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Abstract: Seizures and epilepsy are some of the most common serious neurological disorders, with
approximately 80% of patients living in developing/underdeveloped countries. However, about one
in three patients do not respond to currently available pharmacological treatments, indicating the need
for research into new anticonvulsant drugs (ACDs). The GABAergic system is the main inhibitory
system of the brain and has a central role in seizures and the screening of new ACD candidates.
It has been demonstrated that the action of agents on endocannabinoid receptors modulates the
balance between excitatory and inhibitory neurotransmitters; however, studies on the anticonvulsant
properties of endocannabinoids from plant oils are relatively scarce. The Amazon region is an
important source of plant oils that can be used for the synthesis of new fatty acid amides, which
are compounds analogous to endocannabinoids. The synthesis of such compounds represents an
important approach for the development of new anticonvulsant therapies.

Keywords: GABAergic system; seizures; epilepsy; plant oils; endocannabinoids

1. Epilepsy and Seizures

Epilepsy is one of the most common serious neurological disorders, affecting approx-
imately 50 million people worldwide, with an estimated 5 million new cases each year.
Approximately 80% of these cases are in developing countries, probably due to poor medi-
cal infrastructure, increased risk of birth-related injuries (trauma, low weight, hypoxia,)
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and endemic diseases such as malaria and neurocysticercosis [1]. Epilepsy has many causes,
including genetic and developmental abnormalities, brain injuries induced by ischemic
stroke, intracerebral hemorrhage, infections, drug abuse, brain tumors, and a variety of
psychological and social morbidities [2–6].

Epilepsy is defined as a chronic disorder characterized by abnormal brain electrical
activity with spontaneous and recurrent seizures and often psychic manifestations, such as
disturbances in cognition, behavior, consciousness, involuntary movements, and involve-
ment of different brain areas [7,8]. One of the most common symptoms is seizures that
directly influence patients’ quality of life and psychosocial functioning [9–11].

According to the International League Against Epilepsy (ILAE), seizures are divided into
three categories: generalized, focal (previously called partial), and epileptic spasms [12,13].

Generalized seizures start in neuronal networks in both hemispheres and can be
subdivided into absence seizures and generalized tonic-clonic (GTC), myoclonic and atonic
seizures. Absence seizures are characterized by sudden lapses of consciousness, blinking
eyes, or head movement, and their pathophysiology seems to be associated with rhythmic
oscillations of the thalamus-cortical pathways with generalized spike and slow wave
discharges and is generally associated with mutations of the Ca2+ channel [14,15]. GTC
seizures consist of bilateral symmetrical convulsive movements of all limbs in addition
to impairment of consciousness, unlike myoclonic seizures, which consist of sudden and
involuntary movements that can affect one or several muscles, just as atonic seizures involve
weakness of the muscle tone followed by drop attack [16]. Myoclonic and atonic seizures
initially show a normal electroencephalogram followed by a generalized polyspike-and-
wave epileptiform activity that precedes the onset of myoclonic-atonic and atonic seizures.
The pathophysiology of these epileptic syndromes is more associated with voltage-gated
Ca2+ channels and the GABAA receptor α1 subunit [15,17].

Focal seizures originating in neuronal networks are limited to a single cerebral hemi-
sphere and can develop at any point in life. Focal epilepsies include unifocal and multifocal
disorders, as well as crises involving a variety of types of epileptic seizures, and may
include focal perceptual seizures, focal perceptive or impaired perception, focal motor
seizures, and non-motor and focal seizures progressing sometimes to bilateral tonic-clonic
seizures [18,19]. The interictal EEG typically shows focal epileptiform discharges and
symptoms occur only when the seizure spreads to activate or disrupt cortical networks;
as such, there is a wide spectrum of focal disease that depends not only on the location
of the epileptic focus and its duration but also on the connected cortical and subcortical
areas [18,19].

Epileptic spasms are a type of epileptic syndrome in children with infantile spasms
and show changes in cerebral rhythms defined as hypsarrhythmia, with high-amplitude,
arrhythmic, asynchronous delta activities, and multiple spikes. These epileptic spasms
are associated with alterations in the gene regulation network of the GABAergic forebrain
during development, and abnormalities in molecules expressed at the synapse [3,20,21].

2. Role of GABA in the Pathophysiology of Epilepsy and Seizures

GABA (γ-aminobutyric acid) and L-glutamate are the main inhibitory and excitatory
neurotransmitters in the central nervous system (CNS), respectively, and both actively
participate in epileptic disease [22,23]. However, the GABAergic system has been classically
considered a main target of the anticonvulsant pharmacopeia, probably due to the high
efficacy and potency of drugs acting on this system.

GABA-mediated inhibitory responses account for 30–40% of the synaptic connec-
tions in the brain [24] and play a fundamental role in the fine control of the excitability
of circuits in the brain, including synchronization and generation of theta and gamma
rhythms [23,25,26]. Modulation of GABA synaptic activity involves GABA synthesizing
enzymes, transporters, GABAA, and GABAB receptors generating diversity at GABAergic
synapses. Alterations in the expression of these signaling components have been implicated
in several disorders, including epilepsy [27,28].
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GABA is synthesized from glutamate by the glutamic acid decarboxylase (GAD) en-
zyme [29]. GABA activity is rapidly terminated at the synapse by reuptake into nerve
terminals and is metabolized by a reaction catalyzed by GABA transaminase (GABA-T)
involved in the regulation of the GABAergic system [30,31]. GABA is released as a neuro-
transmitter into the synaptic cleft in many brain areas when stimulated by depolarization
and exerts its effects pre- and postsynaptically via ionotropic (GABAA) and metabotropic
(GABAB) receptors [22,24,32]. Ionotropic receptors (GABAAs) trigger the opening of chlo-
ride channels, resulting in membrane hyperpolarization of postsynaptic cells [24], while
GABAB receptors produce slow and prolonged inhibitory signals via G proteins and second
messengers [33]. GABA transport is responsible for extracellular GABA clearance [34,35], a
mechanism coupled to the cotransport of Na+ and Cl− down their concentration gradient.
The activities of these transporters determine the amount of available GABA for activation
by presynaptic nerve terminals and glial cells. Disruption of these factors contributes to
altered GABAergic transmission in epilepsy [22,26,36]. A large number of pro-convulsant
drugs impair the inhibition mediated by GABA. Glutamic acid decarboxylase (GAD) is di-
minished in interneurons in discrete regions of the epileptogenic cortex and hippocampus,
and high levels of the antibody-GAD are convulsants and produce cerebellar ataxia and
temporal lobe epilepsy [26,36,37].

After GABA is released from vesicles into the synapse, its effects are modulated by
ionotropic (GABAA) and metabotropic (GABAB) receptors. GABAA-Rs are comprised
mainly of two α subunits, two β subunits, and one γ subunit. The heterogeneity of
GABAA receptors with their many allosteric sites is associated with the regulation of
different GABAergic functions and they can be targeted by many drugs, such as benzodi-
azepines, barbiturates, neuroactive steroids, anesthetics, ethanol, and cannabinoids. The
GABAA receptor has a chloride ion channel that is gated by GABA and is blocked by
convulsants [27,28,38].

GABAB receptors are comprised of two GB1 and GB2 subunits. The GB2 subunit
is responsible for the coupling of GABAB receptors to G protein activation-associated Gi
protein-activated K+ channels [39]. Many point mutations have been associated with genes
encoding these receptor subunits that result in epileptic syndromes [38]. Effective GABAB
positive allosteric modulators are important for the treatment of seizure disorders. Another
important target in the regulation of GABA activity is the GABA transporters that rapidly
bind and remove GABA. Inhibition of GABA transporters by selective inhibitors such as
tiagabine can be used as positive modulators that increase GABA extracellularly and are
pharmacologically relevant to the control of epilepsy [35].

3. Treatment of Seizures and Screening of New Drugs

The treatment of epilepsies and seizures involves drugs in mono- or polytherapy, with
first-generation anticonvulsant drugs (ACDs), such as phenytoin, barbiturate, and etho-
suximide. Second-generation drugs, such as carbamazepine, valproic acid, and diazepam,
constitute an important line of therapy and offer advantages over the former due to a lower
risk of drug interactions and better tolerability. The third generation of ACDs still includes
some drugs such as tiagabine, topiramate, pregabaline, and vigabatrine, which act on the
GABAergic system as their main mechanism of action [40–42] (Figure 1). The continuing
search for new anticonvulsant drugs is caused by the high prevalence of refractory epilepsy
(when seizures are not controlled by the pharmacological treatment in use); about one in
three patients does not respond to the available ACDs [41].
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ACDs have diverse mechanisms of action, such as sodium or calcium channel blockers,
agonists or potentiators of the effects on the GABAergic system, and blockers of the effects
of glutamate via NMDA and AMPA receptors [43]. Unfortunately, some aspects that persist
during treatment are a lack of substantial control of epileptic seizures [44].

In 60–80% of cases, seizures can be controlled with chronic use of these ACDs; however,
all the ACDs currently available have adverse effects such as headache, fatigue, dizziness,
drowsiness, and nausea; they can also cause neurological problems such as anxiety, depres-
sion, and sleep disorders, [45–47]. In addition, the chronic use of these drugs, especially
GABAergic drugs, is limited due to frequent adverse effects, such as tolerance, dependence,
and the presence of a withdrawal state, despite their high efficacy [48]. These numerous
adverse effects are the main reason for the failure of compliance to the chronic treatment
with ACDs in epilepsy, thereby explaining the need for the discovery of new anticonvulsant
drugs with fewer adverse effects.

The study of new anticonvulsant drugs involves the use of several animal models that
were developed with the aim of mimicking clinical symptoms and providing information
about the mechanisms involved in the genesis and maintenance of seizures [49]. Diverse
drugs such as pilocarpine or kainic acid have been used as chemoconvulsants in animal
models of epilepsy for testing new ACD candidates [50]. One of the gold-standard models
for the screening of new ACDs involves the chemical induction of seizures with pentylenete-
trazol (PTZ), which is capable of generating acute seizures [51–53]. The mechanism of
action of PTZ consists of noncompetitive blocking of GABAA receptors through inhibition
of the chloride channel associated with the receptor complex. Studies have shown that
there is a specific binding of PTZ with the benzodiazepine site of the GABAergic recep-
tor [9,51]. This inhibition prevents the action of this neurotransmitter and consequently
its depressant effect on the CNS [54]. PTZ is the only chemoconvulsant that can be used
for testing both isolated acute seizures (using a single administration of PTZ) and chronic
and recurrent epilepsy (using the “kindling” model with repeated administration of low
doses of PTZ). Seizures induced by PTZ start with myoclonic spasms, characterized by
fleeting movements of muscle excitation or relaxation until a generalized tonic-clonic crisis
occurs [55]. The PTZ model can be used to screen ACDs with different clinical effects
and was crucial for the successful identification of methosuximide and ethosuximide, due
to their superior tolerability [41]. Thus, this model is very useful for testing new drugs
and/or bioproducts, including the endocannabinoids that have been already studied for
their anticonvulsant action [9].

4. Endocannabinoids, Plant Oils, and Seizure Control

The endocannabinoid system (ECS) consists of endogenous cannabinoids, receptors,
and metabolic enzymes. This system is present in most vertebrate species and is distributed
in several organs and tissues, including the CNS [56]. Endocannabinoids are endogenous
bioactive lipids that are produced locally through specific biosynthetic pathways. En-
docannabinoids are divided into two classes, N-acylethanolamines (NAEs) and primary
amides. Anandamide and 2-arachidonylglycerol (2-AG) (Figure 2), are lipid mediators
derived mainly from arachidonic acid and are the most frequent biosynthetic routes [57–59].
Endocannabinoids, such as anandamide and its analogs, have been extensively studied as
targets of new therapeutic options for disorders of the CNS, including the prevention of
epileptic seizures [9,60].
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Endocannabinoids are produced on demand from membrane phospholipids, with
synthesis and degradation regulated by a set of enzymes that are widely distributed in the
brain. Among these enzymes, diacylglycerol lipase (DAGL), monoacetylglycerol lipase
(MAGL), and fatty amide hydrolase (FAAH) are of particular interest [61–64].

DAGL and phospholipase Cβ enzymes participate in the synthesis of 2-AG from mem-
brane phospholipids. 2-AG is degraded mainly by the MAGL enzyme, producing arachi-
donic acid (AA) and glycerol. FAAH degrades anandamide to AA and ethanolamine [58].
These enzymes have crucial roles in the regulation of the tissue levels or actions of endo-
cannabinoids.

Anandamide is produced in neurons during depolarization, and its biosynthesis
involves a calcium-dependent transacylase (CDTA) that transfers the acyl group of phos-
pholipids to the primary amine of phosphatidylethanolamine (PE) to generate n-acyl
phosphatidylethanolamines (NAPEs), which are hydrolyzed by a type D phospholipase
to generate NAEs [65]. This route may also involve other phospholipases (type C) with
substrates such as n-arachidonoyl phosphatidylethanolamine [66].

2-AG is a monoacylglycerol molecule that acts as a retrograde messenger by activat-
ing both CB1 and CB2 cannabinoid receptors and is a key regulator of neurotransmitter
release [58].

Endocannabinoids act on type 1 and type 2 receptors (CB1 and CB2) coupled to the
Gi/o protein, and their binding leads to a decrease in the level of intracellular cyclic AMP
and activation of mitogen-activated protein kinase, in addition to modulating potassium
channels and inhibiting calcium channels [67–69]. These receptors are distributed in the
CNS, mainly in the olfactory bulb, hippocampus, lateral striatum, and cerebellum, and in
moderate amounts in areas of the cerebral cortex, hypothalamus, and spinal cord [25,70–72].

Among the cannabinoid receptors, CB1 has been identified as the main receptor re-
sponsible for the central effects of these groups of molecules [72–74]. Physiologically,
endocannabinoids are produced and released by postsynaptic neurons and act on the
presynaptic CB1 receptor, thus producing a stabilizing effect on the synapses, modulating
the balance between excitatory and inhibitory neurotransmitters (glutamate and GABA,
respectively) in the CNS [69,71,75], according to need, for example, in response to hyperex-
citation [76–78].

CB2 receptors are seven transmembrane G protein-coupled receptors that are predom-
inantly expressed in cells and tissues of the immune system [79]. However, CB2 has also
been identified in areas of the CNS, mainly brainstem neurons, astrocytes, and microglial
cells [80]. The CB2 receptor is overexpressed in response to diverse CNS insult and may
play an important role in epilepsy [81].

5. Endocannabinoids from Plant Oils

Plant oils, frequently found in nature, are rich in free fatty acids with different applica-
tions. Triglycerides from plant oils, such as andiroba oil, can be used to produce fatty acid
amides. Andiroba oil is extracted from the seeds of the andiroba tree (Carapa guianensis
Aublet). Andiroba oil is comprised of triglycerides and fatty acids, predominantly oleic,
palmitic, stearic, myristic, linoleic, and linolenic acids (Table 1) [82,83].
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Table 1. Main fatty acids (%) in andiroba oil.

Fatty Acid and Structure

Myristic C14:0 Palmitic C16:0 Stearic C18:0 Oleic C18:1 Linoleic C18:2 Linolenic C18:3 References

0.36 24.72 9.57 50.12 10.93 1.05 Pantoja et al., 2013 [84]
0.05 27.71 9.34 49.90 9.58 1.43 Araujo-Lima et al., 2018 [85]

- 31.02 10.53 42.71 12.93 tr. Silva, 2018 [86]
- 27.30 12.52 47.19 9.29 - Sousa et al., 2021 [87]

- means not detected and tr. means trace concentrations, under the limit of quantification.

Fatty acid amides derived from these fatty acids are analogs of cannabinoids and have
been widely studied as a new functional class of endogenous signaling molecules active in
the endocannabinoid system [88,89].

Synthetic endocannabinoids, such as fatty acid amides, can be obtained from triglyc-
erides and/or fatty acids in the presence of metallic catalysis [90,91] or biocatalysis [92,93].
Another possibility is based on the aminolysis of fatty acids (Figure 3), and their different
pharmacological properties are attributed to the presence of the amide functional group in
their molecules [94–96]. Aminolysis is carried out by an enzymatic reaction with excellent
selectivity and conversion rates, mainly of amino alcohol compounds [97].

The fatty acids of Patawa oil (Oenocarpus bataua), have also been submitted to
the amidation process, with the major products being the endocannabinoid analogs
N-isopropylpalmitamide and N-isopropyloleamide [95]. Oils extracted from Bertholletia
excelsa (Brazil nut) have also been a substrate for the production of endocannabinoid analogs
using lipase from Pseudomonas fluorescens, with a yield of up to 95% after reaction [98].
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6. Endocannabinoids and Seizure Control

During the onset of a seizure, 2-AG signaling is crucial for its suppression, which
is related to the decrease in neuronal excitability due to its action on presynaptic CB1
receptors [72,99–102]. For this reason, natural or synthetic cannabinoids, as well as their
analogs, have been explored due to their biological actions, such as anti-inflammatory,
antioxidant, and neuroprotection, with recognized anticonvulsant properties [61,102–110].

Endocannabinoid analogs, such as palmitoylethanolamide and oleamide, have anti-
convulsant properties and are capable of modulating the seizure threshold and decreasing
neuronal excitability without any toxic effects [111–114].

The anticonvulsant activity of oleamide has already been tested in several induction
models (picrotoxin, caffeine, strychnine, and PTZ) in Swiss mice at doses between 43.7 and
700 mg/kg. Promising results were found only in the PTZ model, with a dose-dependent
response, and from 350 mg/kg, presenting results similar to diazepam (5 mg/kg), used
as a control drug [115]. The site of action of oleamide is related to GABAA receptors at
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the binding site of benzodiazepines and displays GABA-induced Cl− currents that are
potentiated when administered together with GABA [116].

Another aspect that can be addressed in the relationship between endocannabinoids
and anticonvulsant activity involves the enzymes that participate in their metabolism.
Studies of the brains of epileptic patients, although they have shown no difference in the
expression of the enzymes NAPE-PLD, MAGL, and FAAH relative to normal individuals,
showed that the production of 2-AG may be compromised due to the lower expression of
DAGL mRNA [117]. A previous study using knockout animals for this enzyme found that
they presented with much more intense seizures, as well as higher levels of mortality when
induced with kainite [101].

Likewise, in in vivo models using Wistar rats, the effects of enzymatic blockers on
metabolism were evaluated in the PTZ model (85 mg/kg); the study showed that the
blockade of the MAGL and ABH6 enzymes (responsible for the degradation of endo-
cannabinoids) has an anticonvulsant effect [118]. It has also been shown that blocking
FAAH activity indicates increased endocannabinoid activity, reducing seizures and the
brain damage induced in an excitotoxicity model induced by kainate [119].

7. Conclusions

Thus, endocannabinoid fatty acid amides and their analogs, as well as other endo-
cannabinoids, participate in the regulation of excitability in the synaptic cleft. Furthermore,
plant oils, as sources of endocannabinoids, are natural bioactive products, and synthetic
biochemistry may be a new approach for the development of therapeutic strategies for
epilepsy, especially in low-income countries.
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