

2.1.2. Distortion Function

The distortion function is the measure for determining the similarity of the two blocks and finding
the best match in the motion estimation process. Usually sum of absolute differences (or sum of
absolute transformed differences) used as distortion function:
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SAD(S, Sre f
mv) = ∑

i
∑

j

∣∣∣S(i, j)− Sre f
mv(i, j)

∣∣∣ (3)

SATD(S, Sre f
mv) = ∑

i
∑

j
HT(

∣∣∣S(i, j)− Sre f
mv(i, j)

∣∣∣) (4)

where HT is Hadamard transform

2.1.3. Bits of Motion Vector Difference

Generally, the software of encoders utilizes exp-golomb coding for bit approximation in
rate-distortion optimized ME to decrease computation. Thus, from the motion vector predictor
of block (mvpred), the bit rate can be calculated as follows [27]:

map(x) =

{
2|x| x ≤ 0

2|x| − 1 x � 0
complexity (5)

Rx = 2
⌊

log2(map(mvx −mvpred
x ))

⌋
+ 1 (6)

R = Rx + Ry (7)

where x and y are horizontal and vertical component of motion vector and Rx is the number of bits
needed for horizontal component coding of MVD, mvpred

x denotes the horizontal component of the
block’s motion vector predictor and R is the total bits required for entropy coding of MVD.

3. Proposed Method

Gormish and Gill [28] approximately modeled the 2D-DCT (2-dimensional-discrete cosine
transform.) coefficients of PE with the Laplace distribution. In Reference [12], the quantized PE
distribution was computed by QP and α, where QP refers to the quantization parameter and α is
the parameter of the distribution and is related to the movement of objects, texture and ME method.
Therefore, the texture of blocks is obtained by using the entropy value of each block in a frame can be
approximated α. According to the ME method, the block with more texture has greater accurate motion
vector. In other words, the entropy value as a criterion will be the importance of the steganalysis
features of blocks. According to the previous research in Ref. [29], it has been observed that the
definition of entropy was used for steganalysis of still image. However, in the proposed method,
the regional entropy is used to estimate the entropy of each block. As the entropy is a measure of
texture, such texture can be also implemented for image steganalysis. This feature has been previously
reported in Refs. [30,31]. They reported that the texture data was extracted based on the local binary
pattern (LBP) and wavelet coefficients for image steganalysis.

Previously, the idea of weighting the features (corresponding to probability of embedding the
message) was used in image steganalysis [32]. They showed that the textural region has a higher
probability for embedding a message. In the present work, by using the average entropy of pixels
in the block and clustering technique, blocks can be divided into two clusters, high-textured blocks
and low-textured blocks. Fuzzy clustering was used because of soft clustering which is the block that
belongs to more than one cluster. The greater the entropy of the blocks, the greater its membership in
the cluster with higher texture. The membership function of each block into a high entropy cluster was
used to weight its feature vector to decide on the existence of a hidden message in the video. Features
were extracted from properties of the reconstructed cost function and combined with the weight from
the texture for every block and then the final classification is applied as a distinction between cover and
stego classes. A schematic block diagram is presented to illustrate the proposed method in Figure 1.
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Figure 1. Diagram of the proposed method.

3.1. Texture Measure

Entropy is a measure of randomness that can be employed to define the texture of the image.
Entropy is identified as:

e(k) = −
Nbin

∑
i=0

(pk
i · log2(pk

i )), (8)

where pk
i contains the normalized histogram counts of the image in a 9-by-9 neighborhood around the

corresponding kth pixel and, Nbin refers to the number of bins of the image histogram. For regional
entropy calculation for each pixel, we used the entropy value of the 9-by-9 neighborhood around the
corresponding pixel in the input image. Therefore, entropy of each block is obtained by meaning of its
pixels. Figure 2b,c show the entropy of the sample frame.

Ei =
1

Npixel

Npixel

∑
k=1

e(k) (9)

Figure 2. (a) Original frame; (b) Regional entropy of original frame; (c) Entropy of blocks of original
frame and (d) Membership degree to high textured cluster of original frame.
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3.2. Texture Clustering

The image segmentation with statistical features is common [33]. Similarly, block clustering for
the compressed video is used in this research. For clustering blocks based on texture, Fuzzy c-means
(FCM) is used, that is a clustering method that permits each block to belong to numerous clusters
with various degrees of membership. Such characteristics assist all blocks of frames according to
their membership function to affect the final features. FCM basis is the minimization of the objective
function defined as [34].

Jm =
2

∑
j=1

Nbolck

∑
i=1

µm
ij (Ei − cj) (10)

where Nbolck is the number of blocks in a video, m is fuzzy partition matrix interpreter for managing
the amount of fuzzy overlap (m > 1). xi is the ith block, cj refers to the center of the jth cluster and
µij demonstrates the amount of membership of Ei in the jth cluster. The membership’s degree is
defined as:

µij =
1

Nblock
∑

i=1

( ‖Ei−cj‖
‖Ei−ck‖

) 2
m−1

(11)

3.3. Feature Extraction

From Equation (1), without considering the effect of quantization, it can be concluded that each
motion vector in its neighboring regions minimizes the cost function. Thus, it can be concluded
that for each video, if the cost function of their motion vector is locally optimum, that video is a
cover. If the video contains blocks with motion vectors that do not preserve the local optimality
of the cost function, that video is a stego. By considering the effect of quantization step and lossy
compression, the reconstructed frame in a decoder is not equal to the original frame in an encoder;
therefore, distortion function that reconstructed in a decoder is not equal to the same function in a
decoder and the cost function cannot be restructured completely. As a result, the extracted properties
of the cost function for each MV must be robust to small variations of the cost function that is due
to decoding.

As mentioned in the previous section, the greater the entropy of each block, the larger the block
texture and, thus, the greater the precision of its ME. So, the amount of each block’s membership in a
large texture cluster can express the importance of the features of that block. A membership degree of
the ith block to a cluster of high texture is obtained as:

wi =
µih

Nblock
∑

k=1
µkh

, h = argmax{c1, c2} (12)

Then, for feature extraction from the reconstructed cost function, for every block, a neighborhood
is defined around its MV (v = (x, y)) as N(v):

N(v) =
{

v(∆x,∆y)
∣∣∣v(∆x,∆y) = (x + ∆x, y + ∆y), (∆x, ∆y) ∈ {−ix, . . . , ix} ×

{
−iy, . . . , iy

}}
(13)

These MVs and their corresponding cost functions in a 3 × 3 neighborhood are displayed in
Figure 3.

As observed in Figure 4, the sample cost function for cover and stego video in a 9 × 9 neighborhood.
From mentioned above and shown in Figure 4, the effect of quantification on the video cost

function is obvious and a number of MVs are not local in their neighborhood without carrying a
secret message.
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Figure 3. Motion Vectors (MVs) and their corresponding cost functions in a 3 × 3 neighborhood.
(a) Motion Vectors; (b) cost functions.

Figure 4. Sample cost function, first row for cover video and second row for stego video. (a) non-local
optimal in (0,0); (b) non-local optimal in (0,0); (c) local optimal in (0,0); (d) non-local optimal in (0,0);
(e) non-local optimal in (0,0); (f) local optimal in (0,0).

The cost function can be obtained with different distortion functions, here we consider two
common cost functions and extract the properties.

J = SAD + λR (14)
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JT = SATD + λR (15)

Thus, the distinguishing features between the two classes of cover and stego were introduced
using the following equations. These features are not sensitive to low variations of the cost function of
each MV from the local minimum, which is often due to quantization and reveal the changes resulting
from the insertion of the hidden message.

f (k) =
1

Nblock

Nblock

∑
i=1

wi.

(
Ji
k − Ji

5

Ji
k

)2

. δ(k−mi), k = 1, 2, 3, 4, 6, 7, 8, 9 (16)

f (5) =
1

Nblock

Nblock

∑
i=1

wi.δ(5−mi) (17)

where Ji
k is a J cost function for the ith block positioned in the kth position of the neighborhood and,

δ(k−mi) = 1 if k = mi, otherwise is 0 and mi = argmin
{

Ji
k|k = 1, . . . , 9

}
.

Therefore, these 9 features are extracted from J and 9 other features also extracted from JT are
as follow:

f (k + 9) =
1

Nblock

Nblock

∑
i=1

wi.

(
JTi

k − JTi
5

JTi
k

)2

.δ(k−mti), k = 1, 2, 3, 4, 6, 7, 8, 9 (18)

f (14) =
1

Nblock

Nblock

∑
i=1

wi.δ(5−mti) (19)

where JTi
k is a JT cost function for the ith block positioned in the kth position of neighborhood and,

mti = argmin
{

JTi
k|k = 1, . . . , 9

}
.

These 18 features are used for the SVM classification. Finally, the features are normalized. These
features are shown for a cover and stego video. As seen in the Figure 5, for a cover video, the probability
that the cost function of each vector is locally minimized is greater than its corresponding value in the
stego video.

Figure 5. Sample feature vector extracted: (a) cover video; (b) stego video.

Finally, classification is performed by using SVM classifier with the Gaussian kernel [35], then by
20% cross-validation on the grid space (C ∈

{
21, . . . , 215} and γ ∈

{
20, . . . , 2−15}), penalty parameter

C and kernel parameter γ are optimized.
In the proposed method, by using the soft cluster (fuzzy cluster), the effect of none of the blocks

is completely ignored and the blocks with even low texture also affect the final decision making.
Only non-textured blocks have little weight in final decision-making, which means the extensive
probability of these blocks is very limited in natural videos. Also, steganography methods often
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select the candidate blocks from all blocks, depending on the magnitude of the motion vector or the
prediction error. In this case, the selection probability of the areas with only non-textured blocks are
very low. For example, blocks that contain some natural landscapes like trees, grass, snow, sea waves
and so forth, with lots of textures, are often used for steganography because of their high prediction
error or high magnitude of motion vector. In the proposed method, these blocks with their large
number of textures have more weight in decision making.

4. Computer Validation

In this section, various tests have been used for evaluating the proposed method. 284 uncompressed
video sequences are used to create a cover and stego compressed video, which are downloaded from
the Internet. All videos are CIF-resolution (352 × 288) and their color sampling is YUV 4:2:0. Three
steganography methods are applied to the raw video during encoding to obtain various stego videos,
to evaluate the proposed algorithm and other prominent steganalytic algorithms. At least one method
has been selected from each generation of steganography methods. The first method is Aly’s method [4]
(denoted by Aly’s), the second method is presented in Reference [6] (denoted by Cao’s) and the third
method is proposed in method [13] (denoted by X.H’s).

Our method is compared with the three other steganalysis. One proposed in Reference [11]
(denoted by Aoso), another presented in Reference [18] (denoted by IMVRB) and the last proposed by
Zhang’s [3] (denoted by NPE). In comparison the proposed method against [3,11,18], the embedding
capacity is calculated by the ratio of corrupted MV to total number of MVs (CMVR) in each frame. It is
worth mentioning that all of the above-mentioned algorithms are performed in JM19.0 software.

Different ME methods were used for showing the performance of the proposed algorithm against
fast and non-full search for considering the effect of different ME methods. ME is a fixed DIA (Diamond
Search) [36] and HEX (Hexagon-based Search) [37].

Detection accuracy is expressed by the ratio of the number of correct detections of cover and stego
videos to the total number of videos. Thus, this detection accuracy can be computed as [38]:

accuracy =
tp + tn

tp + fp + tn + fn
× 100 (20)

where tp is the total number of correctly classified stego videos, tn is the total number of correctly
classified cover videos, fp is the total number of incorrectly classified cover videos and fn is the total
number of incorrectly classified stego videos.

For each simulation campaign, 60% of videos for training and 40% for testing were used.
All Simulation is iterated 10 times and the average results are presented in the next.

4.1. Simulation 1

This simulation is prepared to validate that our method surpasses the famous preceding works.
In this simulation, the bit rates are set at 0.5, 3 and 10 mb/s. Various bit rates are utilized to demonstrate
the effect of quantization and lossy compression on the steganalysis features and their performance.
The results are shown in Figures 6–8 with CMVR = 0.1. From these figures, it is declared that
by decreasing the bit rate, the detection accuracy of Aoso steganalyser decreases. Additionally,
this method neglects the effects of number of bits in cost function and extracts features from the
SAD instead of cost function. The IMVRB just used the recompression technique and intentioned in
properties of reconstructing the ME equations. As a result, its detection accuracy is lower than all other
methods against Aly’s steganography which changes the LSBs of MVs. The result changes according
to ME methods are negligible for all steganalysers. On the other hand, all of them are resistant to the
ME methods. Figure 9 illustrates the robustness of our method against the ME method.
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Figure 6. Steganalysis detection accuracy against Aly’s steganography.

Figure 7. Steganalysis detection accuracy against Cao’s steganography.

Figure 8. Steganalysis detection accuracy against Cao’s steganography.
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Figure 9. Steganalysis detection accuracy for different ME methods and bit rates against Cao’s steganography.

By eliminating the negligible alterations of the cost function, the proposed algorithm can preserve
detection accuracy over the bit rate variations and by considering regional feature (texture), it can
obtain better result than others. These regional features weighted the blocks to participate in the final
decision and did not use the same weight for all blocks as in other methods.

For a more complete comparison, Table 1 shows the comparison between the proposed method
and the Arijit method [19] by ROC (receiver operating characteristic curve) characteristics. 40 and
60 bits per frame and full embedding rate apply to Aly’s steganography method to obtain stego videos.
Then, Performance of steganalysers is measured. The detection accuracy and the area under the ROC
curve (AUC) computed and reported in Table 1.

Table 1. AUC and detection accuracy of proposed method vs. [19] against Aly’s steganography.

Embedding Rate
Arijit [19] Proposed Method

AUC Accuracy AUC Accuracy

40 bpfs 0.93 85 0.999 99.8
60 bpfs 0.98 93 0.999 99.86

Full 1 99 1 99.9

4.2. Simulation 2

This situation in steganalysis is identified as the Cover Source Mismatch (CSM). CSM refers to
simulation that the steganalysis classifier trained on one cover video source and it is utilized to test
videos from a different source. In this simulation, the detection accuracy is adversely affected because
of the discrepancy between both video sources. Results are represented in Table 2.

Table 2. Cover Source Mismatch (CSM) simulation results.

Steganography
Steganalysis

Aoso IMVRB NPE Proposed

Aly’s 67.25 66.39 78.98 79.45
Cao’s 51.27 64.08 71.79 71.05
X.H’s 52.56 65.12 72.04 73.74
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5. Conclusions

Videos with various bit rates, textures and movements need special steganalysis. Previous
algorithms for the analysis of motion vectors were not sufficient enough to maintain intrinsic features
of a desired video. Therefore, it is necessary to have a superior method to consider the weight of each
block to reach a final property of a video. In this paper, by using the intrinsic and statistical features
from each video, the improvement of the performance has been analyzed according to a proposed
steganalysis method based on the entropy definition. Results of this regional feature, obtained from
all blocks, validated the effectiveness. Also, such features were obtained from local optimality of the
cost function. By a combination of this feature with the intrinsic feature, the final feature is prepared.
As it was expected this method overcomes other prior prominent methods and robust against bit rate
variation. In future research, more attention can be devoted to the H.265 video standard.
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