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A B S T R A C T

Background: Long-term physical inactivity probably leads to a co-existence of osteoporosis and sarcopenia which
result in a high risk of falls, fractures, disability and even mortality. However, universally applicable and feasible
approaches are lacking in the concurrent treatment of osteoporosis and sarcopenia. In this study, we evaluated
the effect of strontium zinc silicate bioceramic (SZS) extract on osteoporosis and sarcopenia and explored its
underlying mechanisms.
Methods: Hindlimb osteoporosis and sarcopenia were established in a tail-suspended rat model. The bones were
conducted μCT scanning, histological examination, and gene expression analysis, and the muscles were con-
ducted histological examination and gene expression analysis. In vitro, the effect of SZS extract on osteoblasts was
determined by alizarin red S staining, immunofluorescence and qPCR. Similarly, the effect of SZS extract on
myoblasts was determined by immunofluorescence and qPCR.. At last, the role of Piezo1 and the change of
intracellular calcium ion (Ca2+) were explored through blockading the Piezo1 by GsMTx4 in MC3T3-E1 and
C2C12 cells, respectively.
Results: We found that SZS extract could concurrently and efficiently prevent bone structure deterioration,
muscle atrophy and fibrosis in hind limbs of the tail-suspended rats. The in vivo study also showed that SZS
extract could upregulate the mRNA expression of Piezo1, thereby maintaining the homeostasis of bones and
muscles. In vitro study demonstrated that SZS extract could promote the proliferation and differentiation of
MC3T3-E1 and C2C12 cells by increasing the intracellular Ca2+ in a Piezo1-dependent manner.
Conclusion: This study demonstrated that SZS extract could increase Piezo1-mediated intracellular Ca2+, and
facilitate osteogenic differentiation of osteoblast and myogenic differentiation of myoblasts, contributing to
alleviation of osteoporosis and sarcopenia in a tail-suspended rat model.
The translational potential of this article: The current study might provide a universally applicable and efficient
strategy to treat musculoskeletal disorders based on bioactive ceramics. The verification of the role of Piezo1-
modulated intracellular Ca2+ during osteogenesis and myogenesis provided a possible therapeutic target
against mechanical related diseases.

1. Introduction

Long-term physical inactivity such as spaceflight, bedrest or spinal
cord injury usually leads to osteoporosis and sarcopenia [1–3]. The

coexistence of osteoporosis and sarcopenia usually results in more
adverse outcomes than when either condition occurs independently,
leading to a higher risk of falls, fractures, disability, and even mortality
[2]. To counteract the disuse-induced bone loss and muscle atrophy
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simultaneously, physical exercises emerge as the predominant clinical
strategy with well-established therapeutic efficacy [4]. However, phys-
ical exercise is challenging for patients with mobility issues, and thus, it
is imperative to develop alternative therapeutic approaches to target
osteoporosis and sarcopenia simultaneously.

Modeling the biological process through which exercise therapy
operates might lead to therapeutic effects akin to those achieved
through physical activity. The core of exercise therapy is to provide
mechanical stimulation, which plays a crucial role in the maintenance of
bone and muscle homeostasis [5,6]. The adaptation of bones and mus-
cles to their mechanical environment vigorously relies on mechano-
sensors including Piezo channel, two-pore potassium (K2P) channel,
hyperosmolality-gated Ca-permeable (OSCA/TMEM63) channel and
transient receptor potential (TRP) channel [7,8]. Among these ion
channels, Piezo1 is inherently mechanosensitive and exhibits high
sensitivity than the other ion channels which attracts increasing interest
[8]. Upon mechanical stimuli, Piezo1 is activated with enhanced cal-
cium ion (Ca2+) influx, which promotes the phosphorylation and acti-
vation of protein kinase B (Akt), stimulating osteogenic differentiation
of bone marrow mesenchymal stem cells and the protein synthesis in
skeletal muscle cells, conducing to the formation of both bones and
skeletal muscles [9–11]. Wang et al. and Li et al. have proved that me-
chanical stimuli activates Piezo1 and further improves the pro-
liferation/differentiation of osteoblasts and osteogenic gene and protein
expression by osteocytes, ultimately contributing to bone formation and
the enhancement of bone strength [12,13]. Not limited to the bones,
Piezo1 is also involved in the process during which mechanical loading
prevents the activation and p53-mediated senescence of muscle stem
cells [14]. Mechanical unloading induces the downregulation of Piezo1
which reduces cytosolic Ca2+ concentration and induces Krüppel-like
factor 15 and interleukin 6 (IL-6) expression in skeletal muscles,
contributing to muscle atrophy [15]. Therefore, it is reasonable to hy-
pothesize that Piezo1 serves as a pivotal regulator of bone and muscle
tissue regeneration and activation of Piezo1 may be beneficial in
simultaneously attenuating bone loss and muscle atrophy.

Direct stimulation of Piezo1 via ion manipulation emerges as a
readily accessible strategy, given the mechanosensitive nature of Piezo1
as an ion channel protein. Though chemical compounds Yoda1, Jedi1
and Jedi2 are proposed as Piezo1 agonists to promote osteogenesis and
myogenesis, they have limitations such as drug resistence, unknown
biosafety, pricey, and relatively low aqueous solubility and potency [7].
Inorganic ions are promising to promote tissue regeneration due to their
low drug resistence, cheapness, good biocompatibility and versatility.
Divalent ions such as strontium ion (Sr2+) and magnesium ion (Mg2+)
are also able to promote Ca2+ influx in cardiac myocytes [16], indicating
the potential ability of Sr2+ and Mg2+ to activate the Ca2+-associated ion
channel Piezo1. Another study also shows that replacing the Mg2+ with
Zn2+ increases approximately 100-fold Piezo1 currents in human em-
bryonic kidney cells [17], implying a higher ability of Zn2+ in promoting
the Piezo1-mediated Ca2+ influx than Mg2+. Other than Sr2+ and Zn2+,
silicate ions (SiO32− ) also exhibit their role in regulating intracellular
Ca2+. A study reports that oral administration of SiO32− promotes the
mineral metabolism of calcium and magnesium in rats [18]. The extract
of calcium silicate cement containing 4 mM SiO32− significantly pro-
motes the formation of calcium matrix by osteoblast-like cells [19].
Moreover, after pre-incubation with a bioactive glass containing 60 % of
silicon, the intracellular Ca2+ signals increase sharply in osteoblasts
[20]. These findings allude that SiO32− is probably also involved in the
Piezo1-mediated Ca2+ influx. However, the effect of Sr2+ and Zn2+ on
the Ca2+ influx in both osteoblasts and myoblasts, and the effect of SiO32−

on the Ca2+ influx in myoblasts have yet to be elucidated. Our prior
investigations have provided evidence that the amalgamation of Sr2+,
Zn2+, and SiO32− yields more potent biological functionalities than their
individual counterparts, and the synthetic Sr-Zn-Si bioceramic
(Sr2ZnSi2O7, SZS) emerges as a promising candidate for the simulta-
neous sustained release of Sr2+, Zn2+, and SiO32− ions [21–23]. Inspired

by these findings, we hypothesized that the utilization of a combination
of ions (Sr2+, Zn2+, and SiO32− ) derived from the Sr-Zn-Si bioceramic
could potentially emulate the impact of mechanical loading in activating
Piezo1 and its ensuing Ca2+ influx to mitigate disuse-induced bone loss
and muscle atrophy.

To verify this hypothesis, we synthesized SZS and verified the effect
of its extract on the prohibition of osteoporosis and sarcopenia in a tail-
suspension rat model. Furthermore, we explored the effect of the SZS
extract on mechanosensor Piezo1 and its downstream targets both in
vivo and in vitro by utilizing osteoblasts andmyoblasts. The current study
may provide a universally applicable and efficient strategy to treat
musculoskeletal disorders based on bioactive ceramics.

2. Materials and methods

2.1. Preparation of SZS extract

SZS powders were synthesized in a sol–gel method as we previously
reported [24]. The phase and morphology of the synthetic powders were
characterized using a X-ray diffractometer (D8 ADVANCE, Bruker,
Germany) and a scanning electron microscope coupled with energy
dispersive spectroscopy (SEM-EDS, Phenom Pharos, Phenom,
Netherlands). For SZS extract preparation, the SZS powders were soaked
into saline, α-minimum essential medium (α-MEM, Gibco, China) or
Dulbecco’s modified Eagle medium (DMEM, Yeasen, China) with a ratio
of 200 mg/mL at 37 ◦C for 24 h, respectively. These mixtures were
centrifuged at 4500 rpm for 10 min using a high-speed desktop refrig-
erated centrifuge (H1850R, cence®, China), and their supernatants were
sterilized with a 0.22-μm Millipore filter (Millex®-GP, Merck Millipore,
Ireland), respectively.

The saline extract of SZS was used for animal administration. The
α-MEM and DMEM extracts of SZS were gradiently diluted to a con-
centration of 1/2, 1/8, 1/32, 1/128 and 1/512 of the original concen-
tration. After adding with 10 % fetal bovine serum (FBS, ExCell Bio,
China), 100 unit/ml penicillin and 100 μg/mL streptomycin (Yeasen,
China), the diluted SZS extracts were utilized to culture osteoblasts
(MC3T3-E1, Chinese Academy of Sciences, China) and myoblasts
(C2C12, Chinese Academy of Sciences, China), respectively.

2.2. Establishment of tail-suspended rats and administration of SZS
extract

Eighteen nine-week-old male Sprague–Dawley rats were purchased
from the Zhejiang Provincial Laboratory Animal Center. All the pro-
cedures of the whole experiments were under the guidelines of the
Animal Research and Ethics Committee of the Wenzhou Institute of the
University of Chinese Academy of Sciences, and were approved by the
Animal Research and Ethics Committee of Wenzhou Institute of Uni-
versity of Chinese (WIUCAS22122601). After five days’ acclimation, the
animals were randomly divided into three groups, including age-
matched control (CNTL, N = 6) group, hindlimb unloading (HU, N =

6) group, HU with SZS treatment (HU + SZS, N = 6) group. All rats were
singly housed and were provided with food and water ad libitum. The
HU rats were tail-suspended from the onset of the experiment as
described in a previously published work [25]. Briefly, the tail of a rat
was cleaned with 75 % alcohol and shaved, which was followed by
benzoin tincture smearing for adherence to a medical tape. Then, the
medical tap was hitched to suspend the rat’s hind limbs while allowing
the rat to move freely in the cage with a 30◦ head-down tilt. The rats in
the CNTL group and the HU group were administrated saline, and the
rats in the HU + SZS group were administrated saline extracts of SZS
intravenously, respectively. The intravenous administration was per-
formed every other day and orderly in a dose of 1 mL/rat/time for two
weeks.
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2.3. Muscle strength and mass measurement

At the end of the experiment, all rats were weighed and their hin-
dlimb grip force was measured. The muscle strength of rat hind limbs
was assessed using a grip strength meter (LJ800-012, Nscing Es, China)
following a previously published protocol [26]. Briefly, relax a rat
before the testing, and then put the two hind paws of the rat onto a grip
rod and pull the tail slowly to record the peak force. Then, animals were
sacrificed to collect femurs, tibias, as well as tibialis anterior (TA),
extensor digitorum longus (EDL), fibularis longus (FL), gastrocnemius
(GA) and soleus (SOL) muscles. The fresh mass of the collected muscles
was measured, and the relative muscle mass was calculated by muscle
mass/body weight × 100 %.

2.4. μCT analysis of proximal tibias and distal femurs

For μCT analysis, proximal tibias and distal femurs were performed
μCT scanning using a desktop device (Skyscan1276, Bruker, Germany)
with a voltage of 100 kV and a current of 200 μA. Projection images with
an isotropic pixel size of 18 μm were acquired for reconstruction and
segmentation of trabecular bone within approximately 5 mm underlying
articular cartilage using analysis software (CTAn, Bruker, Germany).
The bone volume fraction (bone volume/tissue volume, BV/TV),
trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular
separation (Tb.Sp) and bone mineral density (BMD) of the segmented
trabecular bone were analyzed.

2.5. Histological analysis and qPCR analysis

All the bone andmuscle samples from hind limbs were fixed with 4%
paraformaldehyde, and bone samples were decalcified in ethyl-
enediaminetetraacetic acid (EDTA) solution. Then, the bone and muscle
samples were embedded in paraffin for histological analysis. 5-μm-thick
bone sections were prepared for Masson’s trichrome staining using the
Masson’s Trichrome Stain Kit (Solarbio, China) to assess the newly
formed bone and mature bone ratio and the deposition of collagens in
muscles. Hematoxylin and eosin (H&E, Beyotime, China) staining was
conducted to analyze the mean value and relative distribution of the
cross-sectional area (CSA) of muscle fibers.

The gene expression of Piezo1, runt-related transcription factor 2
(Runx2) and alpha-1 type I collagen (Col1α1) in tibias, as well as the
gene expression of Piezo1, myomaker (Mymk) and myogenin (Myog) in
GA and SOL muscles were identified by qPCR analysis. Briefly, tissue
RNA was isolated from tissues using RNAiso Plus (Takara, Japan) ac-
cording to the manufacturer’s instructions. Then, the collected RNA
samples were purified and reverse transcribed to single-strand cDNA
using a HiScript II Q RT SuperMix for qPCR (+gDNAwiper) Synthesis Kit
(Vazyme, China). The gene expression was detected using ChamQ SYBR
qPCR Master Mix Kit (Vazyme, China) for a one-step real-time quanti-
tative polymerase chain reaction according to the manufacturer’s in-
struction using a LightCycler® 480 system (Roche, USA). The primer
sequences of genes glyceraldehyde 3-phosphate dehydrogenase
(Gapdh), Piezo1, Runx2, Col1α1, Myog and Mymk are listed in Table S1.
The relative quantification in mRNA expression was performed using the
2− ΔΔCt method [27]. All the fold changes in target gene expression (i.e.
gene expression levels) were normalized to Gapdh.

2.6. Cell experiments

2.6.1. Effect of SZS extract on cell viability
MC3T3-E1 and C2C12 cells were seed into 96-well culture plates

with a density of 1 × 103 cells/well, and cultured in growth medium
supplemented with varying concentrations of SZS extract. The culture
medium was changed every other day. After cultured for three or five
days, the cell activity (indicated by OD value) was detected with the Cell
Counting Kit-8 (CCK-8, Yeasen, China) according to the manufacturer’s

instruction using a microplate reader (EPOCH2NS, BioTek instruments,
USA). The concentration of SZS extracts that exhibited optimal cell ac-
tivity of MC3T3-E1 and C2C12 cells was selected to examine the effect of
the SZS extract on osteogenesis and myogenesis in vitro, respectively.

2.6.2. Effect of SZS extract on osteogenesis of MC3T3-E1 cells
To evaluate the effect of SZS extract on osteogenesis, we analyzed the

formation of bone nodules and the biochemical changes of osteoblasts.
MC3T3-E1 cells were cultured in a 6-well culture plate with osteogenic
differentiation medium containing 50 μg/mL ascorbic acid (Sinopharm
Chemical Reagent, China), 10 mM β-glycerophosphate disodium
(Macklin, China) and 10 nM dexamethasone (Macklin, China) without
(CNTL group) or with the SZS extract (SZS group). The culture medium
was changed every other day. After one-week culture, the cells was
either stained with alizarin red S staining kit (Beyotime, China) to
quantify mineralized bone nodules or for gene expression analysis of
Piezo1, Runx2 and Col1α1.

2.6.3. Effect of SZS extract on myogenesis of C2C12 cells
To assess the effect of SZS extract on myogenesis, we analyzed the

formation of myotubes and the biochemical changes of myoblasts. For
immunofluorescence staining of myotubes, C2C12 cells were seeded in a
24-well plate and cultured in differentiation medium (high-glucose
DMEM with 2 % horse serum (Cytiva, USA) and 1 % penicillin-
streptomycin) with (SZS group) or without SZS (CNTL group). The
culture medium was changed every other day. After culturing for five
days, the cells were fixed, permeabilized and blocked. Then, the cells
were stained with a primary anti-body Anti-Myosin (Boster, China) at
4 ◦C overnight, followed by incubation with secondary antibody Cy3-
conjugated Affinipure Goat anti-Mouse IgG(H + L) (Proteintech, USA)
and nuclei staining with DAPI in the dark. The stained cells were visu-
alized using a fluorescence microscope (Axio Vert.A1, ZEISS, Germany),
and the nuclei number per myotube and the fusion index (nuclei number
inside myotube/total nuclei number × 100 %) were analyzed using the
ImageJ software (ImageJ 1.45s, National Institutes of Health, USA). For
biochemical analysis, C2C12 cells were cultured in a 6-well plate in
differentiation medium with or without SZS extract for five days. The
culture medium was changed every other day. The relative gene
expression of Piezo1, Myog and Mymk were analyzed.

2.6.4. Effect of SZS extract on the Piezo1-mediated signaling
MC3T3-E1 and C2C12 cells were seeded into a 6-well plate and

cultured in the presence or absence of SZS extract with or without 0.5
μM Piezo1 blocker grammostola spatulata mechanotoxin 4 (GsMTx4)
(MedChemExpress, USA) for 48 h, and the relative mRNA expression of
Piezo1 was analyzed, respectively. To further explore whether SZS
extract promote osteogenesis and myogenesis via the Piezo1-mediated
Ca2+ signaling, we utilized GsMTx4 to examine the roles of Piezo1 in
osteoblast-mediated bone formation and myoblast-modulated muscle
formation after SZS treatment. Inspired by the knowledge that Piezo1
activation increases intracellular Ca2+ which activates Akt [28], we
detected the intracellular Ca2+ of osteoblasts and myoblasts for the
evaluation of the Piezo1 activation. To perform this, MC3T3-E1 cells and
C2C12 cells were seeded into a 24-well plate with a density of 2 × 104

cells/well, respectively. The cells were cultured for 48 h in the absence
or presence of SZS extract with or without 0.5 μMGsMTx4, respectively.
The cells were loaded with 5 μM Fluo-4 (Solarbio, China) and incubated
at 37 ◦C for 20 min, which was followed by another incubation with
HBSS solution for 40 min (Solarbio, China). After washing with HEPES
buffer, the fluorescence images were collected using a fluorescence
microscope (Axio Vert.A1, ZEISS, Germany), and the mean fluorescence
intensity of Ca from each image was quantified using the ImageJ soft-
ware (ImageJ 1.45s, National Institutes of Health, USA).
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2.7. Statistical analysis

Statistical analyses were conducted using a Prism software (Version
5.01, GraphPad, USA). All data were presented as mean with the stan-
dard error of the mean (SEM), and P values were determined by an
unpaired two-tailed Student’s t-test or one-way analysis of variance
(ANOVA) with the Fisher’s least significant difference (LSD) test. The
significance levels for all the tests were 0.01≤ *P< 0.05, 0.001≤ **P<

0.01 and ***P < 0.001, and P > 0.05 was indicated by NS (not
significant).

3. Results

3.1. Characterization of SZS powders and extract

The XRD patterns confirmed that the purity of the synthesized SZS
powders (Fig. S1A). The SEM with energy dispersive spectroscopy (EDS)
further confirmed that the components O, Sr, Si and Zn were with atomic
percentages of 54.65 %, 19.02 %, 16.72 % and 9.61 %, which was close
to the atomic ratio in SZS (Figs. S1B–D).

3.2. SZS extract allivates the decrease of hindlimb grip force in HU rats

The hindlimb unloading rat model was established through tail
suspension. Simultaneously, SZS extract was injected intravenously to
investigate its impact on the bone and muscle of HU rats (Fig. 1A). The
results demonstrated that two weeks’ HU significantly decreased the
body weight of rats, when compared to the CNTL rats (Fig. 1B). How-
ever, in the aspect of hindlimb grip force, compared to the CNTL group,
HU significantly reduced (decreased by 42.41%) the hindlimb grip force
of rats, which was almost completely recovered to the level of the CNTL
group after SZS treatment (Fig. 1C). Thus, administration of SZS extract
showed potential for reversing muscle strength loss in HU rats.

3.3. SZS extract alleviates HU-induced bone loss

To assess the effect of SZS extract on HU-induced bone loss, μCT
analysis and histological analysis were performed. μCT analysis revealed
a significant degradation of the trabecular microstructure in both
proximal tibias and distal femurs after HU, which was reversed by SZS
extract (Fig. 2A; Fig. S2A). Specifically, compared to the CNTL group,

HU led to lower trabecular bone volume fraction (BV/TV, Fig. 2B;
Fig. S2B), thinner trabeculae (Tb.Th, Fig. 2C; Fig. S2C), smaller
trabecular number (Fig. 2D), larger trabecular separation (Tb.Sp,
Fig. 2E; Fig. S2E), as well as lower bone mineral density (BMD, Fig. 2F;
Fig. S2F) in the proximal tibias and distal femurs, respectively. SZS
administration significantly restored the all above indicators except for
the trabecular BMD in distal femurs (Fig. 2; Fig. S2). There were no
significant difference in the trabecular number in the distal femurs be-
tween the HU and CNTL groups, as well as between the HU and HU +

SZS groups (Fig. S2D). Furthermore, Masson’s trichrome staining results
showed that HU reduced the accumulation of collagens in the proximal
tibias when compared to the CNTL group, and SZS treatment signifi-
cantly increased the collagen formation in the proximal tibias of HU rats
(Fig. 2G and H). Collectively, SZS extract probably prohibited the HU-
induced deterioration of bone microstructure in rats.

3.4. SZS extract alleviates HU-induced muscle atrophy

To investigate the effect of SZS extract on HU-induced muscle atro-
phy, the relative mass and histological morphology of skeletal muscles
were assessed in the HU rat model. The morphological diagram showed
that the volume of GA, SOL, TA, EDL and FL muscles was smaller in the
HU group than in the CNTL group, while the volume of these muscles
was larger in the SZS group than in the HU group (Fig. 3A; Fig. S3A).
Specifically, HU led to a significant reduction of the relative mass of GA
(decreased by 24.31 %), SOL (decreased by 54.97 %), TA (decreased by
15.88 %), EDL (decreased by 5.80 %) and FL (decreased by 26.43 %)
muscles (Fig. 3B and C; Figs. S3B–D). After being treated with SZS
extract, the relative mass of GA, SOL, TA, EDL and FL muscles became
larger in the HU + SZS group than the HU group and restored to 82.90
%, 74.25 %, 92.94 %, 100.44 % and 88.44 % of the CNTL group,
respectively (Fig. 3B and C; Figs. S3B–D). Then, GA and SOL muscles
were selected to perform further histological analysis and gene expres-
sion analysis. H&E staining results showed that HU caused considerable
atrophy of the mean CSA of GA (decreased by 41.33 %) and SOL
(decreased by 84.43 %) muscle fibers, compared to the CNTL group
(Fig. 3D–F). SZS treatment significantly increased the mean muscle fiber
CSA of the GA rather than SOL muscles in the HU rats, and the mean
muscle fiber CSA of the GA and SOL muscles was recovered to 84.76 %
and 16.95 % of the CNTL group, respectively. Specifically, a higher
relative distribution of CSA <1500 μm2 and a lower relative distribution

Figure 1. Schematic diagram of animal treatment with strontium zinc silicate (SZS) extract and the assessment of body weight and hindlimb grip force of rats. (A)
Time schedule of hindlimb unloading (HU) and intravenous injection (IV) of SZS extract to rats. (B, C) Body weight (B) and hindlimb grip force (C) of rats at the end
of the experiment. (n = 6) CNTL: age-matched control; HU: hindlimb unloading; HU + SZS: HU with SZS treatment.
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of CSA >4500 μm2 were observed in the GA muscles of the HU rats
compared to the CNTL rats, and these differences disappeared after SZS
treatment of HU rats (Fig. 3G). Besides, a higher relative distribution of
CSA <800 μm2 and 800–1600 μm2, together with a lower relative dis-
tribution of CSA >2400 μm2 of the SOL muscles were found in the HU
rats than in the CNTL rats (Fig. 3H). With SZS administration, only the
relative distribution of SOL muscle fiber CSA <800 μm2 in the HU+ SZS
group was significantly decreased when compared to the HU group.
Thus, SZS treatment prohibited HU-induced muscle atrophy probably
via dilating both small and large muscle fibers in the GA muscles, but
only via dilating small muscle fibers in the SOL muscles. Together with
muscle atrophy, more collagen formation was also observed in the GA
and SOL muscles of HU rats compared to the CNTL rats (Fig. 3I–K). SZS
treatment significantly reduced the collagen formation in the GA and
SOL muscles of the HU rats, and the collagens in the GA and SOLmuscles
of the HU rats was almost completely and only partially recovered to the
levels of the CNTL rats after SZS treatment, respectively (Fig. 3I–K).
Collectively, SZS demonstrates effective inhibition of HU-induced skel-
etal muscle atrophy.

3.5. The underlying mechanisms of SZS extract prohibiting HU-induced
osteosarcopenia

To explore the underlying mechanism of SZS extract-inhibited oste-
oporosis and sarcopenia in HU rats, the expression of mechanics-related,
osteogenic and myogenic genes was analyzed. The relative mRNA
expression of Piezo1 in the tibias and GA muscles was lower in the HU
group than in the CNTL group (Fig. 4A). SZS treatment significantly
increased the relative mRNA expression of Piezo1 in the tibias and GA
muscles of the HU rats (Fig. 4A). Moreover, compared to the CNTL rats,
HU rats had lower mRNA expression of Runx2 and higher mRNA
expression of Col1α1 in the tibias, and SZS treatment significantly
upregulated the relative mRNA expression of Runx2 and downregulated
the relative mRNA expression of Col1α1 in the tibias of the HU rats
(Fig. 4B and C). Other than in the bones, the relative mRNA expression
of Myog and Mymk was upregulated and downregulated in the HU
group compared to the CNTL group, respectively (Fig. 4D and E). With
SZS management, the relative mRNA expression of Myog and Mymk in
the GA muscles in HU rats was significantly increased to much higher

Figure 2. SZS extract prevents HU-induced microstructure deterioration and collagen reduction in rat tibias. (A) Representative 3D μCT images of the
microstructure of trabecular bone in rat proximal tibias. (B–F) The quantitative statistics of bone volume fraction (BV/TV) (B), trabecular thickness (Tb.Th) (C),
trabecular number (Tb.N) (D), trabecular separation (Tb.Sp) (E) and bone mineral density (BMD) (F) of the trabecular bone in proximal tibias from μCT analysis. (G)
Representative images of Masson’s trichrome staining of bone sections. (H) The quantitative evaluation of collagen ratio. (n = 6).
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than the HU and CNTL groups (Fig. 4D and E). We speculated that SZS
extract could enhance osteogenesis and myogenesis in the tibias and GA
muscles via the Piezo1-mediated signaling.

To further validate the role of Piezo1 in SZS extract promoting
osteogenesis and myogenesis, MC3T3-E1 and C2C12 cells were cultured,
respectively. With 1/8 SZS extract and 1/128 SZS extract, vigorously
enhanced cell viability was observed in the MC3T3-E1 and C2C12 cells,
respectively (Figs. S4A and B). Based on the concentration of these SZS
extracts, further in vitro study was conducted to examine their effect on
Piezo1-mediated intracellular Ca2+, and thus osteogenesis and myo-
genesis. GsMTx4 (Piezo1 inhibitor) downregulated the relative mRNA
expression of Piezo1 while SZS extract upregulated the relative mRNA
expression of Piezo1 by the MC3T3-E1 cells, and the SZS-induced
upregulated Piezo1 gene expression was disappeared after Piezo1
blockage (Fig. 5A). Immunofluorescence staining results showed that
GsMTx4 and SZS caused significantly lower and higher intracellular
Ca2+ of the MC3T3-E1 cells than the CNTL group, respectively (Fig. 5B;
Fig. S5A). After the inhibition of Piezo1 with GsMTx4, SZS treatment
could not increase intracellular Ca2+ of the MC3T3-E1 cells (Fig. 5B;

Fig. S5A). During the differentiation induction, upregulated gene
expression of Runx2 and Col1α1 and more bone nodule formation were
observed in the MC3T3-E1 cells cultured with SZS extract compared to
those without (Fig. 5C and D; Fig. S5B). Similarly, the C2C12 cells
treated with GsMTx4 and SZS exhibited significantly lower and higher
mRNA expression of Piezo1 and intracellur Ca2+ than regular culture,
respectively (Fig. 5E and F; Fig. S6A). The SZS-induced overexpression
of Piezo1 mRNA and increase of intracellular Ca2+ were disappeared
after Piezo1 blockage (Fig. 5E and F; Fig. S6A). Besides, higher expres-
sion of Myog and Mymk and more myotube formation were found in the
C2C12 cells cultured with SZS extract than those without (Fig. 5G andH;
Figs. S6B and C). Hence, SZS extract probably promoted Piezo1-
regulated Ca2+ influx into osteoblasts and myoblasts, which contrib-
utes to osteogenesis and myogenesis.

4. Discussion

The maintenance of bone and muscle homeostasis depends on their
adaptation to mechanical loading [5,6]. Physical inactivity usually

Figure 3. SZS extract prevents HU-induced atrophy and fibrosis in the gastrocnemius (GA) and soleus (SOL) muscles of rats. (A) Representative morpho-
logical diagram of the GA and SOL muscles. (B, C) The relative mass of GA (B) and SOL (C) muscles. (D) Representative images of H&E stained GA and SOL muscles.
(E, F) The mean CSA of GA (E) and SOL (F) muscle fibers. (G, H) The relative distribution of the CSA of GA (G) and SOL (H) muscle fibers. (I) Representative images
of the Masson’s trichrome stained GA and SOL muscles. (J, K) The quantitative analysis of collagens in the GA (J) and SOL (K) muscles. (n = 6).
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elevates the probability of osteoporosis and sarcopenia, seriously
affecting the life quality of people who suffer [1–3,29]. Mechanical
stimulations such as physical exercise are commonly employed to
counteract the disuse-induced osteoporosis and muscle waste [4,25,30].
However, they are not applicable for all patients. In this work, we
developed a novel approach based on SZS biomaterials and validated the
therapeutic efficacy of the SZS extract on HU-induced osteoporosis and
muscle atrophy.

The idea was inspired by recent studies as biomaterials are garnering
increasing interest in tissue regeneration because they have good
biocompatibility and fewer side effects compared to pharmacological
interventions [31]. One commonly applied strategy is to utilize the
active components released from material degradation for different
biological applications. In our study, after the treatment with SZS
extract, we got even more efficient restoration of the deteriorated bones
and atrophic muscles in the HU rats compared to the traditional me-
chanical stimulations reported in other studies [32,33]. SZS treatment
restored the relative mass of SOL muscles in the HU rats from 45.03 % to
74.25 % of the CNTL rats in our study, while climbing exercise has little
effect on the recovery of the HU-induced decrease of SOL muscle wet
weight [32]. Also, eight weeks’ vibrations and resistance exercise can
reinstate the halved relative SOL muscle mass in HU rats to approxi-
mately 60 % of the CNLT rats [34], while in our study, administration
with SZS extract rehabilitated the halved relative SOL muscle mass in
HU rats to 74.25 % of the CNTL rats. In the aspect of bone recovery, our
SZS extract exhibited a comparable effect on the prohibition of
HU-induced bone loss compared to the vibration and resistance exercise
[34]. However, our intervention period is much shorter than the vi-
bration and resistance exercise. In addition, our study showed faster
recovery of the reduced bone volume fraction in the proximal tibias of

HU rats (restored to 85.35 % of the CNTL group), when compared to
another study where electrical stimulation is utilized to prevent
HU-induced bone loss (restored to 65.63 % of the CNTL group) [33].
Therefore, SZS extract presents comparable or higher efficacy in pro-
hibiting HU-induced osteoporosis and sarcopenia compared to conven-
tional mechanical stimulations or other alternative methods.

The SZS extract enhanced recovery of atrophic muscle and osteo-
porotic bone in HU rats is probably attributed to the combination of
Zn2+, Sr2+ and SiO32− . Sr, Zn and Si exhibit regenerative potential for
both bone and muscle, respectively [24,35–40]. However, a single
element Sr, Zn or Si is considered to have limited therapeutic effects,
while ion combination may have synergistic activity in stimulating tis-
sue regeneration. For example, the combination of Sr2+ and SiO32− has
been proven to have synergistic effects on the regeneration of osteopo-
rotic bone [21]. This is attributed to the dominant effects of Sr2+ on
enhancing angiogenesis and repressing osteoclastogenesis, and the
dominant effects of SiO32− on stimulating osteogenesis. In another case,
the combination of Zn2+ and SiO32− demonstrated enhanced intracellular
reactive oxygen species (ROS) scavenging efficacy and
anti-cardiomyocyte apoptosis ability compared to single SiO32− [40].
This was due to the superior mitochondrial preservation provided by
Zn2+, resulting in better therapeutic effects for ischemic myocardial
disease. In current work, our in vitro study showed that SZS extract
increased the Piezo1 gene expression and intracellular Ca2+ in the
MC3T3-E1 cells and C2C12 cells, which was almost totally blocked after
inhibiting Piezo1. This suggests that the combination of Zn2+, Sr2+ and
SiO32− probably increases intracellular Ca2+ mainly through the Piezo1
channel in osteoblasts and myoblasts. The increase of intracellular Ca2+

may promote the activation of Akt and further stimulate osteogenic
differentiation of bone marrow mesenchymal stem cells and protein

Figure 4. SZS extract prohibits HU-induced reduction in the mRNA expression of Piezo1 and osteogenic/myogenic factors in rat tibias and GA muscles. (A) The
relative mRNA expression of Piezo1 in the tibias and GA muscles. (n = 5 for the CNTL group of tibias; n = 6 for the other groups) (B, C) The relative mRNA expression
of Runx2 (B) and Col1α1 (C) in the tibias. (n = 6) (D, E) The relative mRNA expression of Myog (D) and Mymk (E) in the GA muscles. (n = 6).
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synthesis in skeletal muscle cells [9–11]. Previous studies have also
revealed that the activation of Akt-related signaling pathways not only
regulates osteoblastic differentiation and the production of alkaline
phosphatase to form bone matrix, but also affects the expression of
myogenic differentiation factor Myog and myoblast fusion factor Mymk
and the protein synthesis to maintain muscle homeostasis [9–11,41].
Furthermore, intracellular Ca2+ also contributes to muscle contraction,
the regulation of myocyte-to-myotube fusion and the insulin-like growth
factor 1 (IGF-1)-induced osteogenic differentiation in bone marrow
mesenchymal stem cells, together with the upregulation of osteogenic
markers Runx2, Col1α1 and bone morphogenetic proteins by osteoblasts
[10,42,43]. Therefore, SZS extract is probably able to replicate the effect
of mechanical loading to counteract the HU-induced osteoporosis and
sarcopenia concurrently by the enhancement of osteogenesis and myo-
genesis simultaneously via promoting Piezo1-mediated intracellular
Ca2+ in osteoblasts and myoblasts (Fig. 6).

It’s worth mentioning that HU can lead to excessive collagen depo-
sition in skeletal muscles [44]. The excessive deposition of extracellular
matrix results in fibrosis, which hampers the migration of satellite cells

and thus hinders muscle fiber dilation [45]. In this work, we demon-
strated that SZS treatment could inhibit HU-induced fibrosis in both GA
and SOL muscles. The combination of Zn2+, Sr2+ and SiO32− ions may
play a major role, as each element exhibited anti-fibrosis potential in
other tissues [46–48]. Their specific cellular regulation capacities, such
as regulating immune cells to inhibit inflammatory factor secretion and
stimulating tissue cells to regenerate, contribute to forming healthy
tissues and preventing fibrosis [46–48]. In addition, our results demo-
started that SZS extract prohibited HU-induced atrophy differently in
the GA and SOL muscles. SZS treatment significantly increased the
volume and relative mass of both GA and SOL muscles, but only
increased the mean CSA of GA muscles of the HU rats. It seems SZS
administration obstructed the growth of muscle fibers in the SOL mus-
cles compared with GA muscles. In our work, SZS treatment only
partially recovered the HU-induced SOL muscle fibrosis, while SZS
treatment nearly totally restored the HU-induced GA muscle fibrosis.
Therefore, severe muscle fibrosis may be the reason that SZS treatment
had a weaker effect on the regeneration of SOL muscles than GA mus-
cles. Combined with the fact that GA muscles contain fast- and

Figure 5. SZS extract increases Piezo1-mediated intracellular Ca2+ and thus promotes osteogenic differentiation of MC3T3-E1 cell and myogenic differentiation of
C2C12 cells. (A) The relative mRNA expression of Piezo1 by MC3T3-E1 cells cultured with or without SZS extract or 0.5 μM GsMTx4 (Piezo1 inhibitor) for 48 h. (B)
Representative immunofluorescence images of intracellular Ca2+ (loaded with 5 μM Fluo-4) of MC3T3-E1 cells cultured with or without SZS extract or 0.5 μM
GsMTx4 for 48 h. (C) The relative mRNA expression of Runx2 and Col1α1 by MC3T3-E1 cells cultured with or without SZS extract or 0.5 μM GsMTx4 for 48 h. (D)
Representative alizarin red S stained images of MC3T3-E1 cells cultured in differentiation medium for one week. (E) The relative mRNA expression of Piezo1 by
C2C12 cells cultured with or without SZS extract or 0.5 μM GsMTx4 for 48 h. (F) Representative immunofluorescence images of intracellular Ca2+ (loaded with 5 μM
Fluo-4) of C2C12 cells cultured with or without SZS extract or 0.5 μM GsMTx4 for 48 h. (G) The relative mRNA expression of Myog and Mymk by C2C12 cells
cultured with or without SZS extract or 0.5 μM GsMTx4 for 48 h. (H) Representative immunofluorescence images of myotubes of C2C12 cells cultured in differ-
entiation medium with or without SZS extract or 0.5 μM GsMTx4 for five days. (n = 6). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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slow-twitch muscle fibers and SOL muscles contain mainly slow-twitch
muscle fibers [49,50], we speculate that the slow-twitch muscle fibers
delayed the SOL muscle recovery from fibrosis after SZS treatment. As a
consequence, the retained fibrosis in the slow-twitch muscle fibers
probably impedes the SZS-induced muscle regeneration in the HU rats.
Thus, the elimination of muscle fibrosis is probably a prerequisite for
efficient muscle regeneration.

In conclusion, SZS extract can simultaneously prohibit HU-induced
osteopenia and sarcopenia, implying the ability of SZS extract to repli-
cate the effect of mechanical stimulation on both bone and muscle. The
Sr2+, Zn2+ and SiO32− released from SZS increase the intracellular Ca2+

of osteoblasts and myoblasts via the Piezo1 ion channel to improve
osteogenesis and myogenesis. This study may provide a new avenue to a
universally applicable, efficient, and concurrent intervention of osteo-
porosis and sarcopenia. The preliminary clarification of underlying
biological mechanisms establishs a theoretical foundation for the
application of bioactive ceramics in regenerative medicine.
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