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Abstract: In this study, in silico approaches, including multiple QSAR modeling, structural similarity
analysis, and molecular docking, were applied to develop QSAR classification models as a fast
screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series
of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis,
support vector machine, radial basis function neural network, and classification and regression
trees, were applied to construct different QSAR classification models. The statistics results indicated
that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1
up-regulators. Then, a consensus QSAR model was developed by combining the predictions from
these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in
the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known
potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery
of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role
in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit
compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this
study provided an effective strategy to discover highly potent ABCA1 up-regulators.
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1. Introduction

Atherosclerosis is a disease that results from the accumulation of lipid-rich plaques within
the walls of large arteries, and has become one of the most common causes of death worldwide.
Epidemiological studies firmly confirmed an inverse relationship between serum high-density
lipoprotein-cholesterol (HDL-C) levels and the incidence of atherosclerosis. The main antiatherogenic
mechanism of HDL is transporting excess cholesterol out of macrophages by reverse cholesterol
transport [1]. The ATP-binding cassette transporters A1 (ABCA1) played a critical role in reverse
cholesterol transport, which mediates the rate-controlling step in HDL particle formation, and substantially
affects whole body cholesterol and HDL metabolism and the development of atherosclerosis [2,3].
Dysfunction of ABCA1 or mutations in ABCA1 gene leads to increased atherogenesis [4]. Inhibition
of ABCA1 degradation was found to promote HDL biosynthesis and exhibited antiatherogenesis [5].
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Thus, the discovery of up-regulators of ABCA1 expression may provide a promising strategy of
antiatherogenic therapy.

Recently, a novel series of flavonoids-based ABCA1 up-regulators have been reported by Bu et al. [6].
However, their up-regulation role in ABCA1 expression mostly remained unclear. It is well-known that
ABCA1 expression was transcriptionally regulated by liver X receptors (LXRs) [7]. LXRβ directly binds
to the C-terminal region of ABCA1 (2247LTSFL2251) to modulate its post-translational regulation.
Thus, a search for highly potent ABCA1 up-regulators targeting LXRβ prompted us to investigate the
structure–activity relationship of these ABCA1 up-regulators. Here, multi-layer in silico approaches,
including quantitative structure activity relationship (QSAR) methods, structural similarity analysis
and molecular docking simulation were performed to guide structural optimization and expound
the action mechanism for ABCA1 up-regulators. QSAR models relate the chemical structure to a
specific activity or property using many linear and nonlinear algorithms. This method has become
increasingly popularity in many fields for predicting compound properties, e.g., toxicity prediction,
physical property prediction, and biological activity prediction [8]. Structural similarity analysis
plays a significant role in many aspects of chemoinformatics, including similarity searching, virtual
screening, synthesis design, and property prediction [9]. Molecular docking simulation has been
successful in prioritizing large chemical libraries to identify experimentally-active compounds and
widely used to understand binding modes and important interactions [10].

To the best of our knowledge, no in silico study has yet been reported to identify highly
potent ABCA1 up-regulators so far. In this paper, we attempted to establish highly predictive
QSAR classification models as a fast filter for screening highly-potent ABCA1 up-regulators in drug
development and also investigate the action mechanism of up-regulating ABCA1 expression. Firstly,
different linear and nonlinear classification approaches, including linear discriminant analysis (LDA),
support vector machine (SVM), radial basis function neural network (RBFNN), and classification and
regression trees (CART), were applied to construct highly-predictive QSAR classification models
and mined the structural features responsible for their up-regulation activity of ABCA1. Then,
to avoid the limitation or overemphasis of any modeling approach, a consensus QSAR model
was initially developed for screening highly potent ABCA1 up-regulator from the ZINC database.
To ensure maximum reliability and accuracy of our QSAR models, molecular similarity analysis was
also performed to filter compounds in ZINC database compared to known highly-potent ABCA1
up-regulators with the best activity (compound 36). Only the compounds that fulfilled the requirement
of structural similarity of 0.7 were subjected to our QSAR models. Finally, new screened compounds
were docking into the LXRβ binding site to understand their role in up-regulating ABCA1 expression
and further find molecules targeting LXRβ.

2. Results and Discussion

2.1. Results of LDA Model

After a stepwise method combined with LDA (SW-LDA) performed, four molecular descriptors
were selected from the above remaining 221 descriptors. The corresponding LDA model was
simultaneously derived by these descriptors. Table 1 listed the selected descriptors, their chemical
meanings, F-test values, Wilks’ lamba values, and standardized coefficients. F-test values, calculated
from Wilks’ lambda, are the measure of a descriptor’s importance. Thus, the importance of four
descriptors was varied in the order lip_don > vsurf_W2 > a_nCl > vsurf_DD23. The correlation matrix
of the selected descriptors was shown in Table 2. All linear correlation coefficient values for each pair of
descriptors were less than 0.65, indicating that they were independent [11]. The prediction classification
results of LDA model were listed in Table 3. As described in Table 4, the established LDA model was
of very successful statistical significance and good predictive ability. The accuracy value of this model
revealed that it can give a training accuracy of 90% in predicted classification. The accuracyLOO value
was 83.33% (bigger than 50%), indicating that the developed model had good stability and predictive
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ability. Additionally, the predictive accuracy on the test set was 90.91%, showing the good prediction
and generalization ability. Furthermore, sensitivity (SE) and specificity (SP) were calculated to reveal
the predictive ability of different classifications of models. In the LDA model, both sensitivity and
specificity were 90%, respectively, implying that the LDA model had the same ability to predict the
active compounds as the inactive compounds.

Table 1. Molecular descriptors and the standardized coefficient of the LDA model.

Descriptor Chemical Meaning F to
Remove

Wilks’
Lambda

Standardized
Coefficient

a_nCl Number of chlorine atoms 7.391 0.479 0.707
lip_don The number of OH and NH atoms 41.433 0.981 −1.836

vsurf_DD23 Contact distances of lowest hydrophobic energy 4.914 0.442 0.605
vsurf_W2 Hydrophilic volume 14.746 0.587 1.243

Table 2. The correlation matrix of descriptors.

Descriptors a_nCl lip_don vsurf_DD23 vsurf_W2

a_nCl 1 0.150 −0.078 −0.047
lip_don 0.150 1 0.330 0.600

vsurf_DD23 −0.078 0.330 1 0.096
vsurf_W2 −0.047 0.600 0.096 1

Table 3. Structures and classifications of flavonoids-based ABCA1 up-regulators in QSAR modeling.
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17 * 3-methoxyphenyl OH NH2 d 2.09 1 1 1 1 1 
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21* 5-methylfuran-2-yl OH NH2 s 1.90 1 1 1 1 1 
22 3,4,5-trimethoxyphenyl OH NH2 d 0.98 0 1 0 0 0 
23 3,4-dimethoxyphenyl OH NH2 d 1.86 1 0 0 0 1 
24 4-isopropylphenyl OH NH2 d 2.05 1 1 1 1 1 
25 4-ethylphenyl OH NH2 d 1.73 1 1 1 1 1 
26 (1,1'-biphenyl)-4-yl OH NH2 d 1.55 0 0 0 0 0 

27 * 3-phenoxybenzen-1-yl OH NH2 d 1.76 1 1 1 1 1 
28 5-(4-methoxyphenyl)-thiophen-2-yl) OH NH2 d 1.09 0 0 0 0 0 
29 benzo[b]thiophen-3-yl OH NH2 d 2.31 1 1 1 1 1 

30 * 1H-indol-3-yl OH NH2 d 1.76 1 1 1 1 0 

NO. R1 R2 Fold
Activation

Class a

Exp.
Predicted Class

LDA SVM RBFNN CART

1 * quinolin-2-yl OH 1.36 0 0 0 0 0
2 naphthalen-2-yl OH 1.57 0 0 0 0 0
3 1H-indol-3-yl OH 1.9 1 1 1 1 1

4 * benzo[b]thiophen-3-yl OH 1.44 0 0 0 0 0
5 3-phenoxybenzen-1-yl OH 1.17 0 0 0 0 0

6 * 4-carboxybenzen-1-yl OH 1.66 0 0 0 0 0
7 (1,1′-biphenyl)-4-yl OH 1.15 0 0 0 0 0
8 5-(4-methoxyphenyl)thiophen-2-yl) OH 1.03 0 0 0 0 0

9 * 5-methylfuran-2-yl NH2 1.30 0 0 0 0 0
10 5-methylthiophen-2-yl NH2 1.47 0 0 0 0 0

11 * 4-isopropylbenzen-1-yl OH 1.22 0 0 0 0 0
12 4-ethoxyphenyl NH2 1.37 0 0 0 0 0

Molecules 2016, 21, 1639 3 of 13 

 

(SP) were calculated to reveal the predictive ability of different classifications of models. In the LDA 
model, both sensitivity and specificity were 90%, respectively, implying that the LDA model had the 
same ability to predict the active compounds as the inactive compounds. 

Table 1. Molecular descriptors and the standardized coefficient of the LDA model. 

Descriptor Chemical Meaning F to
Remove 

Wilks’ 
Lambda 

Standardized 
Coefficient 

a_nCl Number of chlorine atoms 7.391 0.479 0.707 
lip_don The number of OH and NH atoms 41.433 0.981 −1.836 

vsurf_DD23 Contact distances of lowest hydrophobic energy 4.914 0.442 0.605 
vsurf_W2 Hydrophilic volume  14.746 0.587 1.243 

Table 2. The correlation matrix of descriptors. 

Descriptors a_nCl lip_don vsurf_DD23 vsurf_W2 
a_nCl 1 0.150 −0.078 −0.047 

lip_don 0.150 1 0.330 0.600 
vsurf_DD23 −0.078 0.330 1 0.096 

vsurf_W2 −0.047 0.600 0.096 1 

Table 3. Structures and classifications of flavonoids-based ABCA1 up-regulators in QSAR modeling. 

O

O

R1R2

 
NO. R1 R2 

Fold 
Activation 

Class a 
Exp. 

Predicted Class 
LDA SVM RBFNN CART

1 * quinolin-2-yl OH 1.36 0 0 0 0 0 
2 naphthalen-2-yl OH 1.57 0 0 0 0 0 
3 1H-indol-3-yl OH 1.9 1 1 1 1 1 

4 * benzo[b]thiophen-3-yl OH 1.44 0 0 0 0 0 
5 3-phenoxybenzen-1-yl OH 1.17 0 0 0 0 0 

6 * 4-carboxybenzen-1-yl OH 1.66 0 0 0 0 0 
7 (1,1′-biphenyl)-4-yl OH 1.15 0 0 0 0 0 
8 5-(4-methoxyphenyl)thiophen-2-yl) OH 1.03 0 0 0 0 0 

9 * 5-methylfuran-2-yl NH2 1.30 0 0 0 0 0 
10 5-methylthiophen-2-yl NH2 1.47 0 0 0 0 0 

11 * 4-isopropylbenzen-1-yl OH 1.22 0 0 0 0 0 
12 4-ethoxyphenyl NH2 1.37 0 0 0 0 0 

R5 R4

O

R3

B

 
NO. R3 R4 R5 B 

Fold 
Activation 

Class a 
Exp 

Predicted Class 
LDA SVM RBFNN CART

13 5-methylfuran-2-yl OH NH2 d 2.09 1 1 1 1 1 
14 5-methylthiophen-2-yl OH NH2 d 2.00 1 1 1 1 1 
15 4-ethoxyphenyl OH NH2 d 1.92 1 1 1 1 1 
16 4-(methylthio)phenyl OH NH2 d 1.26 0 0 0 0 0 

17 * 3-methoxyphenyl OH NH2 d 2.09 1 1 1 1 1 
18 4-fluorophenyl OH NH2 d 1.36 0 0 0 0 0 
19 4-chlorophenyl OH NH2 d 1.16 0 0 0 0 0 
20 3,5-bis(trifluoromethyl)-phenyl OH NH2 d 1.12 0 0 0 0 0 
21* 5-methylfuran-2-yl OH NH2 s 1.90 1 1 1 1 1 
22 3,4,5-trimethoxyphenyl OH NH2 d 0.98 0 1 0 0 0 
23 3,4-dimethoxyphenyl OH NH2 d 1.86 1 0 0 0 1 
24 4-isopropylphenyl OH NH2 d 2.05 1 1 1 1 1 
25 4-ethylphenyl OH NH2 d 1.73 1 1 1 1 1 
26 (1,1'-biphenyl)-4-yl OH NH2 d 1.55 0 0 0 0 0 

27 * 3-phenoxybenzen-1-yl OH NH2 d 1.76 1 1 1 1 1 
28 5-(4-methoxyphenyl)-thiophen-2-yl) OH NH2 d 1.09 0 0 0 0 0 
29 benzo[b]thiophen-3-yl OH NH2 d 2.31 1 1 1 1 1 

30 * 1H-indol-3-yl OH NH2 d 1.76 1 1 1 1 0 

NO. R3 R4 R5 B Fold
Activation

Class a

Exp.
Predicted Class

LDA SVM RBFNN CART

13 5-methylfuran-2-yl OH NH2 d 2.09 1 1 1 1 1
14 5-methylthiophen-2-yl OH NH2 d 2.00 1 1 1 1 1
15 4-ethoxyphenyl OH NH2 d 1.92 1 1 1 1 1
16 4-(methylthio)phenyl OH NH2 d 1.26 0 0 0 0 0

17 * 3-methoxyphenyl OH NH2 d 2.09 1 1 1 1 1
18 4-fluorophenyl OH NH2 d 1.36 0 0 0 0 0
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23 3,4-dimethoxyphenyl OH NH2 d 1.86 1 0 0 0 1
24 4-isopropylphenyl OH NH2 d 2.05 1 1 1 1 1
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Table 3. Cont.

NO. R3 R4 R5 B Fold
Activation

Class a

Exp.
Predicted Class

LDA SVM RBFNN CART

26 (1,1'-biphenyl)-4-yl OH NH2 d 1.55 0 0 0 0 0
27 * 3-phenoxybenzen-1-yl OH NH2 d 1.76 1 1 1 1 1
28 5-(4-methoxyphenyl)-thiophen-2-yl) OH NH2 d 1.09 0 0 0 0 0
29 benzo[b]thiophen-3-yl OH NH2 d 2.31 1 1 1 1 1

30 * 1H-indol-3-yl OH NH2 d 1.76 1 1 1 1 0
31 naphthalen-2-yl OH NH2 d 2.64 1 1 1 1 1
32 benzo[d][1,3]dioxol-5-yl OH NH2 d 1.92 1 1 1 1 1
33 5-methylfuran-2-yl OCH3 N(CH3)2 d 1.57 0 0 0 0 0
34 naphthalen-2-yl OCH3 N(CH3)2 d 1.35 0 0 0 0 0

35 * naphthalen-2-yl OH NH2 s 1.34 0 1 1 1 1
36 naphthalen-2-yl OCH3 NH2 d 0.88 0 0 0 0 0
37 5-methylfuran-2-yl OCH3 NH2 d 1.20 0 0 0 0 0
38 5-methylthiophen-2-yl OCH3 NH2 d 1.50 0 0 0 0 0
39 4-ethoxyphenyl OCH3 NH2 d 1.06 0 0 0 0 0
40 5-methylfuran-2-yl OH N(CH3)2 d 1.02 0 1 0 0 0

41 * 5-methylthiophen-2-yl OH CH3CONH d 1.08 0 0 0 0 0

* Test set; a 1 denotes high active compounds, 0 denotes low active compounds; in column “B”, s denotes single
bond, d denotes double bond.

Table 4. The classification performance of four different modeling approaches.

Model Accuracytrain Accuracytest AccuracyLOO Total Accuracy Sensitivity Specificity

LDA 90% 90.91% 83.33% 90.24% 90% 90%
SVM 96.67% 90.91% 86.67% 95.12% 90% 100%
ANN 96.67% 90.91% 83.33% 95.12% 90% 100%
CART 100% 81.82% 83.33% 95.12% 100% 100%

Consensus 96.67% 90.91% 83.33% 95.12% 90% 100%

Accuracytrain represents predictive classification accuracy of the training set; Accuracytest represents predictive
classification accuracy of the test set; AccuracyLOO represents predictive classification accuracy of LOO
cross-validation of the model. Total accuracy represents total classification accuracy of training and test sets.

2.2. Interpretation of Descriptors

The molecular descriptors in the LDA model were allowed to provide some vital structural
features to govern ABCA1 up-regulating activity of flavonoids. The model encompassed four
descriptors: a_nCl, lip_don, vsurf_DD23, and vsurf_W2. a_nCl represents the number of chlorine
atoms. The positive coefficient of this descriptor illustrated the presence of chlorine atoms contributing
to greater activity. lip_don is the number of OH and NH atoms. Its negative coefficient indicated that
high lip_don tended to attenuate the activity of molecules. Two vsurf_ descriptors, vsurf_W2 and
vsurf_DD23, are volume and surface properties, which depend on the structural connectivity and the
conformation (their dimensions are measured in Å) of the molecules. These two descriptors explain
the interaction of molecules with hydrophobic and hydrophilic parts of the protein through some
surface properties such as electrostatic and hydrophobicity [12]. The vsurf_W2 descriptor explains the
hydrophilic region of the molecules and is calculated at −0.5 kcal/mol energy levels, which may be
defined as the molecular envelope accessible by solvent water molecules. The positive contribution
of this descriptor explained that the polarizable property on the van der Waals (vdW) surface of the
molecules was important for the interactions. The vsurf_DD23 descriptor signifies the contact distances
of vsurf_DDmin, representing the distances, for the OH2 and DRY probes, between the best three local
minima of interaction energy when the probes interact with a target molecule [13]. The positive sign of
this descriptor illustrated that by increasing the distance between the second-lowest and third-lowest
hydrophobic interaction energies would enhance the interaction with the target.
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From the above discussion, we can conclude that the presence of chlorine atoms, polarizable
groups and contact distances of lowest hydrophobic energy in the molecules were favorable to the
bioactivity, while a large number of OH and NH atoms in molecules had a negative effect.

2.3. Results of SVM Model

To obtain the best SVM model, the combination of C and γ was optimized by a grid search and
every SVM model was validated by leave-one-out (LOO) cross-validation. Generally, the parameter
combination with the best LOO cross-validation performance was selected as the optimal set [14].
In this process, the grid search for C and γ over a wide parameter range of 0.001–10,000 tuned in a grid
of 100× 100 was carried out. After 10,000 cycles, the optimum values of C and γ used in the model were
obtained (C = 331 and γ = 0.045) with a maximum LOO cross-validation accuracy of 86.67%. Thereby,
the final optimal SVM model was generated as well. The corresponding prediction results were listed
in Table 3. As shown in Table 4, the SVM model gave the quite satisfactory results: accuracytrain of
96.67%, accuracyLOO of 86.67%, accuracytest of 90.91%, sensitivity of 90%, and specificity of 100%,
respectively, exhibiting the significantly high prediction and generalization ability.

2.4. Results of RBFNN Model

In this study, the input layer consisted of four input neurons and the output layer consisted of
one output neuron modeling the up-regulation activity of ABCA1 expression. The number of neurons
in the hidden layer required to be optimized to obtain better results. Here, the selection of the optimal
hidden center was determined by experiments with a number of trials by taking into account the LOO
cross-validation accuracy. The one which gives a maximum LOO cross-validation accuracy is chosen
as the optimal value. The maximum LOO cross-validation accuracy was 83.33% and the corresponding
number of centers (hidden layer nodes) of RBFN was 18. Then, a 4-18-1 RBFNN model was finally
constructed. The corresponding prediction results of the final optimal RBFN model were listed in
Table 3. Table 4 contained the resulting values of specificity, sensitivity and separation accuracy of
highly potent ABCA1 up-regulators of RBFNN model. It was observed that the RBFNN model was also
very successfully established with good prediction ability like the SVM model performed (accuracytrain

of 96.67%, accuracyLOO of 83.33%, accuracytest of 90.91%, sensitivity of 90% and specificity of 100%,
respectively), implying both of them were doing a statistically similar job of yield classification.

2.5. Results of CART Model

Similarly, the QSAR model by CART was built using the same input variables as used in the
above models. Here, maximum tree depth was set to 5, and the Gini index was used as a basis criteria
for splitting nodes into two new groups. The importance sequence of these variables given by the
CART model was in the same order as the SW-LDA method did. The predictive classification and
statistical results of the CART model were listed in Tables 3 and 4, respectively. As seen from Table 4,
all the prediction accuracy, sensitivity and specificity for the training set reached 100%, respectively.
While, the classification accuracy of the test set was 81.82%. So, there was no significant difference in
the total classification accuracy among the models of CART, SVM, and RBFNN for the training and
test sets. These results indicated that these three models did a comparable job.

2.6. Comparison of Different Approaches and Consensus Modeling

From the above discussion, it can be concluded that the developed models performed quite
well, and the SVM, RBFNN and CART models slightly outperformed the LDA model based on the
same descriptors. As shown in Table 4, the predictive classification performance for the training set
by LDA, SVM, ANN, and CART were 90%, 96.67%, 96.67%, and 100%, respectively. The LDA and
CART models showed a very good balance between sensitivity and specificity. While the SVM and
RBFNN model had a slightly better prediction ability, especially for the low active compounds (higher
specificity). As for the test set, the CART model gave the accuracy of 81.82%, while the other three
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methods can reach 90.91%. It should be noted that although the CART model can give 100% accurate
predictions for the training set, the performance of external validation did not show better results than
the other models. Thus, it seemed reasonable that a consensus predicted result given by these four
kinds of QSAR models might be more correct than individual models, and might, overall, take into
account the more peculiar aspects of some particular structure. Here, a consensus QSAR model was
derived by averaging the predictions for the dataset given by the four individual models [15]. All of
the contributions of the four individual QSAR models were equal and, therefore, we could avoid the
limitation or overemphasis of any modeling approach. The statistical results of the derived consensus
model were also shown in Table 4. The consensus model produced the train, test, and LOO accuracy
of 96.67%, 90.91%, and 83.33%, respectively, and showed a very good sensitivity and specificity of 90%
and 100%, respectively.

2.7. Screening New Highly-Potent ABCA1 Up-Regulators Targeting LXRβ

After calculating structural similarity between compounds in the ZINC database and compound 36,
compounds with structural similarity below 0.7 were removed from the ZINC database, which resulted
in the retrieval of 302 compounds. To ensure the maximum accuracy of predictive classification, the
obtained consensus QSAR model was applied to the initial screening potential of ABCA1 up-regulators
from these 302 compounds. The compounds with consensus scores of 1 were identified as potential
highly-potent ABCA1 up-regulators. Thus, 50 compounds were discovered from these molecules.
Then, to better understand their up-regulation mechanism in the expression of ABCA1 and further
screen highly-potent ABCA1 up-regulators targeting LXRβ, these 50 compounds were docked into the
LXRβ active site using molecular docking in Molecular Operating Environment software (MOE2008.10,
Chemical Computing Group Inc., Montreal, QC, Canada).

The ability to reproduce ligands’ X-ray poses in the receptor is a crucial factor to evaluate the
effectiveness of docking software [16]. The root-mean-square distance (RMSD) parameter between the
ligand in X-ray crystal complex and the redocked ligand is usually calculated to measure the docking
accuracy. In our docking study, RMSD was 0.8378 Å, showing that the docking results were very
suitable and reliable. Among above 50 discovered compounds, 10 compounds were found to have
larger docking scores for LXRβ than the known potent ABCA1 up-regulator (compound 19), especially
five compounds (ZINC08665430, ZINC39949652, ZINC3250227, ZINC05777271, and ZINC32502236)
showed higher affinity with LXRβ than compound 36. The docking results of 10 hit compounds
were listed in Table 5. From their structural features and docking scores, we can initially conclude
that the electronegative groups in the C6 ring and hydrophobic groups in the C3 chain of chalcones
were favorable to the interaction with LXRβ. This can be further explained by their docking modes.
The best docked conformations of these 10 compounds were shown in Figure 1, showing that their
binding modes were similar to the V pattern of ligand embedded in the X-ray complex of LXRβ. The
optimal docked conformation of the most active compound ZINC08665430, as shown in Figure 2a,
revealed that ligand recognition was achieved by forming two H-bonds with Tyr316, and producing
strong hydrophobic interactions with Met312, Phe349,Trp457, Leu449, Phe268, Leu345, Phe271, Phe329,
Phe340, and Leu274 in the active site of LXRβ. Comparative molecular docking between ZINC08665430
and compound 36, shown in Figure 2, the former had a better docking score than the latter, suggesting
that more H-bonds and hydrophobic interactions stabilized the compound within the binding site,
thus contributing greater activity. Therefore, these 10 new hit compounds were suggested to be highly
potent ABCA1 up-regulators that interacted with LXRβ.
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3. Materials and Methods

3.1. Dataset

In the QSAR analyses, forty one flavonoid-based ABCA1 up-regulators were taken from a dataset
from Sun Yat-sen University, China [6]. Their structures and biological activities were listed in Table 3.
The compounds of the dataset were categorized as strong or weak activators in terms of their ability to
induce the ABCA1 transcription activities, which was normalized to the Renilla luciferase signal (fold
change compared to a vehicle control). According to their experimental criteria, the compounds with
response ranges of greater than 1.7 were grouped as strong ones (‘1’) and others were grouped as low
active ones (‘0’), respectively. To obtain reliable QSAR models, the dataset was split into two subsets by
a ratio number of 3:1, a training set of 30 compounds covering a wide variety of structures and a test
set of 11 compounds following the distribution of the training set [17]. All 2D structures of compounds
in Table 3 were sketched in ChemDraw software and were converted into 3D structures using energy
minimization module embedded in MOE (MOE2008.10, Chemical Computing Group Inc.).

3.2. Descriptor Calculation and Reduction

MOE offers three class descriptors: 2D descriptors, internal 3D descriptors, and external 3D
descriptors, to calculate molecular properties of compounds. Prior to descriptor calculation, the
stochastic conformational search was performed to search the optimal geometry conformation of each
energy-minimized structure. Only the lowest energy conformer of per structure was subjected to
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327 diverse descriptors calculation by utilizing the QSAR module of MOE [18]. To remove redundant
information, the descriptors pool was optimized by two criteria. Descriptors with constant or near
constant values for all molecules were first deleted from the descriptor pool. Then, only one of the
descriptors with high pairwise correlations (correlation coefficient > 0.95) was retained in the descriptor
pool [19]. Finally, a total set of 221 descriptors remained and were used for QSAR modeling.

3.3. QSAR Modeling Approaches

3.3.1. Stepwise Linear Discriminant Analysis (SW-LDA)

Feature selection is considered as one of the most critical steps for development of QSAR models.
In this study, a stepwise method combined with LDA (SW-LDA) was performed to accomplish the
selection of the most important descriptors for model construction [20]. LDA looks for a linear
discriminant function to divide an n-dimensional descriptor space into two regions that correspond to
two classes, which is widely applied in QSAR modeling [21]. At each stage of the descriptor selection
by SW-LDA, F-test was used to control entering or removing descriptors. Here, the default set of F
values in the SW-LDA algorithm (Fmax = 3.84 and Fmin = 2.71) was adopted.

3.3.2. Support Vector Machines (SVM)

SVM, developed by Vapnik, is a comparatively new and powerful classification technique in
statistical learning theories [22]. SVM has gained fast popularity in many fields for its remarkable
generalization performance and low risk of overfitting. The basic idea of the SVM classifier is to
construct an “optimal separate hyperplane”, which is the one with the maximal margin of separation
between the two classes. SVM uses kernel functions to transform input data to become more separable
in a high-dimensional feature space. Several kernel functions, such as the radial basis function (RBF),
spline and bessel, are available for nonlinear transformation of the input space. The RBF kernel is the
most popular kernel functions used in SVM [23]. Here, the Gaussian RBF kernel function was used to
perform the non-linear mapping.

The performances of SVM for classification depend on two parameters of RBF kernel function:
capacity parameter (C) and γ. C is a regularization penalty parameter, which controls the tradeoff cost
between maximizing margins and minimizing training errors. γ controls the generalization ability of
SVM. The combination of C and γ should be optimized in order to obtain better results.

3.3.3. Radial Basis Function Neural Network (RBFNN)

Artificial neural networks are general-purpose computing techniques that attempt to solve difficult
non-linear problems, like the human brain’s manner of working. Radial basis function neural network
(RBFNN) is an artificial neural network that uses RBF as activation functions and its application has
increased rapidly in the last few years [24]. RBFNN consists of three layers: an input layer, a hidden
layer with a non-linear RBF activation function, and a linear output layer. The input layer only
distributes the input vectors to the hidden layer. The hidden layer of RBFNN consists of a number of
RBF units (nh) and bias (bk). Each neuron in the hidden layer applies an RBF as a nonlinear transfer
function to operate on the input information. The most often-used RBF is the Gaussian function,
which is characterized by a center and width. By measuring the Euclidean distance between an input
vector (x) and the radial basis function center, the RBF function performs the nonlinear transformation.
A detailed description of the theory of RBFNN has been adequately described elsewhere [25].

The performance of a RBFNN is greatly influenced by the number of RBF units (nh, the hidden
layer centers). Too low nh gives rise to a poor estimation of relation even in the calibration set, and
too many hidden layer neurons causes overfitting [26]. Therefore, the network parameters should be
optimized before training.
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3.3.4. Classification and Regression Trees (CART)

CART is a non-parametric method introduced by Breiman et al., applicable for exploratory
analysis and classification [27]. This classification technique is a form of binary recursive partitioning.
The term “binary” means that a set of samples, represented by a “node” in a decision tree, can only be
split into two new groups based on splitting criteria i.e., the Gini diversity index, the twoing rule, and
the deviance index until, finally, it could no longer model the space.

The CART procedure contains three steps [28]. First an overlarge tree is built. The obtained tree has
lots of terminal nodes and describes the training set almost perfectly, but shows a poor predictive ability
for new samples. Second, the pruning step corresponds to cutting away branches of the over-large
tree to find smaller trees with improved predictive ability, but without losing accuracy. The last step
consists of choosing the optimal tree by taking into account its predictive ability. The choice often
depends on the results of a cross-validation step.

3.4. Model Validation

Internal and external validations were performed to evaluate the predictive ability and reliability
of QSAR models. For the internal validation, the leave-one-out (LOO) cross-validation, which produces
a number of models by leaving one object from the training set as a validation set once, is often
considered as the best way to validate the quality of derived models [29]. Generally, when the value
of LOO cross-validated accuracy (accuracyLOO) is greater than 50%, the model is acceptable [30].
For the external validation, the prediction accuracy of the external test set was calculated to assess the
performance of the obtained model.

All algorithms were accomplished in MATLAB 8.0 and run on a computer (Intel(R) Pentium(R),
2.00 GB RAM).

3.5. Performance Measures

Performance of QSAR classification models was often evaluated by the following parameters:
overall prediction accuracy (Q), sensitivity (SE), and specificity (SP) [31]. Q is the most common
measure of overall performance, which represents the prediction accuracy for active compounds and
inactive compounds in the dataset. Q = (TP + TN)/(TP + TN + FP + FN), where TP is the number of true
positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number
of false negatives. SE = TP/(TP + FN) represents the prediction accuracy for the active compounds.
while, SP = TN/(TN + FP) represents the prediction accuracy for the inactive compounds.

3.6. Screening New ABCA1 Up-Regulators

One main purpose of our study was to construct highly-predictive QSAR classification models
as a fast filter for screening highly-potent ABCA1 up-regulators. Thus, to discover new ABCA1
up-regulators, ZINC database was used [32]. ZINC database contained over 35 million diverse
purchasable compounds. Considering that our QSAR models were constructed based on flavanoids,
compounds with flavanoid skeletons, especially those with structural similarity to the best active
ABCA1 up-regulator (compound 36) can be well-predicted by our QSAR models. Thereby, the
molecular structural similarity between compounds in ZINC database and compound 36 was first
calculated using the Tanimoto coefficient in Open Bable 2.3.1 (OpenEye Scientific Software, Santa Fe,
NM, USA) [33]. The coefficient is defined as c/(a + b + c), which is the ratio of the atomic pairs that are
shared between two compounds divided by their union. The variable c is the number of atomic pairs
common in both compounds, while a and b are the numbers of their unique atomic pairs. A good cutoff
for the biologically similar molecules is 0.7 or 0.8 [34]. Here, compounds with structural similarity of
bigger than 0.7 were selected from the ZINC database. All fit compounds were imported into MOE
database for further analysis. Hydrogen atoms and partial charges were assigned, and then they were
energy minimized using the molecular mechanics force field method with a convergence criterion
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of 0.01 kcal/mol. Then, to avoid the limitation or overemphasis of any modeling approach, above
obtained QSAR models were combined to generate a consensus model [35], which was applied to
screen new highly-potent ABCA1 up-regulator from these compounds.

3.7. Exploring the Mechanism of ABCA1 Regulator by Molecular Docking

Further to exploring the mechanism of the ABCA1 up-regulator, molecular docking was employed
to study the binding modes and important interactions. It is well-known that transcription of ABCA1
is markedly induced by activation of the nuclear receptor liver X receptor (LXRβ). Potent ABCA1
up-regulators, such as compounds 19 and 36 were found to preferentially activate LXRβ. Therefore,
new screened compounds were docked into the ligand-binding site of LXRβ to better understand their
up-regulation roles in the expression of ABCA1, and also further screened potent ABCA1 up-regulators
by molecular docking embedded in MOE.

The docking simulation was carried out by following steps. First, the three dimension crystal
structure of hLXRβ-T0901317 complex (PDB code: 1PQC) was retrieved from the RSCB protein
databank (PDB: 1PQC). Then, the protein was protonated using AMBER99 force field and minimized
with a RMSD gradient of 0.05 kcal/mol Å. Additionally, the ligand atom mode was utilized to define
the binding site, and the docking placement was using triangle matcher algorithm. Finally, two
rescoring methods including London dG and Affinity dG, together with a force field were adopted to
compute the interactions [36].

4. Conclusions

The main goal of this study was to develop QSAR classification models as a potential screening
tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new
flavonoids by multiple QSAR modeling, structure similarity analysis, and molecular docking. Initially,
four different linear and non-linear classification approaches, such as LDA, SVM, CART, and ANN,
were applied to construct different QSAR classification models based on SW-LDA-selected optimal
descriptors. Satisfactory results were obtained with the introduced methods. The statistical results
indicated that the QSAR classification models derived by LDA, SVM, RBFNN, and CART were
powerful tools for classifying highly-potent ABCA1 up-regulators, producing the train accuracy of
90.91%, 96.67%, 96.67%, and 100%, respectively, and the test accuracy of 90.91%, 90.91%, 90.91%,
and 81.82%, respectively. Additionally, the QSAR study uncovered that a_nCl, lip_don, vsurf_DD23,
and vsurf_W2 were important features in defining the up-regulation activity of ABCA1 expression.
Then, to avoid the limitation or overemphasis of any modeling approach, a consensus QSAR model
was developed by combining the predictions from individual models, which was used to screen
highly-potent ABCA1 up-regulators from the ZINC database. Aiming to ensure maximum reliability
and accuracy of our QSAR models, molecular similarity analysis was performed to filter compounds
in the ZINC database compared to compound 36. The compounds that fulfilled the requirement of
structural similarity of 0.7 were subjected to the consensus QSAR model, which led to the discovery
of 50 potential highly-potent ABCA1 up-regulators. Then, to better understand their up-regulation
roles in the expression of ABCA1, the molecular docking simulation was applied to docking these
50 compounds into the LXRβ active site. Finally, 10 compounds were found to have larger docking
scores for LXRβ than the known highly-potent ABCA1 up-regulator (compound 19), which was
reported to target LXRβ. The molecular binding patterns and docking scores of these 10 molecules
also suggested that they could be robust ABCA1 up-regulators targeting LXRβ, which was modulated
by hydrogen bonding, hydrophobic, and pi-pi stacking interaction inside the binding pocket. Overall,
this information may be used as guidelines for the discovery of novel and robust ABCA1 up-regulators
targeting LXRβ.
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