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Although exercise-induced fatigue has been mostly studied from a reductionist and
component-dominant approach, some authors have started to test the general
predictions of theories of self-organized change during exercises performed until
exhaustion. However, little is known about the effects of fatigue on interlimb coordination
in quasi-isometric actions. The aim of this study was to investigate the effect of exercise-
induced fatigue on upper interlimb coordination during a quasi-isometric exercise
performed until exhaustion. In order to do this, we hypothesized an order parameter
that governs the interlimb coordination as an interlimb correlation measure. In line with
general predictions of theory of phase transitions, we expected that the locally averaged
values of the order parameter will increase as the fatigue driven system approaches
the point of spontaneous task disengagement. Seven participants performed a quasi-
isometric task holding an Olympic bar maintaining an initial elbow flexion of 90 degrees
until fatigue induced spontaneous task disengagement. The variability of the elbow angle
was recorded through electrogoniometry and the obtained time series were divided into
three segments for further analysis. Running correlation function (RCF) and adopted
bivariate phase rectified signal averaging (BPRSA) were applied to the corresponding
initial (30%) and last (30%) segments of the time series. The results of both analyses
showed that the interlimb correlation increased between the initial and the final segments
of the performed task. Hence, the hypothesis of the research was supported by
evidence. The enhancement of the correlation in the last part means a less flexible
coordination among limbs. Our results also show that the high magnitude correlation
(%RCF > 0.8) and the %Range (END-BEG) may prove to be useful markers to detect
the effects of effort accumulation on interlimb coordination. These results may provide
information about the loss of adaptability during exercises performed until exhaustion.
Finally, we briefly discuss the hypothesis of the inhibitory percolation process being the
general explanation of the spontaneous task disengagement phenomenon.
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INTRODUCTION

Despite the overwhelming amount of research published over
the last decades on exercise-induced fatigue1, little is known
about its impact on performance (Enoka and Duchateau, 2016).
A reductionist and component dominant approach, searching
for central and peripheral mechanisms as causes of muscle
force reduction during effort, could not reach clear conclusions
about the specific mechanisms responsible for the phenomenon
(Gandevia, 2001; Enoka and Duchateau, 2016) and the real causes
of fatigue-related task failure (Hristovski and Balagué, 2010;
Balagué et al., 2014).

One main characteristic of component-dominant based
research on fatigue is the assumption that the variation of a
single component or process can explain the whole variability
of the measured task or performance output. Accordingly, the
available research has been mainly oriented toward the study
of continuous quantitative changes that arise at different levels
(from cells to organs) during the developing fatigue. However,
these continuous changes cannot, by themselves, explain the
discontinuous qualitative nature of changes occurring during the
process, like the spontaneous task failure or task disengagement
(Hristovski and Balagué, 2010; Balagué et al., 2014).

Under the framework of a network physiology approach
(Bartsch et al., 2015; Ivanov et al., 2016), an interaction-
dominant dynamic of the exercise-induced fatigue phenomenon
is assumed (Delignières and Marmelat, 2012). Accordingly, the
possibility that many component processes can lose or gain
in significance during the developing fatigue, and that non-
linear self-organized changes may occur in the network, is
considered. In order to test the general predictions of theories
of macroscopic self-organized change (e.g., Haken, 1978), some
authors have already experimentally discovered the existence of
critical behavior before the fatigue-induced spontaneous task
disengagement. In these early studies, the elbow joint angle was
treated as an order parameter, i.e., a collective control variable
that macroscopically governed the activity of components of
the neuromuscular axis of performers (see Figure 1). By
analyzing the fatigue-induced changes in the Fourier spectra
of upper limb fluctuations, Hristovski and Balagué (2010)
discovered the critical phenomenon of enhanced fluctuations
in the vicinity of the spontaneous task disengagement point.
Subsequently, by the analysis of changes in the temporal structure
of upper-limb elbow angle fluctuations, Vázquez et al. (2016)
found enhanced persistent correlations in the vicinity of task
disengagement, which is a hallmark of the critical slowing down
phenomenon2 (see e.g., Koide and Maruyama, 2004; Scheffer
et al., 2009, 2012; Rigamonti and Carretta, 2015). Hence, it

1In line with a network physiology of exercise approach, in this paper the common
term “muscle fatigue” was replaced by the term “exercise-induced fatigue” to avoid
centering the muscle as the cause of fatigue.
2Critical slowing down is a phenomenon that arises as a consequence of the
increased relaxation time of the system toward its stable state after a perturbation
has been applied. The outcome of the slower relaxation toward the stable state is the
enhancement of persistent temporal correlations between subsequent fluctuations
(see e.g., Koide and Maruyama, 2004; Scheffer et al., 2009, 2012; Rigamonti and
Carretta, 2015).

became theoretically plausible to treat the spontaneous task
disengagement as belonging to the class of non-equilibrium
phase transitions. Based on the discovery of these key properties,
the phenomenon of task disengagement was interpreted as a
primitive, evolutionary stabilized, protective decision mechanism
by which the organism spontaneously removes the cause of the
perceived discomfort and the possible injury (Vázquez et al., 2016;
Slapsinskaite, 2017; Pol et al., 2018).

Studying the time-variability properties of the elbow angle
during a quasi-isometric exercise (Figure 1) performed until
exhaustion, Vázquez et al. (2016) found a continuous evolution
from an anti-persistent to a persistent time structure dynamic of
the goal coordinative (i.e., order parameter) variable as fatigue
developed. The authors interpreted these results as a loss of
the initial fine-grained temporal control as spontaneous task
failure approached. At the level of the central nervous system
(CNS) spatio-temporally nested inhibition-excitation networks,
which initially compete at short time scales, shift the competition
toward longer-term intervals with fatigue accumulation. That
is, a coalition of inhibitory effects acting at multiple nested
network levels accumulate and cannot be adequately quickly
compensated by excitatory intention-motivation control loops
which function on longer time scales (Kiebel et al., 2008). The
result is a progressively delayed possibility of adjusting the goal
variable (i.e., increase of the relaxation time) that finally results
in spontaneous task disengagement for a minimal additional
increase of effort accumulation.

During the previously mentioned quasi-isometric exercise,
both arms cooperated with compensatory movements and
adjustments of the limbs to maintain the task and stabilize
the control of the elbow angle (Hristovski and Balagué, 2010;
Vázquez et al., 2016). Such adaptive actions included the
recruitment of additional motor units and the engagement of
energy transfer from other body structures to the limbs. In
particular, under competitive conditions or when a real task
failure is approached, a larger number of structures (from
muscles to limbs) are progressively engaged with time on
task or effort accumulation. The increment in the number of
structures cooperating to satisfy the task goal also found that
testing other coordinative variables during dynamic exercises
(Balagué et al., 2014) signifies a more coherent competitive
behavior in the physiological network as the task disengagement
approaches. Such processes can only be identified when the
motor task is prolonged enough while striving to maintain the
same performance level.

The effects of effort accumulation on temporal properties
of different potential coordinative collective variables (e.g.,
elbow joint angle, revolutions per minute during cycling, and
acceleration during running) for different types of exercise
have already been studied (Balagué et al., 2014; Barbosa et al.,
2018; Montull et al., 2020). However, little is known about the
effects of fatigue on interlimb coordination, particularly in the
view of spontaneous task-disengagement. Several works have
analyzed the interactions between limbs during maximum force
production (Archontides and Fazey, 1993) while pedaling (Sato
et al., 2019), or inter-muscular and inter-joint coordination
during hammering (Côté et al., 2008), but these timeless
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FIGURE 1 | Participant in preparation for the task. The sensors of the electrogoniometer were placed on the upper arm and forearm of both extremities.

approaches were not able to capture and explain the dynamics
of the exercise-induced changes of interlimb coordination,
especially to give an account on the phenomenon of fatigue-
induced task disengagement.

The use of a few macroscopic variables that govern the
behavior of the innumerable neuro-musculo-skeletal degrees of
freedom has been shown to be a viable interpretation of the
strategy that the brain-body system uses to control actions (Kelso,
1995). Thus, the search for such variables (also known as order
parameters, collective, essential, or coordinative variables) is one
of the key interests in motor control and learning research.
While the interlimb coordination in the class of oscillatory
movements has a long research tradition (e.g., Kelso, 1984,
1995), the interlimb coordination in quasi-isometric actions is
still uncharted territory. For the oscillatory class of actions, the
relative phase has been defined as the collective coordinative
control variable. In this paper, to our knowledge for the first
time, we make an attempt to define the collective variable that
the brain-body system uses to coordinate the limbs in tasks that
require prolonged quasi-isometric effort in order to manipulate
environmental objects, such as an Olympic bar. In heterogeneous
complex systems with networked interactions, such as the brain-
body system, correlation (or more generally, similarity) measures
have been used as order parameters (Krauth and Mézard, 1989;

Parisi, 2006; Arenas et al., 2008; Hristovski et al., 2011). Hence,
here we hypothesize that the brain-body system may use the
same type of macroscopic action control variable in order to
efficiently manipulate events and objects in the environment.
More concretely, since the general prediction for complex
systems is that long-range spatial correlations develop and
enhance as the system approaches the tipping point (Sethna,
2006), we hypothesize that interlimb correlations will also
enhance as the fatigue driven system approaches the critical point
of spontaneous task disengagement.

This aim poses some methodological issues that have to
be resolved first. The temporal changes in the variability of
complex psychobiological time series are characterized by non-
stationarity, which is not captured by traditional available
techniques of analysis (e.g., frequency analysis), and thus, more
sophisticated methods of non-stationarity reduction are required
(Amoud et al., 2008). In addition, univariate approaches may
have a limited perspective on complex fluctuations whose
source is often unknown. The analysis of the simultaneously
recorded data can be used to reveal the properties of
underlying mechanisms: delays, loops, directed dependences.
The multivariate studies can put the light on the identification
of the structure of interactions in a system of multiple
components (Müller et al., 2016). Such methods are useful
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for the causality assessment (in the Granger sense) and for
understanding the information flow (Gencaga et al., 2015)
between variables (by Shannon formalism). Running correlation
function (RCF) and bivariate phase-rectified signal averaging
(Bauer et al., 2010) methods can be used to study the
interrelations between two time series recorded simultaneously.
The following analysis is dedicated to the assessment of the
magnitudes (strength) of temporal interrelations to reflect
coordination during the task.

The aim of this study was to investigate the effect of exercise-
induced fatigue on the upper interlimb coordination during
a quasi-isometric exercise performed until spontaneous task
disengagement. Particularly, we were interested in the possibility
of defining the potential task specific order parameter that is used
by performers in the goal-directed control of the brain-body-
environment coordination.

MATERIALS AND METHODS

Participants
Seven voluntary physical education students (four females and
three males M = 22.41 years old, SD = 1.2) participated in
the study. All of them were familiar with strength training and
conditioning. Prior to taking part in the study, they completed
a questionnaire to confirm their health status (Sánchez-
López and Dresch, 2008). All the experimental procedures
were explained to the participants before they gave their
written consent for the experiment. The Local Research Ethics
Committee approved the study (072015CEICEGC) according to
the Helsinki Declaration.

Procedure
On three different days over a period of three weeks (one
day per week), participants performed a quasi–isometric task
consisting of holding an Olympic bar with 80%3 weight of one-
repetition maximum (1RM) in an arm curl position until fatigue-
induced spontaneous task failure (Figure 1). The one-repetition
maximum test was performed one week prior to the start of
the study to determine the maximum weight that they were
able to move on a complete arm-curl exercise (M = 33.43 kg,
SD = 3.16 kg). Then, 80% of the 1RM weight was calculated
for each participant and used during the task. Participants were
encouraged to intentionally maintain an elbow joint angle as close
as they can to the initial angle of 90◦. A virtual competition
was organized in order to increase the likelihood that the real
fatigue-induced spontaneous task disengagement was reached
in all trials. Participants sat on an inclined-forward bench in
order to prevent possible spinal injuries and a reference cord
was placed at the level of the participant’s wrist to facilitate
haptic and visual feedback on the initial position and its loss.
Before the task started, the bench position and the reference
cord were adjusted for each participant on every trial. The

3The task constraint of 80% of 1-RM was applied because it provided a sufficient
data sample and guaranteed the emergence of task disengagement in a short testing
time.

elbows of the participants were not fixed, allowing them to
move freely in all three dimensions. To record the elbow angle
variations, an electrogoniometer (SG110, Biometrics Ldt, Gwent,
United Kingdom) was used. As shown in Figure 1, the sensors
of the electrogoniometer were placed on marked points of the
upper arm and forearm of both arms and were adjusted to
the required starting flexion of 90◦. The elbow angle variations
were recorded using Ebiom software (Biometrics Ldt, Gwent,
United Kingdom) for further analysis. The sampling frequency
was set at 50 Hz and the amplitude resolution was 0.1 deg. for
each extremity. Figure 2 shows an example of the variations
of the elbow angle degrees of one participant recorded during
one of the trials.

Data Preprocessing
As the participants were unable to maintain the 90◦ elbow
flexion throughout the trial, a trend reduction of the elbow
angle series was performed before the correlation analysis.
The point of spontaneous task disengagement was determined
in the data sets as an abrupt and persistent switch toward
negative values of the differenced time series calculated as
y = x − x(lag = 1), where x denotes the elbow angle, x(lag = 1)
the lagged elbow angle for 1 data point, and y denotes the
angle change (Hristovski and Balagué, 2010). This negative trend
was determined from a linear fit performed in overlapping
windows with a 50-points length starting from the end of the
recording. The fatigue-induced spontaneous task disengagement
point was detected from the time series of both elbows separately.
In case of any divergence between its position in the left
(L) and right (R) datasets, the task disengagement point was
set for the earlier position in time. The time series of both
elbows after the determination of task disengagement had
the same length.

The linear trend was removed from the time series by the
first order polynomial fit. Subsequently, the detrended recordings
were raised by the minimum of original data to obtain the
referential values of the elbow angle.

As the time length to task disengagement occurrence was
different between participants, the recordings were divided into
three segments to compare them. The first (BEG) and the
third (END) segments had the same number of points, which
reflected the percentage of time evolution preceding the task
disengagement. For comparison purposes the first 30% (BEG)
and the last 30% (END) of the preprocessed data were selected
for further analysis (see Figure 2).

Running Correlation Function
A RCF was applied to BEG and END segments. For all
calculations, a common procedure of overlapping windows was
performed. The correlation coefficient was determined with
respect to a predefined window width W. Then, the window
was moved one point forward through the time series and
the correlation coefficient was determined again. The procedure
was repeated until the window reached the end of the selected
data segment (BEG and END, separately). The described sliding
approach for the temporal correlation coefficient determination
is known as RCF. To obtain the limited ranges of RCF values
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FIGURE 2 | Example of the fluctuations of the elbow angle of both arms during one trial. Vertical blue lines divide the trial into three segments preceding the task
disengagement. The first segment (BEG) and the last one (END) were selected for the analysis.

varying between−1 and+1, the normalization by local standard
deviations in the n-th segment σR(n) and σL(n) was introduced:

RCF (n) =
∑W

i=1 (Ln+i − µL (n)) · (Rn+i − µR (n))
(W − 1) · σL (n) · σR (n)

. (1)

In Eq. (1), µL(n) and µR(n) refer to the local mean determined
for the left and right elbow, respectively. Note, however, that the
means and standard deviations in Eq. (1) were calculated only for
the current window, where left limit is n-th data point in the time
series segment. Five windows were predefined and selected for the
analysis W = {50, 100, 150, 200, 250, 300}, which are multiplicities
of 1second due to the experimental sampling rate. Finally, we
decided to verify the delays in the correlations. It was obtained
by introduction of time lag τ in Eq. (1). The range of τ depends
on window width W. The maximal τ was set for each case at W/2.
The τ can be easily recalculated to seconds because 50 points are
equal to one second. In such a realization the current windows in
both signals overlapped.

For the statistical comparison between BEG and END
segments, the analysis of RCF distributions was proposed. The
RCF was given in the constant range < −1;1 >, and the
number of data points in BEG and END segments were the
same. The analysis of the correlations relies on its magnitudes
in selected segments. We proposed a marker which reflected
high correlations between the left and right arm, respectively.
Therefore, we calculated the percentage of the RCF values
which followed the rule RCF(n) > 0.8 in BEG and END
segments separately. It was denoted as %RCF > 0.8. The constant
number of data points in BEG and END segments showed

that the results for each participant were not sensitive to the
length of the signal.

For statistical assessment of the RCF, we determined the
coefficient of variation (CV). It is defined by the quotient
of standard deviation and mean values. CV is introduced in
the analysis to reflect the variability and homogeneity of the
marker (i.e., the percentage of the RCF > 0.8 in the two
segments: BEG and END). A low value of CV indicates a
small statistical dispersion of the %RCF > 0.8 marker in the
studied segment.

Bivariate Phase Rectified Signal
Averaging (BPRSA) Method
In order to support the symmetric properties of the
coordination represented by the RCF data analysis, the
bivariate phase rectified signal averaging (BPRSA) method
(originally used for the assessment of the baroreflex
sensitivity; Bauer et al., 2010) was adopted. It was applied
here for the estimation of the fluctuations of interrelations
between the recorded data of both arms simultaneously.
One recording was treated as trigger and the second as
target. The changes in the target signal were estimated in
accordance to increments detected in the trigger. The BPRSA
computation process was modified and divided in a few
successive steps:

a) The anchor points were denoted in the trigger signal and
reflected in the target signal at synchronous positions in
time. Anchor points were defined as values in the trigger
signal which were larger than the previous ones. They were
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found in the sliding windows W, which widths were used
in the RCF analysis,

b) The close surrounding of anchor points was required for
further analysis: two points backward and one forward.
Such surroundings for following anchor points may
overlap,

c) Surroundings were aligned at anchors of target signals,
d) Averaging within the aligned surroundings was performed,
e) Finally, the marker for BPRSA was determined from four

points of the averaged surroundings:

BPRSAtrigger→target =
X (0)+ X (1)− X (−1)− X(−2)

4
(2)

Points of target signal X(−1), X(−2), and X(1) surrounded
the increase in the trigger signal in time. The increase reflected
in the target signal was positioned in an anchor X(0). We
performed computations in both possible directions, from right
(trigger) to left (target) arm and in the opposite way, because
the BPRSA analysis was used here to support the symmetric
properties of the coordination represented by the RCF study.
Therefore, we proposed a unique marker, which estimates
the magnitude of fluctuations taking into account possible
interrelations between data. First, the differences in the BPRSA
analysis between the arms, i.e., the difference between the
BPRSA (right over left) minus the BPRSA (left over right):
diff(BPRSA) = BPRSAR → L − BPRSAL → R, were calculated.
In the next step, we estimated the ranges between 5th and
95th centiles of diff(BPRSA) values for BEG segment. We
determined the diff(BPRSA) for ENG values that exceeded the
centile limits given in BEG and presented them in percentages.
This variable was denoted as %Range (END − BEG). Assuming
larger variations in the END segment than in BEG, the expected

TABLE 1 | The mean, SD, and CV of %RCF > 0.8 for different windows W.

Windows 50 100 150 200 250 300

Mean BEG 7.49 10.53 12.50 13.59 15.84 17.03

SD BEG 6.24 9.12 10.84 11.82 12.88 14.28

CV BEG 83.4 86.6 86.7 87.0 81.3 83.8

Mean END 17.00 26.98 28.94 29.46 28.20 27.05

SD END 8.07 14.94 19.44 21.96 23.63 25.24

CV END 47.5 55.4 67.2 74.5 83.8 93.3

percentages of %Range (END – BEG) should exceed 10%. Note
that in such calculus, the sign of the diff(BPRSA) parameter
was not taken into account. It can be treated as a single
and symmetric measure of the magnitude of simultaneous
fluctuations from both signals.

RESULTS

The results are divided into two sections. In the first one, the
analysis of the window length in the RCF and adopted BPRSA
calculus (Table 1 and Figures 3–6) are presented. In the second
part, the influence of the time lag is discussed (Figure 7).
In both cases, the calculations were done to BEG and END
segments separately.

Figure 3 shows an example of the RCF and its distributions
in selected window W = 150 for one participant. It reflects the
typical properties of the RCF: wide range of correlation values
(positive and negative as well) and visible domination of higher
RCF in the END segment than BEG segment. Each point in the
plot of RCF (Figure 3A) corresponds to the correlation coefficient
determined for the left and right arms datasets in the sliding

FIGURE 3 | Example of RCF results for the elbow angle series from one participant in one trial. (A) The RCF plot of dataset until fatigue-induced spontaneous task
disengagement with no time lag and window W = 150. (B) Probability distributions for RCF in the BEG segment and (C) probability distributions at the END
segment. For better visualization, the distributions were constructed with constant number of bins equal to 40 in (B,C).
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FIGURE 4 | Results of mean product σL (W) · σR (W) obtained for the different analyzed windows (W) in the initial and final segments of the trials. BEG: initial
segment of the trial and END: final segment of the trial.

FIGURE 5 | Example of adopted BPRSA results until the fatigue-induced spontaneous task disengagement for one participant with no time lag and window
W = 300. The violet time series represents the influence of the right arm in the left arm fluctuations. Green time series represents the influence of the left arm in the
right arm fluctuations. An increment in the variations between arms in the last part of the time series, close to the task disengagement, is observed.

window. Figures 3B,C are the histograms of RCF from the BEG
and END segments. In general, we observed a domination of
positive correlations. According to the marker introduced in
section “Running Correlation Function,” the percentage of the
high correlation magnitude (i.e., %RCF > 0.8) equals 4.6% for
BEG segment and 55.1% for END segment. This means that the
correlations of high magnitude (i.e., values higher than 0.8) were
less probable in the BEG segment and more probable in the END
segment. After determining the marker %RCF > 0.8 for each trial
and each participant, the group statistics of the RCF in BEG and
END segments was performed.

Table 1 shows the mean and SD of the %RCF > 0.8 marker
for the windows 50, 100, 150, 200, 250, and 300. The mean of the
BEG segment increased with the increment of the window length,
while the mean of the END segment reached the maximum for
window W = 200 and started to decrease for the next windows

(W = 250 and 300). In both segments, the SD values increased
with window length, but their magnitude was larger for the END
segment in comparison to the BEG segment.

The results of the coefficient of variation (CV) show that the
BEG segment was not sensitive to the window’s length (very small
fluctuations in the third row of Table 1). However, the CV for
END increased with the window’s enlargement. Note that in the
latter case, the CV for W = 300 was twice as large than for W = 50.
That is, while the CV was stable in the BEG segment, it increased
in the END segment with the windows’ length. This can be mainly
explained by the magnitude of the SD for the END segment.

To support the results of RCF and its variations in BEG
and END segments (Table 1), the product σL (n) · σR (n) (Eq. 1)
was calculated using the same window size. As observed
in Figure 4, the mean product increased more slowly with
the window’s width in the BEG segment (W50 = 0.19;
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FIGURE 6 | Mean of %Range (END – BEG) determined for the analyzed windows (W). Each point represents the value of the percentages characterizing the
deviations in the END segment in relation to BEG. Error bars represent the standard deviation.

FIGURE 7 | Mean %RCF > 0.8 for the BEG and END segments with increasing time lags 0, 0.2, 0.4. . .1.4 s for one selected window (W = 150). The results for the
final part are shifted and dotted line is plotted to visualize the trend. Error bars represent the standard deviation. BEG: initial segment of the trial and END: final
segment of the trial.

W100 = 0.35; W150 = 0.46; W200 = 0.55; W250 = 0.63;
W300 = 0.70) than in the END segment (W50 = 0.29;
W100 = 0.69; W150 = 1.07; W200 = 1.38; W250 = 1.64;
W300 = 1.80).

Figure 5 shows an example of the results for the adopted
BPRSA analysis in a selected window (W = 300). As it is
observed, the influence of the right arm on the variations of
the left (violet line) and the left arm on the right (green line)
increased in the last part of the task preceding the fatigue-induced
task disengagement.

Figure 6 shows the mean values and SD of the proposed
marker of change percentage [%Range (END − BEG)] (see

section “Bivariate Phase Rectified Signal Averaging (BPRSA)
Method”), which was calculated for each window (W50 = 16.01;
W100 = 20.22; W150 = 23.83; W200 = 25.94; W250 = 25.92;
W300 = 29.31). The results showed that the differences between
END and BEG segments exceeded 10% in all windows. When
%Range (END − BEG) exceeds 10%, the END segment is
characterized by larger magnitude of adopted BPRSA differences
than BEG. It can be interpreted as occurrence of increasing
variations between arms in the last segment of effort in
comparison to initial (corresponding to BEG) segments of the
experiment. The SDs in Figure 6 confirms large variability
between participants in adopted BPRSA determination. These
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results are in line with the increment obtained in the product
σL (W) · σR (W) (Figure 4).

Observing the means of %RCF > 0.8 in the END segment
(Table 1), we focused on the selected window W = 150 and
introduced the time lags in temporal correlation determination
(Figure 7). The lags were established at 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2,
and 1.4 s. The results showed a decreasing profile of %RCF > 0.8
with time lag for both segments (see Table 2). However, the larger
effect of decrease was for the END segment with a relative change
of 20.4%, (i.e., the difference between the time lag 0 s and the time
lag 1.4 s) compared to the BEG segment, with a relative change
of 11.2%. Note that the mean of %RCF > 0.8 was smaller than
10% for time lags > 0.8 s. The decrease of SD in BEG and END
segments was also observed.

DISCUSSION

The interlimb coordination during a quasi-isometric exercise
performed with upper extremities until spontaneous task
disengagement was studied. Two different analyses were
performed (RCF and adopted BPRSA) to compare the initial
30% (BEG) and final 30% (END) segments of the obtained
electrogoniometry time series of both arms in different time
windows. The results showed a common increment in the
correlation magnitudes between both arms and between the BEG
and the END segments. The findings from RCF also indicated
that the level of correlations was higher on longer timescales.
Based on the task goal stabilizing synergy approach (Latash,
2008; Kelso, 2009), the increase in the interlimb correlation
during the final segments revealed lower interlimb independence
close to task disengagement, and thus, a decreased interlimb
coordination. This has been related to the impaired ability of
the psychobiological system to maintain its independent control
during a motor task performed until exhaustion (Vázquez et al.,
2016). The increase of the correlation in the END segment of
the time series, compared to the BEG segment, means that, on
average, any variation in one arm is associated with variation in
the same direction in the other arm. This is well observed by the
values of %RCF > 0.8 (Figure 3), which indicate that the lower
correlation of high magnitude and thus smaller influence between
the arms were found in the BEG segment. On the contrary, higher
values were found in the END segment, showing greater influence
(i.e., crosstalk) between the arms, and hence, more correlation of
a high magnitude.

These results show a similar development of fatigue in both
limbs and are in line with previously reported results supporting
the hypothesis that the task goal stabilizing synergy spreads

TABLE 2 | Mean time lag differences in the %RCF > 0.8 marker for a window 150.

Windows
(in seconds)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Mean BEG 12.50 6.94 4.18 3.47 2.93 2.65 1.66 1.34

SD BEG 10.84 7.05 4.26 3.75 4.12 3.86 2.43 2.01

Mean END 28.94 23.71 15.62 11.14 9.65 9.38 8.95 8.59

SD END 19.44 17.30 13.94 10.56 10.19 10.00 9.73 9.73

over long time periods (Hristovski and Balagué, 2010; Vázquez
et al., 2016). In both studies, the authors observed that the effort
accumulation had an important role in the regulation and control
of the task goal.

Previous works define fatigue as an inhibitory (neural and
metabolic) protective mechanism in competition with activation,
with excitatory processes acting at a neuromuscular level
(Hristovski and Balagué, 2010; Balagué et al., 2014; Vázquez et al.,
2016). During fatigue, this competition is produced between
the intention to sustain the Olympic bar (activation process)
and the loss of neuro-muscular tension (protective inhibitory
process). This is manifested by the increments in the elbow
angle fluctuations during the END segment: σL (W) · σR (W)
(Figure 4), and %Range (END − BEG) (Figure 6). Whereas
in the BEG segment these processes compete over short time
scales, resulting in a stabilizing effect (i.e., small fluctuations
around the task goal); as the exercise proceeds the competition
gradually shifts toward longer time scales (i.e., the participants
need larger periods to recover the initial elbow angle). This
general mechanism may be explained by the presence of negative
feedback loops, where small positive (upward) deviations from
the local average, as a consequence of central excitation, is
being compensated for by subsequent negative (downward)
fluctuations as a result of the coupling between the inhibitory
processes and the pull of gravity (Balagué et al., 2014; Vázquez
et al., 2016; Montull et al., 2020). As fatigue develops, the neural,
metabolic, and muscular network changes are reflected by lower
muscle contractile ability due to a larger neural and metabolic
inhibitory effect. Thus, as the accumulated effort increases the
inhibitory influences become more prominent. To compensate
for this inhibition, the larger involvement of networked supra-
spinal activation processes became necessary. For example, the
supra-spinal activation recruits new motor units in order to
synergistically compensate for those which are already exhausted
(Taylor and Gandevia, 2008). This compensatory activation
is generated by processes that need larger time scales for
their development and manifestation, such as the motivational
processes (Kiebel et al., 2008). Hence, the competition between
spatio-temporally nested inhibitory and excitatory networks of
processes continuously shifts on ever-increasing time intervals
(Hristovski and Balagué, 2010; Balagué et al., 2014; Vázquez
et al., 2016). The time resolution of control becomes impaired,
and the mutual influence (measured by RCF) between both
arms rises to higher magnitudes in the END segment. Note that
this process characterized by the temporal RCF marker has a
dynamic profile in time (Figure 3), which is expressed even
more by magnitudes of SD products (i.e., σL (W) · σR (W)) and
%Range(END − BEG). As a result of this process, the mutual
dependence of both limbs increases, impairing the ability of the
interlimb system to flexibly negotiate the task constraints.

This increment in correlations close to the critical point
is characteristic for a vast number of condensed matter and
complex systems (e.g., Patashinskii and Pokrovskii, 1979). The
interlimb correlations are a sort of spatial correlations (i.e.,
different limbs are associated with different spatial neuro-
musculo-skeletal areas), which also increase as the system
approaches criticality. Close to the critical point, long-range
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spatial correlations enhance (Sethna, 2006). Hence, our results,
although not conclusive, may point to the task-specific
macroscopic variable that the brain-body system uses to control
the class of quasi-isometric actions. Moreover, taking into
account the above, we can tentatively propose the hypothesis that
at the level of brain-body multilayered networks at the critical
point a process of inhibitory percolation takes place. In exercising
biological systems, percolation has already been proposed as
a self-organizing mechanism that leads to the emergence of
macroscopic musculo-skeletal injuries (Pol et al., 2018). The
phenomenology of task disengagement in these kinds of tasks
strongly suggests the existence of a phase transition of first
order (abrupt shift of the order parameter value) (Hristovski and
Balagué, 2010; Balagué et al., 2014). However, in both works, it
has been noted that there is also a tendency toward a drift of
the stable state (elbow-angle) to lower values. This is suggestive
of a system approaching the phase transition of second order
(continuous shift to the new stable state). On the other hand,
it is already an established fact that in multilayered complex
networks both types of phase transitions may be present (Kivelä
et al., 2014). These networks of the brain-body system may
show various levels of fragility or robustness to targeted or
random inhibitory influences depending, among others, on the
structural properties of the network and its layers and to the
type of potential percolation process (site, bond, or site-bond
percolation) (Callaway et al., 2000). From this point of view, it
would be of high importance to investigate the different models
of targeted inhibition (e.g., chained inhibition of neural hubs)
in the brain-body system, or randomly dispersed inhibition, and
how these differ in their degree of involvement for different
task constraints for this general task. It will not be a surprise
if both processes compete over different time scales, and the
final approach to the task disengagement depends on the type of
interaction between some key personal, task, and environmental
constraints (Hristovski et al., 2014).

%Range (END − BEG) within the segments represents the
fluctuations of both limb’s angles and their common influence.
Values exceeding 10% of %Range (END − BEG) in the END
segment suggest the development of fatigue preceding task
disengagement. Higher magnitudes of %Range (END − BEG)
in END reflect larger sensitivity of the target to increments
defined as anchor points in trigger signal. It may also reflect the
loss of independence between limbs. Furthermore, the results
of the CV (Table 1) showed a constant mean increase with
window enlargement, suggesting the preservation of correlation
between left and right arms in the BEG segment when the
impact of fatigue development was low. On the contrary,
the correlation magnitude was larger for END in all studied
windows. Our findings corroborate previous results showing
that larger fluctuations and variability (i.e., deviations from the
average elbow angle) increase in all participants close to the
fatigue-induced spontaneous task disengagement (Hristovski and
Balagué, 2010). According to the authors, the enhancement in
the elbow angle variability is related to an increased activity of
the neuromuscular system constrained to find new functional
synergies as a result of the initial elbow-angle destabilization
provoked by the effort accumulation.

The time lags introduced in the analysis corroborate the last
observations and indicate that the high levels of correlation
between left and right arms measured by %RCF > 0.8 are short
term, and is confirmed by the sudden drop observed for time
lag < 0.8 s. This higher magnitude in time lag < 0.8 s reflected the
quick adjustments and reconfigurations made by participants to
maintain the task goal. However, we observed that for the longer
time lags (τ = 1, 1.2, 1.4 s) the %RCF > 0.8 decreased very slowly
and was characterized by smaller SD. These findings support
the notion that the correlation between limbs is observed and
produced over shorter time scales, due to the small adjustments
that participants made to maintain the elbow angle. However, this
effect was not observed for larger lags.

In summary, the dynamics within the upper limb system
became increasingly critical, pointing toward a mutually aligned,
more coherent behavior between the cooperative and competitive
processes within the neuromuscular axis (Balagué et al., 2014).
The smaller magnitudes of RCF and adopted BPRSA for the
BEG segment meant potential for more independent and flexible
spatio-temporal control of the coordinative variable, i.e., elbow
angle (Vázquez et al., 2016). On the contrary, the higher values
of the %RCF > 0.8 and a higher percentage in the %Range
(END − BEG) for the END segment indicated a more rigid
control of the task. We demonstrate that close to exhaustion,
the interlimb system becomes excessively coupled compared
to the beginning of the exercise where the independent, more
refined, control of the upper limbs is possible. Furthermore,
the enhancement in the correlation and mutual dependence
between the arms can be proposed as a new marker of the
approaching exhaustion.

The results of this study can help to understand the dynamics
of the correlation between different systems under the presence
of constraints and strengthen previous research findings about
the different strategies that participants use to negotiate fatigue.
Our findings demonstrate that the accumulation of effort cannot
be explained by simple, component-dominant approaches but
by an integrative, network interaction-dominant approach of
the phenomenon. However, caution should be taken in the
interpretation of the results because the values of the SD
found in the larger windows warn that the last observation
is only valid for lower windows width (<200). The higher
amplitude of the elbow angle fluctuations during the last part
of the exercise observed in the time series, and the different
strategies made by the participants to maintain the exercise until
spontaneous task disengagement, could explain this observation.
Further investigations are needed to study how the correlation
between different psychobiological signals is modified due to
effort accumulation.

From a practical point of view, as the enhancement of
fluctuations is connected phenomenologically to interlimb
correlations, some effort phases can be detected during quasi-
isometric types of exercises. These phases, which may be used
with training and rehabilitation purposes, may help to detect the
phases of stable and metastable states of effort, and predict with
a high likelihood the spontaneous task disengagement. The first
phase is characterized by lower interlimb correlations and lower
fluctuations; the second is characterized by enhanced interlimb
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correlations and fluctuations. The third is characterized by an
excessive increase of these two markers of fatigue and the vicinity
of the spontaneous task disengagement (Balagué et al., 2014).
Thus, practitioners can control the exercise volume through
such markers to attain their training or rehabilitation purposes.
Exercise volumes that include only the first phase may be used
when no significant neuro-muscular restructuring is planned,
for example, in warm-up or recovery sessions. The volumes,
including the middle phase, may be used for fostering larger intra
and interlimb coordinative restructuring, and exercise volumes
(including the last phase) may be included when more drastic
reconfigurations and adaptations are planned.

In conclusion, the study reveals an increment of the
interlimb correlation of upper extremities during a quasi-
isometric exercise performed until fatigue-induced spontaneous
task disengagement. The increment of interlimb correlations
close to the critical task disengagement point suggests analogies
with critical processes in other networked systems (e.g., Arenas
et al., 2008). This points to the possibility that the RCF may
be the macroscopic variable that the brain-body system uses for
coordination and control of the vast number of neuro-musculo-
skeletal degrees of freedom during quasi-isometric classes of
action. The bivariate analyses showed that the developed fatigue
influenced the coordination between the arms, resulting in a loss
of their initial autonomy to control the task. The enhancement of
the interlimb correlation at the end of the task showed a more
aligned, mutually influenced behavior between the limbs as a
consequence of fatigue. The results also point toward the use of
bivariate methods of analysis to assess the correlation between
different psychobiological signals that fluctuate during exercise.
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