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Abstract: Fundus is the only structure that can be observed without trauma to the human body. By
analyzing color fundus images, the diagnosis basis for various diseases can be obtained. Recently,
fundus image segmentation has witnessed vast progress with the development of deep learning.
However, the improvement of segmentation accuracy comes with the complexity of deep models.
As a result, these models show low inference speeds and high memory usages when deploying to
mobile edges. To promote the deployment of deep fundus segmentation models to mobile devices,
we aim to design a lightweight fundus segmentation network. Our observation comes from the fact
that high-resolution representations could boost the segmentation of tiny fundus structures, and the
classification of small fundus structures depends more on local features. To this end, we propose
a lightweight segmentation model called LightEyes. We first design a high-resolution backbone
network to learn high-resolution representations, so that the spatial relationship between feature maps
can be always retained. Meanwhile, considering high-resolution features means high memory usage;
for each layer, we use at most 16 convolutional filters to reduce memory usage and decrease training
difficulty. LightEyes has been verified on three kinds of fundus segmentation tasks, including the
hard exudate, the microaneurysm, and the vessel, on five publicly available datasets. Experimental
results show that LightEyes achieves highly competitive segmentation accuracy and segmentation
speed compared with state-of-the-art fundus segmentation models, while running at 1.6 images/s
Cambricon-1A speed and 51.3 images/s GPU speed with only 36k parameters.

Keywords: lightweight network; fast semantic segmentation; mobile edge computing; fundus image

1. Introduction

Fundus is the only human body structure that can be observed without causing trauma
to the human body [1]. The conditions of fundus can reflect relevant pathological features
from different angles and aspects, and have important value for the study of cardiovascular
and cerebrovascular diseases [2,3]. At present, fundus examination is mainly based on the
manual analysis of fundus images by ophthalmologists.

Retinal vasculopathy and other pathologies such as microaneurysm (MA), hard exu-
date (EX), and soft exudate can be directly observed through the fundus image. Among
them, MA and EX play an important role in the grading of diabetic retinopathy (DR), which
is the leading cause for blindness in adults and is a serious public problem all over the
world. Specially, the appearance of MA is the main marker of mild non-proliferative DR.
If the MA can be detected by fundus image examination, effective interventions can be
performed to reduce the risk of DR. Moreover, EX is not only related to the diagnosis of DR,
but also to the diagnosis of diabetic macular edema and age-related macular degeneration,
both of which are serious diseases of the eyes. In addition, the morphological changes of
retinal vessels, such as diameter and curvature, can be used as the basis for early screening
of hypertension, stroke, coronary heart disease, and other diseases [4]. Therefore, it is nec-
essary to analyze fundus image at the early clinical stage. However, ophthalmologists are
seriously inadequate, compared with hundreds of millions of patients awaiting treatment,

Sensors 2022, 22, 3112. https://doi.org/10.3390/s22093112 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093112
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6841-753X
https://doi.org/10.3390/s22093112
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093112?type=check_update&version=2


Sensors 2022, 22, 3112 2 of 21

posing difficulties for large-scale fundus examinations. The problem is much more serious
in the regions with poor medical conditions. In conclusion, a fast and automated fundus
image segmentation method is required.

However, most existing fundus segmentation models use VGGNet [5] or ResNet [6]
as the backbone, which may incur several questions. (1) The inference speed of the segmen-
tation models depends heavily on the speed of the backbone. (2) The segmentation models
are difficult to be deployed to resource-limited devices due to high memory usage of the
backbone. (3) The spatial detailed information is missing in the backbone, which increases
the difficulty of locating the boundary of small lesions. These questions make these models
show poor performance in mobile edge computing.

To solve the above problems, in this paper, we propose a lightweight segmentation
network, called LightEyes, for the mobile edge. LightEyes has two characteristics, which
make it not only run efficiently on the mobile edge devices but also show superior segmen-
tation performance. The first characteristic is that the encoder of the LightEyes contains
no downsampling operations, so that the high resolution of features could be always pre-
served. This setting means that the LightEyes could segment the boundaries of the small
lesions much more accurately (see Figure 1). Specifically, the encoder of the LightEyes
consists of 24 convolutional layers, each with 3 × 3 kernel size, so that the receptive field
of the encoder is 49 × 49, and this large of field of view ensures that the LightEyes learns
semantic features rather than local features. The second characteristic of the LightEyes is
that the number of convolution filters (kernels) in each convolutional layer is at most 16,
far lower than the number of VGGNet and ResNet, which is about 512 or even more. The
setting of a thin convolutional filter reduces the memory greatly and this makes it inference
efficiently on mobile edge devices.

(a) (b) (c)

(d) (e) (f)

Figure 1. Hard exudate segmentation binary maps of the LightEyes and other methods on the IDRiD
dataset (TPs are marked as black, FPs are marked as red, and FNs are marked as green. JI denotes
Jaccard similarity index). (a) fundus image. (b) HED [7] (JI = 0.6663). (c) L-Seg [8] (JI = 0.6478)
(d) LWENet [9] (JI = 0.6952). (e) LightEyes (JI = 0.7159). (f) ground truth.

We evaluate the performance of the LightEyes in the microaneurysms segmentation,
the exudate segmentation, and the vessel segmentation. Experimental results show that
LightEyes achieves highly competitive segmentation accuracy and segmentation speed
compared with state-of-the-art fundus segmentation models, while running at 1.6 images/s
Cambricon-1A speed and 51.3 images/s GPU speed with only 36 k parameters.

Our contributions are summarized as follows.
1. We introduce two principles to design fundus image segmentation model and we

present the LightEyes. The LightEyes aims at learning high-resolution representations
without sacrificing the inference speed.
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2. We conduct extensive experiments on the segmentation of three fundus structures,
including the MA, the EX, and the vessels. Comparative studies reveal that, compared
with other deep segmentation models and lightweight models, the LightEyes achieves
better accuracy–speed trade-off.

3. We deploy the LightEyes on mobile devices. Results show that the LightEyes can
process large resolution images, whereas VGGNet-based models cannot.

The remainder of this paper is organized as follows. Related works about the analysis
of fundus images are introduced in Section 2. The structure of the LightEyes is described
in Section 3. Experiments and analysis are given in Section 4. Discussions are given in
Section 5. Conclusions are drawn in Section 6.

2. Related Works

In this section, recent works on the segmentation of fundus lesions and vessels are
summarized (See Table 1), and then we review literature about lightweight segmenta-
tion models.

2.1. Fundus Lesion Segmentation

DR-related fundus lesions mainly contain hard exudate (EX), hemorrhage (HE), mi-
croaneurysm (MA), and soft exudate (SE). Existing lesion segmentation methods mainly
focus on these four lesions, and could be roughly divided into two categories, namely,
traditional image processing methods and deep-learning-based methods.

The main pipeline of traditional lesion recognition methods includes image prepro-
cessing, candidate regions generation, classification, and postprocessing [10–12]. First, in
the preprocessing stage, image enhancement algorithms are used and certain interference
structures, such as bright structures and optic disc, are removed. Second, a thresholding
algorithm or other method is adopted to generate candidate regions. Third, certain methods
are used to classify these regions. Finally, a false positive elimination method could be used
if necessary. The main disadvantage of this kind of method is the complex and non-reusable
feature engineering. However, learning-based models could avoid this feature selection
because the features are learned from the raw images.

Recent studies show that deep-learning-based methods achieve superior performance
to traditional ones in fundus lesion segmentation [8,13]. Mo et al. proposed a patch-
level ResNet-based [6] network, called FCRN, for EX segmentation [13]. FCRN follows the
popular semantic segmentation framework, which consists of an encoder and a decoder [14].
In FCRN, the encoder is ResNet, and the decoder uses skip connections for multi-scale
feature fusion. Guo et al. proposed a unified framework based on VGGNet for multi-lesion
segmentation, called L-Seg [8]. L-Seg is an image-level model that can segment four kinds of
lesions simultaneously. However, both FCRN and L-Seg use ImageNet-based classification
network as the encoder, which means that they have a huge number of parameters and a
high memory usage. In addition, Guo et al. proposed LWENet for EX segmentation [9],
where the backbone network is newly designed, and it shows advantages in terms of the
speed and the number of parameters. However, it still needs transfer learning to achieve
a good performance, similar to FCRN and L-Seg. Huang et al. proposed RTN [15] for
multi-lesion segmentation and it achieved an average AUC_PR of 0.7076 on the IDRiD
dataset, reaching new state-of-the-art performance. Zhou et al. incorporated classification
task into segmentation task and proposed a collaborative learning method [16], achieving
an average AUC_PR of 0.7044 on the IDRiD dataset. Besides designing complex deep
models, Sarhan utilized triplet loss for microaneurysms segmentation [17].

In conclusion, most of the existing image-level segmentation models use VGGNet
or ResNet as the encoder, and the inference speed and memory usage depend heavily on
the backbone. As a result, these models are not suitable to be deployed to mobile side.
Meantime, there is still a lack of research in the design of the encoder for the segmentation of
fundus images. Designing a new encoder meets the difficulty that no pretraining model is
available, which further increases the difficulty of training using dozens of fundus images.
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Table 1. Summary of related works (EX, SE, MA, and HE represent hard exudate, soft exudate,
microaneurysms, and hemorrhage, respectively).

Authors Year Task Method

Mo et al. [13] 2018 Lesion (EX) ResNet-based deep model
Guo et al. [8] 2019 Lesion (EX, SE, MA, HE) VGGNet-based deep model
Guo et al. [9] 2019 Lesion (EX) Lightweight deep model

Colomer et al. [10] 2020 Lesion (EX, MA, HE) Morphological and texture descriptors
Sarhan et al. [17] 2021 Lesion (MA) Triplet Loss
Huang et al. [15] 2022 Lesion (EX, SE, MA, HE) Transformer-based model

Oliveira et al. [18] 2018 Vessel Patch-level FCN
Wu et al. [19] 2018 Vessel Stacking multiple U-Nets

Khawaja et al. [20] 2019 Vessel Line detector
Guo et al. [21] 2019 Vessel Deep supervision
Jin et al. [22] 2019 Vessel U-Net with deformable convolution

Wang et al. [23] 2020 Vessel U-shape model with multiple decoders
Lin et al. [24] 2021 Vessel High-resolution network

2.2. Fundus Vessel Segmentation

Existing vessel segmentation methods can be roughly divided into two categories:
unsupervised methods and supervised methods.

Unsupervised methods do not need supervised information, and they are implemented
based on human-designed rules [20,25]. However, fundus images taken from clinical environ-
ments have large intervariance, which makes unsupervised methods show poor performance
since it is hard to design suitable features on such large number of images.

Supervised methods, specially deep-learning-based methods, have been fully ex-
ploited in recent years and show superior performance to unsupervised ones [21,26,27]. In
this work, we only discuss segmentation-network-based methods. Segmentation-network-
based methods could be further divided into image-level segmentation network and
patch-level segmentation network, according to whether the input is an image or a patch.
Image-level segmentation-network-based methods could segment an image with only one
forward pass. For example, Guo et al. proposed BTS-DSN, which uses multi-scale feature
fusion and short connections to obtain fine vessel segmentation, and no postprocessing
is required [21]. However, BTS-DSN use VGGNet as the backbone, and transfer learning
is required. The main difficulty of accurate vessel segmentation lies in that it is hard to
locate vessel boundaries accurately, and it is easy to identify tiny vessels as backgrounds.
To deal with this problem, Wang et al. handled vessel segmentation from the perspective of
hard-sample learning [23]. They designed an extra branch to learn hard labels individually,
and the segmentation maps of multiple branches are fused to generate the final refined
output. Jiang et al. incorporated scale attention mechanism into deep architectures, and
proposed Bi-SANet for vessel segmentation [28]. Lin et al. proposed a high-resolution
feature learning model to preserve spatial details [24]. However, all these models are huge,
and there is still a lack of lightweight models.

Patch-level segmentation networks follow the pipeline of preprocessing, patch extrac-
tion, training/testing, and postprocessing [18,19,29]. For example, Yan et al. presented
a three-stage segmentation network which extracts the thick and thin vessels in the first
and the second stages, and finally fuses the former two stages’ features together in the
third stage to generate the final segmentation map [29]. Wu et al. presented a patch-level
two-stream network, called MS-NFN, for vessel segmentation [19]. In their method, the
training sample consists of 190,000 overlapped patches of size 48 × 48. For testing, each
test image was first preprocessed, and then overlapped patches with size 48 × 48 were
extracted. At last, the segmentation probability maps of these image patches were recom-
posed to generate an entire segmentation map. There are many networks that belong to the
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patch-level segmentation networks, and the key characteristic of this kind of method is that
they need multiple forward passes, rather than one forward pass, when testing.

Although state-of-the-art performance of these patch-level methods was achieved,
patch extraction and reconstruction of segmentation maps are always required, resulting
in low inference speed. Therefore, there is still lack of a fast image-level vessel segmenta-
tion network.

2.3. Lightweight Fundus Segmentation Models

Due to large number of parameters of VGGNet and ResNet, they are hard to deploy
to edge side. To address this problem, some light-weighted network architectures have
been proposed. For instance, MobileNet [30] and ShuffleNet [31] were proposed for image
classification. MobileNet uses depthwise separable convolution rather than standard
convolution to reduce parameters and accelerate inference. Meanwhile, it uses convolution
with large stride to downsample; this setting makes the network achieve a large receptive
field and could reduce computation. However, the setting of using convolution with a
large stride is not suitable for vessel and lesion segmentation, since the spatial resolution
of the feature maps are decreased during feature flow. For example, the resolution of the
feature maps is only half of that of the input image after the first convolution operation in
MobileNet. The resolution of feature maps was downsampled by a factor of 32 after Stage
4 in ShuffleNet. In our experiments, MobileNet was taken as a baseline.

As far as we know, there is still lack of a lightweight model for fundus segmentation.
Guo et al. proposed a lightweight network, called LWENet, for fundus lesion segmenta-
tion [9]. However, there still exists the problem of losing spatial detailed information in
the backbone of LWENet, and the LWENet relies on pretraining to achieve the claimed
performance. Although there are some patch-level segmentation models with small model
size, they show slow inference speed since they need multiple forward passes to generate a
complete segmentation map for one test image, and this means that they are not suitable
for mobile edge computing. In summary, there is still lack of a lightweight, accurate, and
image-level fundus segmentation model for mobile edge computing.

3. LightEyes

The overview of the LightEyes is shown in Figure 2. As we can see, the LightEyes
consists of two parts: the encoder and the decoder. The encoder mainly consists of 24 con-
volutional layers, from conv1 to conv24, and each convolution layer is followed by a
ReLU activation function. The decoder makes use of multi-receptive field feature maps to
generate the outputs. Detailed configurations of the LightEyes are summarized in Table 2.

conv15 conv24

... ... ...

conv1 conv2 conv12 conv13

decoder

output

encoder
H×W H×W H×W H×W H×W H×W H×WH×W

Figure 2. An overview of the proposed LightEyes. For simplicity, nonlinear activation functions
(ReLU) are omitted. The encoder maintains a high resolution representation directly to facilitate the
segmentation of tiny lesions and vessels. To be specific, the encoder contains 24 convolutional layers,
and the decoder uses features of the intermediate layer to generate output.
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Table 2. Configurations of the LightEyes (H and W below represent the height and width of the
input image).

Layer Input Size Output Size #Filters #Param Ops (H × W)

Encoder

conv1 H ×W × 3 H ×W × 16 16 448 512
convi(i ∈ [2, 12]) H ×W × 16 H ×W × 16 16 2320 2800

conv13 H ×W × 16 H ×W × 8 8 1160 1400
convi(i ∈ [14, 24]) H ×W × 8 H ×W × 8 8 584 696

Decoder

Pooling H ×W × 8 H/2 ×W/2 × 8 - 0 -
convi(i ∈ [25, 27]) H/2 ×W/2 × 8 H/2 ×W/2 × 8 8 584 174

conv28 H/2 ×W/2 × 8 H/2 ×W/2 1 73 21.75
conv29 H ×W × 8 H ×W 1 73 87
conv30 H ×W × 8 H ×W 1 73 87
conv31 H ×W × 3 H ×W 1 28 32

total 316 35,551 41,117.75

3.1. Encoder

The encoder of the LightEyes has two characteristics: high-resolution feature represen-
tation, and small number of convolutional filters.

3.1.1. Characteristic 1—High-Resolution Feature Representation

First of all, existing fundus lesion segmentation models achieve a large receptive
field and extract semantic features by stacking multiple pooling operations, which lead
to low-resolution feature representation. Continuous downsampling has no problem in
image classification. However, in the field of tiny vessel segmentation in fundus images,
there are some problems. The main problem is that with the forward propagation of
features, the loss of spatial relationship between feature maps becomes more and more
serious, specifically for small lesion points. As a result, the segmentation results obtained
by upsampling are coarse and affect the diagnosis of the diseases. Most of the existing
fundus segmentation models focused on designing complex feature fusion methods to
alleviate this problem [8,13,21,32], such as the skip connection [14], atrous spatial pyramid
pooling [33], and so on. Recent studies show that keeping high resolution of feature maps
is helpful to boost segmentation performance [34,35], specifically for tiny objects, since
high-resolution features convey more detailed spatial information than low-resolution
features. For instance, low-resolution features are helpful to locate thick vessels, but it is
hard to locate the vessel boundaries accurately. In contrast, high-resolution features could.
More importantly, fundus structures usually have small sizes (the width of thin vessels
may be as low as 1 pixel, and the areas of small microaneurysms are only a few pixels),
thus it is necessary to learn high-resolution features. Therefore, a full-resolution encoder
is designed in the LightEyes. In the encoder of the LightEyes, we stack 24 convolutional
layers with kernel size 3 × 3 to achieve a large receptive field, and the field of view of the
last convolutional layer can be 49 × 49. Therefore, the last several convolutional layers
have larger receptive fields than those of the first several convolutional layers. As a result,
the last several convolutional layers are expected to learn high-level discriminative features
(semantic features) to facilitate the classification of non-vessels pixels and vessel pixels. In
contrast, the first several convolutional layers have small receptive fields, and they convey
less semantic information; thus, it is difficult to determine the category of pixels using
only low-level features alone. In conclusion, the encoder of the LightEyes could not only
extract semantic features but also maintain the high resolution of the feature map, so that
the detailed information can be preserved in the encoder phase.

3.1.2. Characteristic 2—Small Number of Convolutional Filters (at Most 16) for Each
Convolutional Layer

Designing a high-resolution encoder for the segmentation of fundus images meets two
problems: (1) High resolution of features corresponds to high memory usage. If VGGNet or
ResNet does not use any downsampling operations, the high resolution of features cannot
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be maintained due to high memory cost. (2) For such an encoder with high resolution,
there is no pretrained model available which could be used for fine-tuning. Therefore, the
second problem is elucidating how to train such an encoder from scratch using dozens of
fundus images.

In the LightEyes, each convolutional layer has at most 16 filters to solve above two
problems. Considering the characteristics of the fundus segmentation, we think there
is no need to have as many convolutional filters as in ImageNet-based natural image
classification networks, such as VGGNet and ResNet. In those networks, a large number of
convolution kernels are required to learn high-level object-related features. For example, to
classify an image filled with a person, the network needs to consider various structures of
the human body, such as head, arms, and legs. Therefore, numerous convolution kernels
are required in the last few layers of the ImageNet-based classification networks. However,
in the field of fundus structure segmentation, the prediction of a pixel does not need to
consider twoabstract features, such as that in the classification networks. Segmentation of
fundus structure mainly depends on color, texture, and context information. Therefore, in
the encoder of LightEyes, the number of 3 × 3 kernels in one convolution layer is at most
16, and the total number of 3 × 3 kernels in the encoder is 288 (see Table 2).

Our experimental results show that the LightEyes could be trained effectively, even if
no pretraining model is available, and the inference speed shows superior performance
compared with other VGGNet-based or ResNet-based segmentation models.

3.2. Decoder

The architecture of the decoder is visualized in Figure 3. We use multi-scale features
in the decoder. The decoder consists of three branches. In the first branch, a convolutional
layer (conv30) is performed after conv15 to generate a feature map with one channel. In
the second branch, a convolutional layer (conv29) is performed after conv24 to generate a
feature map with one channel. In the third branch, a pooling operation is first performed
after conv24 to generate a low-resolution feature map, then the generated feature map
is further processed by three convolutional layers, one upsampling operation, and one
convolutional layer. Then, the outputs of the three branches are concatenated together to
form a feature map of three channels. Further, followed by a convolution operation with
kernel size 3 × 3 (conv31), a feature map of one channel is obtained. At last, after sigmoid
function, a segmentation probability map is obtained. In the training phase, it is compared
with ground truth to obtain a loss. In the testing phase, this probability map is actually the
output of the LightEyes.

output
conv15

conv24

conv30

conv29

conv31

conv28

conv25...conv27

H×W H×W

H×W

H×W H×W
H×W

H×WH/2×W/2 H/2×W/2 H×W

Figure 3. The decoder architecture. The input of the decoder is conv15 and conv24, which are learnt
by the encoder. The decoder consists of three branches, and the output of three branches are further
concatenated to generate the output of the LightEyes. Moreover, there are three supervision losses
after conv28, conv29, and conv30.
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3.3. Implementation Details
3.3.1. Deep Supervision

We add three auxiliary losses to the decoder of the LightEyes based on the following
considerations. First, adding auxiliary losses to intermediate layers can obtain multiple
segmentation results under different receptive fields [7]. Thereby, we can fuse these
intermediate features together to obtain much better performance (see Figure 3). Second,
we can explore the adequate receptive field in semantic segmentation of fundus images
by comparing segmentation performance of the auxiliary loss. Third, different models can
be deployed depending on the hardware sources of the mobile device. The three auxiliary
losses correspond to three segmentation models, called LightEyes_A1 (the supervision loss
is after conv30), LightEyes_A2 (the supervision loss is after conv29), and LightEyes_A3
(the supervision loss is after conv28). LightEyes_A1 (auxiliary loss1) contains the fewest
parameters and the fastest inference speed, and it takes up the least amount of memory.

3.3.2. Loss Function

Lesions and vessels account for a small proportion of the entire fundus image. For
instance, the proportion of MA is about 0.1%. As a result, the number of background pixels
is much larger than that of foreground pixels, which is called a class-imbalance problem.
A solution to this problem is to introduce a weight factor β for foreground pixels and
1− β for background pixels; this method is called class-balanced cross-entropy loss [7].
Considering that this method does not consider easy/hard background pixels, which may
incur misclassification, we use random drop loss [36] for training the LightEyes. The
random drop loss is defined as

L(p, y|θ) = −β ∑
yj=1

log pj − (1− β) ∑
yj=0

1(pj) log (1− pj) (1)

where p denotes a segmentation probability map obtained by sigmoid function, y denotes
ground truth, and β = Nn

Nn+Np
denotes the weight factor, where Nn denotes the number of

background pixels retained and Np denotes the number of foreground pixels. In addition,
1(pj) is an indicator function to specify whether a background pixel is dropped or not
according to its activation probability pj, and it is defined below.

1(pj) =

{
0, r < pdrop(pj)
1, otherwise

(2)

where r is a random number and follows a uniform distribution between 0 and 1. In
addition, pdrop(·) represents a random drop function that maps the activation probability
to the drop probability. In our experiments, we use the linear drop function, namely,
pdrop(pj) = 1.0− pj. It is worthy noting that the three auxiliary losses and the fusion loss
are the same as Equation (1).

4. Experiments
4.1. Materials

We evaluated the LightEyes over five publicly available datasets, i.e., IDRiD [37],
e-ophtha EX [38], DRIVE [39], STARE [40], and CHASE_DB1 [41].

The IDRiD dataset consists of 81 images, each of which has a resolution of 2848× 4288
(height × width), and pixel-wise annotations of MA and EX are provided. IDRiD provides
a division of training set and testing set, of which 54 images are used for training and the
remaining 27 for testing.

The e-ophtha EX dataset contains 82 fundus images, of which 47 images include EX.
The resolutions of these images range from 960 × 1440 to 1696 × 2544 pixels. Considering
that this dataset does not provide an explicit partition of training set and testing set, we
adopt five-fold cross validation, as in [9], for a fair comparison with other models.
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The DRIVE dataset is the most widely used dataset, and consists of 40 fundus images
with resolution of 584 × 565. This dataset provides two groups of pixel-annotations for
vessels. One is used as ground truth for training vessel segmentation algorithms, and the
other one is used to compare the segmentation results between computer algorithms and
the second human. This dataset provides a partition of training set and testing set, and
each set contains 20 individual fundus images. The STARE dataset contains 20 color fundus
images, each with resolution of 605 × 700. The CHASE_DB1 dataset consists of 28 fundus
images with resolution of 960 × 999. However, the partition of training set and testing
set is not provided for both STARE and CHASE_DB1. For fair comparison, we use the
same partition as [19,21,29] on the CHASE_DB1, where the first 20 images are considered
as training set and the remaining 8 images are considered as testing set. On the STARE
dataset, after referring to [21,32,42], we used the first 10 images as training set, and the
remaining 10 images as testing set.

4.2. Training Details
4.2.1. Running Environments

The LightEyes was built based on an open-source framework Caffe [43]. Caffe was
compiled with CUDA 8.0 and CUDNN 5.1, and it ran on a workstation with Ubuntu 18.04
operation system and NVIDIA GTX 1080ti GPUs.

4.2.2. Training Data Preparation

The maximum resolutions of images in the IDRiD and e-ophtha EX datasets exceed
2000 pixels; therefore, we first scaled each image and its ground truth to 712× 1072 (height
× width) before training to reduce computational complexity, whereas on the DRIVE,
STARE, and CHASE_DB1 datasets, no scaling was performed. In addition, we used various
transformations to augment the training set, including rotation and flipping horizontally
and vertically. As a result, there are 324, 120, 80, and 120 training images on the IDRiD,
DRIVE, STARE, and CHASE_DB1 datasets, respectively.

4.2.3. Parameter Settings

The parameters of the LightEyes were initialized using xavier [44]. The initial learning
rate was set to 1× 10−3, and we used bilinear interpolation for upsampling. For train-
ing the LightEyes, we used ADAM [45] to optimize the model. In our experiments, the
LightEyes was trained using ADAM for 60 k/60 k/20 k/140 k/140 k iterations on the
DRIVE/CHASE_DB1/STARE/IDRiD/e-ophtha datasets, respectively. A detailed compari-
son of LightEyes with other lesion segmentation models are summarized in Table 3.

Table 3. Hyperparameter settings of LightEyes and comparison methods.

Methods Dataset Optimizer Learning Rate Iteration Batch Size

L-Seg [8] IDRiD SGD 1× 10−9 25,000 1
e-ophtha EX SGD 1× 10−8 20,000 1

HED [7] IDRiD SGD 1× 10−8 25,000 1
e-ophtha EX SGD 1× 10−8 20,000 1

LWENet [9] IDRiD SGD 1× 10−8 160,000 1
e-ophtha EX SGD 1× 10−8 160,000 1

LightEyes

IDRiD ADAM 1× 10−3 140,000 1
e-ophtha EX ADAM 1× 10−3 140,000 1

DRIVE ADAM 1× 10−3 60,000 1
CHASE_DB1 ADAM 1× 10−3 60,000 1

STARE ADAM 1× 10−3 20,000 1
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4.3. Evaluation Metrics

We use sensitivity (Se), specificity (Sp), accuracy (Acc), Jaccard similarity index (JI),
and the area under the ROC curve (AUC) to evaluate the vessel segmentation maps. In
lesion segmentation task, we use precision (Pr), recall (Re), and F1-score (F1) to evaluate
the lesion segmentation maps. They are defined as follows.

Se = Re =
TP

TP + FN
(3)

Sp =
TN

TN + FP
(4)

Pr =
TP

TP + FP
(5)

F1 =
2× Pr× Se

Pr + Se
(6)

JI =
TP

TP + FP + FN
(7)

Acc =
TP + TN

TP + FN + TN + FP
(8)

where true positive (TP) means foreground pixels (vessel, lesion) classified correctly, false
negative (FN) denotes foreground pixels misclassified to background pixels, false posi-
tive (FP) denotes background pixels misclassified to foreground pixels, and true nega-
tive (TN) denotes background pixels classified correctly. TP, FN, FP, and TN are counted
pixel-by-pixel, and when evaluating vessel segmentation results, we only count the pixels
inside the field of view. To calculate these evaluation metrics, we select the equilibrium
point (the closest point between Pr and Re) of the Pr–Re curve to binarize probability maps.

4.4. Comparison with State-of-the-Art Methods

To evaluate the effectiveness of the LightEyes, we employed experiments on the lesion
segmentation and the vessel segmentation. Moreover, the LightEyes was verified on two
kinds of lesions, including the microaneurysm and the hard exudate.

4.4.1. Lesion Segmentation

We compare our LightEyes with several state-of-the-art lesion segmentation methods:
HED [7], FCRN [13], L-Seg [8], and LWENet [9]. The performance of these methods and
the LightEyes on lesion segmentation are summarized in Table 4, where the performance
of HED and FCRN are reported in [8,9]. We can observe that the LightEyes outperforms
other models in terms of all metrics. Moreover, on EX segmentation, the LightEyes shows
superior performance to three models, namely, FCRN, L-Seg, and LWENet, which are
specifically designed for fundus lesion segmentation.

We conclude that the LightEyes has the following advantages on fundus lesion segmen-
tation over state-of-the-art approaches. (1) The LightEyes achieves the best segmentation
performance on all datasets. In the LightEyes, less detailed information is lost due to
a large receptive field obtained by stacking multiple convolutional layers and one pool-
ing operation. As a result, the LightEyes achieves much higher Se than HED and L-Seg.
From Figure 4, we can observe that the segmentation maps of the LightEyes are much
finer compared with HED. Compared with LWENet, they contain too many FNs and the
boundaries are not clear. (2) The inference speed of the LightEyes is the fastest due to
its low computation cost and simple architecture. (3) Our proposed LightEyes achieves
superior performance with the least number of parameters. Specifically, the number of
parameters of LightEyes is only 0.25% of VGGNet-based models, namely, HED and L-Seg.
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Compared with a lightweight network, LWENet, our method also behaves better in model
size. (4) LightEyes is the only model trained from scratch. No pretraining is required,
which means that the LightEyes can achieve good segmentation performance using only
dozens of annotated fundus images.

Table 4. Comparison of the LightEyes and other models on lesion segmentation (fps = 1/ti, where ti

is the inference time (exudate IO) of the model when the input image size of the model is 960 × 1440).

Model Pre-Train #Params(M) fps
MA (IDRiD) EX (IDRiD) EX (e-ophtha EX)

Pr Re F1 Pr Re F1 Pr Re F1

HED [9] Y 14.3 5.9 0.4291 0.4799 0.4474 0.7414 0.7618 0.7515 0.5049 0.5727 0.5336
FCRN [9] Y 22.5 7.1 0.3542 0.3312 0.3423 0.6018 0.6862 0.6412 0.3807 0.5073 0.4326
L-Seg [8] Y 14.3 5.9 0.4677 0.4720 0.4698 0.7436 0.7479 0.7457 – – –

LWENet [9] Y 1.9 11.1 0.4221 0.4162 0.4191 0.7826 0.7803 0.7815 0.4812 0.5147 0.4960

LightEyes N 0.036 14.3 0.4960 0.4936 0.4948 0.7940 0.7933 0.7937 0.5409 0.5424 0.5417

– : Not Reported.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4. Lesion segmentation binary maps of the LightEyes and other methods (TPs are marked as
black, FPs are marked as red, and FNs are marked as green). The first and the second column denote
EX segmentation on the IDRiD dataset, and the third row denotes MA segmentation on the IDRiD
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datasets. (a) fundus image (IDRiD). (b) fundus image (e-ophtha EX). (c) fundus image (IDRiD).
(d) ground truth (EX). (e) ground truth (E1). (f) ground truth (M1). (g) HED (F1 = 0.8153, JI = 0.6881).
(h) HED (F1 = 0.7645, JI = 0.6192). (i) HED (F1 = 0.4950, JI = 0.3280). (j) LWENet (F1 = 0.8396,
JI = 0.7236). (k) LWENet (F1 = 0.7104, JI = 0.5529). (l) L-Seg (F1 = 0.5367, JI = 0.3668). (m) LightEyes
(F1 = 0.8433, JI = 0.7289). (n) [LightEyes (F1 = 0.7827, JI = 0.6457). (o) LightEyes (F1 = 0.6177,
JI = 0.4468).

At last, the precision–recall curves of LightEyes in the segmentation of hard exudate,
microaneurysms, hemorrhage, and microaneurysms over the IDRiD dataset are visualized
in Figure 5.
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Figure 5. P–R curves for hard exudate (EX), hemorrhage (HE), microaneurysms (MA), and soft
exudate (SE) on IDRiD dataset.

4.4.2. Vessel Segmentation

We compare the LightEyes with other state-of-the-art vessel segmentation methods
on the DRIVE, CHASE_DB1, and STARE datasets, and the results are shown in Tables 5–7.
Meanwhile, Table 8 shows detailed comparisons of the LightEyes and other methods.

As we can see from Table 5, the LightEyes achieves the best vessel segmentation
performance among all image-level models, namely, DRIU and BTS-DSN. Compared with
patch-level models, the LightEyes shows competitive performance with three-stage FCN,
MS-NFN, and DUNet. Although the segmentation performance of the LightEyes is worse
than that of FCN [18], the fps of the LightEyes is 100× that of FCN. As shown in Table 6,
on the CHASE_DB1 dataset, the LightEyes achieves the highest accuracy compared with
other methods, whether patch-level or image-level. Moreover, the fps of the LightEyes is
over 900× that of DUNet.
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Table 5. Segmentation results of vessel on the DRIVE dataset (best results shown in bold).

Input Model Se Sp Acc AUC JI fps

Image
DRIU [32] 0.7855 0.9799 0.9552 0.9793 0.6904 15.1

BTS-DSN [21] 0.7800 0.9806 0.9551 0.9796 0.6884 14.3
LightEyes 0.7896 0.9805 0.9562 0.9796 0.6965 51.3

Patch

Three-stage FCN [29] 0.7631 0.9820 0.9538 0.9750 0.6793 –
MS-NFN [19] 0.7844 0.9819 0.9567 0.9807 0.6978 0.1

FCN [18] 0.8039 0.9804 0.9576 0.9821 0.7087 0.5
DUNet [22] 0.7963 0.9800 0.9566 0.9802 0.7003 0.07

Vessel-Net [46] 0.8038 0.9802 0.9578 0.9821 0.7077 –
– : Not Reported.

Table 6. Segmentation results of vessel on the CHASE_DB1 dataset (best results shown in bold).

Input Model Se Sp Acc AUC JI fps

Image BTS-DSN [21] 0.7888 0.9801 0.9627 0.9840 0.6579 11.7
LightEyes 0.7709 0.9841 0.9647 0.9829 0.6651 19.6

Patch

Three-stage FCN [29] 0.7641 0.9806 0.9607 0.9776 0.6399 –
MS-NFN [19] 0.7538 0.9847 0.9637 0.9825 0.6538 –
DUNet [22] 0.8155 0.9752 0.9610 0.9804 0.6534 0.02

Vessel-Net [46] 0.8132 0.9814 0.9661 0.9860 0.6857 –
– : Not Available.

Table 7. Segmentation results of vessel on the STARE dataset (best results shown in bold).

Input Model Se Sp Acc AUC JI fps

Image

DeepVessel [42] 0.7412 – 0.9585 – – –
BTS-DSN [21] 0.8201 0.9828 0.9660 0.9872 0.7147 10.6

DRIU [32] 0.8036 0.9845 0.9658 0.9773 0.7097 11.6
LightEyes 0.7830 0.9864 0.9653 0.9820 0.7012 43.5

– : Not Available.

Table 8. Comparison of proposed method and other vessel segmentation models (in the table,
fps = 1/ti, where ti is the forward propagation time of a single image with size 584 × 565).

Model Input Pre-Train Pre-Process Post-Process #Params (M) fps
Acc

DRIVE CHASE_DB1 STARE

Three-stage FCN [29] patch No Yes Yes 20.4 – 0.9538 0.9607 –
Vessel-Net [46] patch No Yes Yes – – 0.9578 0.9661 –
MS-NFN [19] patch No Yes Yes 0.4 0.1 0.9567 0.9637 –
DUNet [22] patch No Yes Yes 0.9 0.07 0.9566 0.9610 –

FCN [18] patch No Yes Yes 0.2 0.5 0.9576 – –
DRIU [32] image Yes No No 7.8 15.1 0.9552 – 0.9658

BTS-DSN [21] image Yes No No 7.8 14.3 0.9551 0.9627 0.9660
MobileNet-Fundus image Yes No No 0.27 43.5 0.9518 0.9560 0.9473

LightEyes image No No No 0.036 51.3 0.9562 0.9647 0.9653
– : Not Reported.

We can observe from Table 8 that the LightEyes is the only image-level segmentation
model that does not require pretraining, preprocessing, and postprocessing. For patch-
level models, they need preprocessing to split the raw image into a few patches, and
postprocessing is needed to reconstruct vessel maps. As a result, they segment a fundus
image in the slow speed. For the LightEyes, these additional processes are not required.
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Meanwhile, the LightEyes shows big advantages in speed. Compared with MS-NFN and
DUNet, the LightEyes achieves comparable performance with over 500 × speed.

Meantime, we can observe from Table 8 that LightEyes achieves comparable perfor-
mance with the minimum number of parameters. Specifically, the number of parameters of
LightEyes is only 0.46% of VGGNet-based models, namely, DRIU and BTS-DSN.

At last, segmentation maps of the LightEyes are visualized in Figure 6. As can be seen,
the proposed method could detect both thin and thick vessels.

(a) (b) (c) (d) Acc = 0.9670, JI = 0.7665

(e) (f) (g) (h) Acc = 0.9432, JI = 0.6499

(i) (j) (k) (l) Acc = 0.9728, JI = 0.6967

(m) (n) (o) (p) Acc = 0.9571, JI = 0.5756

Figure 6. Examples of the best and worst vessel segmentation results by the proposed the LightEyes
on images from the DRIVE and CHASE_DB1 datasets. The first and second rows correspond to the
highest and lowest accuracy on the DRIVE, and the third and fourth rows correspond to the highest
and lowest accuracy on the CHASE_DB1. From column 1 to 4: original fundus images (a,e,i,m),
ground truth (b,f,j,n), probability maps (c,g,k,o) and binary maps (d,h,l,p).

4.5. Comparison with MobileNet

We compare the segmentation performance of the LightEyes with MobileNet [30],
which is designed specificity for mobile devices.
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In our experiments, we designed MobileNet-Fundus for fundus segmentation. The
encoder of the MobileNet-Fundus is the first of four stage operations of the MobileNet, and
its decoder is similar to LightEyes, i.e., three deep supervision losses at different stages
and weighted feature fusion. For fair comparison, we use the same loss function, training
samples, and optimization method. The results are summarized in Tables 9 and 10.

We can observe from these tables that LightEyes achieves much better segmentation
performance on all experiments; in particular, the sensitivity and F1-score of the LightEyes
are much higher than these of the MobileNet-Fundus, and this means that the LightEyes can
detect more thin vessels and small lesions. Moreover, the inference speed of the LightEyes
is faster than the MobileNet-Fundus on the DRIVE and STARE datasets. Although the
inference speed of the MobileNet-Fundus is faster than LightEyes on the IDRiD dataset, the
architecture of the MobileNet-Fundus is unfriendly to small microaneurysms segmentation
since it is essential to keep high resolution of the feature maps in the encoder.

Moreover, we can observe from Table 8 that the number of parameters of LightEyes
is one-eighth of that of MobileNet-Fundus, while the segmentation accuracy is over 1.8%
higher than MobileNet-Fundus. In summary, the proposed LightEyes shows better seg-
mentation performance and inference speed than MobileNet-Fundus and LWENet.

Table 9. Comparison with MobileNet on vessel segmentation (Best results are bold).

Dataset Model Se Sp Acc AUC JI fps

DRIVE MobileNet-Fundus 0.6922 0.9772 0.9518 0.9570 0.5986 43.5
LightEyes 0.7896 0.9805 0.9562 0.9796 0.6965 51.3

CHASE_DB1 MobileNet-Fundus 0.7006 0.9817 0.9560 0.9722 0.5922 25.0
LightEyes 0.7709 0.9841 0.9647 0.9829 0.6651 19.6

STARE MobileNet-Fundus 0.6522 0.9816 0.9473 0.9604 0.5633 37.6
LightEyes 0.7830 0.9864 0.9653 0.9820 0.7012 43.5

Table 10. Comparison with MobileNet on lesion segmentation (Best results are bold).

Lesion Model Pr Re F1 JI fps

MA MobileNet-Fundus 0.4072 0.4040 0.4056 0.2544 19.1
LightEyes 0.4960 0.4936 0.4948 0.3287 14.3

EX(IDRiD) MobileNet-Fundus 0.7418 0.7381 0.7400 0.5872 19.1
LightEyes 0.7940 0.7933 0.7937 0.6579 14.3

4.6. Performance on the Edge Devices

We took experiments on three edge devices: Cambricon-1A, Cambricon-MLU100, and
Cambricon-MLU270.

Cambricon-1A chip is a mobile edge device specially for deep learning, which was
launched by Cambrian in 2017. It has the characteristics of high performance, low power
consumption, and small area. The chip can be widely used in all kinds of intelligent
terminals, including smart phones, security monitoring, and so on. Cambricon-1A has the
highest working frequency of 1 GHZ, the maximum power consumption of about 18 W,
the peak operation speed of 3 TOPS, and the maximum support of 2 GB DDR3 memory.
Cambricon-MLU270 is a cloud acceleration chip for artificial intelligence applications. Its
maximum power consumption is about 70 W, and the TOPS for int8 is about 128. In
addition, it is equipped with 16 GB DDR4 memory.

The performances of the LightEyes and other models on Cambricon-1A are summa-
rized in Table 11. We can observe that VGGNet-based segmentation models cannot handle
large resolution images (1280× 1280) due to large memory consumption, but the LightEyes
could process these images. Moreover, the speed of the LightEyes in processing lower
resolution images (960 × 999) is two to three times that of VGGNet-based models. For



Sensors 2022, 22, 3112 16 of 21

ResNet-based networks, such as FCRN, the speed is about the same as the LightEyes.
However, the segmentation performance of FCRN is much lower than the LightEyes or
even LightEyes_A1, whose speed is three times that of FCRN. Moreover, we can observe
that segmenting a fundus image with size 712 × 1072 or 960 × 999 takes up to 2 s, and this
could meet clinical needs of real-time processing.

When segmentation models are deployed to Cambricon-MLU270, we can observe
that VGG-based models show the fastest inference speed and ResNet-based models show
the slowest inference speed, and the proposed LightEyes only behaves slightly better
than FCRN. We think the reason is that the dense convolution operations have been well
accelerated on the MLU270, while for ResNet with skip connections, the acceleration effect
is not as obvious as the VGGNet.

Table 11. Fps of the LightEyes and other models on Cambricon-1A and Cambricon-MLU270.

Hardware Resolution
VGGNet-Based ResNet-Based

LightEyesLightEyes_A3LightEyes_A2LightEyes_A1
L-SegBTS-DSN FCRN

Cambricon-1A

584 × 565 0.5 0.5 1.7 1.6 2.6 3.2 4.2
712 × 1072 0.2 0.2 0.7 0.7 1.2 1.4 1.9
960 × 999 0.2 – 0.5 0.6 0.9 1.1 1.6

1280 × 1280 – – 0.3 0.3 0.6 0.6 0.9

Cambricon-MLU270

584 × 565 7.9 7.3 3.4 3.9 4.5 6.4 9.5
712 × 1072 3.1 2.8 1.5 1.7 1.9 2.8 4.1
960 × 999 2.6 2.2 1.2 1.3 1.5 2.2 3.2

1280 × 1280 1.5 1.3 0.7 0.8 0.9 1.3 1.9

Cambricon-MLU100

584 × 565 1.9 1.7 4.8 4.8 6.0 6.3 8.5
712 × 1072 0.8 0.6 2.4 2.1 2.6 2.8 3.8
960 × 999 0.7 0.5 1.9 1.7 2.1 2.2 3.0

1280 × 1280 0.4 0.3 1.1 1.0 1.1 1.2 1.7
– : out of memory.

5. Discussion
5.1. Ablation Study on the Number of Filters

We trained the LightEyes with different number of convolutional filters to show that
more filters have little effect on the improvement of segmentation performance, and it
may cause training failure. We can observe from Table 12 that when the number of filters
increased from 16 to 64, the model failed to converge on all experiments. We think that this
may be due to the number of parameters increasing sharply (over 20×), while the number
of training images remains unchanged. Moreover, the AUC increases slightly or even
decreases (from 0.9829 to 0.9805) on the CHASE_DB1 dataset. Moreover, compared with
LightEyes, the number of parameters and the inference speed could be further improved
when NC was set to 8. However, if NC was set to 4, the segmentation performance
decreased dramatically, but the network can still learn discriminative features. This part of
the experiment validates our design principle to choose a small number of convolutional
filters, and the optimal number may depend on the specific task.
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Table 12. Segmentation results when varying the number of filters in LightEyes (NC denotes the
number of convolutional filters per convolution layer in the backbone of the LightEyes, and we use
AUC/F1-score to evaluate vessel/lesion segmentation maps). Best results are bold.

Datasets NC = 2 NC = 4 NC = 8 LightEyes NC = 32 NC = 48 NC = 64

DRIVE – 0.9734 0.9794 0.9796 0.9796 0.9797 –
CHASE_DB1 0.9535 0.9722 0.9798 0.9829 0.9818 0.9805 –

STARE 0.9359 0.9744 0.9798 0.9820 0.9863 0.9843 –
IDRiD (EX) 0.6741 0.7775 0.7868 0.7937 – – –
IDRiD (MA) – 0.4769 0.4956 0.4948 – – –

– : failed to train.

5.2. Ablation Study on the Network Depth

We trained the LightEyes with different network depth to explore the suitable network
depth on the segmentation of fundus structures. We stacked a series of convolutional
operations with 3 × 3 kernel directly, and each convolutional layer contains 16 filters and is
followed by a ReLU operation. At the last convolutional layer, a convolutional layer with
1 × 1 kernel was performed to generate segmentation maps, which was further fed into
the loss function. The experimental results are summarized in Table 13. We can observe
that the optimal network depth depends on the segmentation task, such as, for the vessel
segmentation task, on average, 24 layers are more appropriate. However, for the lesion
segmentation task, a deeper network will fail training due to the increase in the amount of
parameters. Meanwhile, we conclude that it is possible to train a deep network with no
downsampling for the segmentation of fundus structures, and this kind of network could
also achieve comparable performance.

Table 13. Segmentation results when varying the network depth (NL denotes the number of convolu-
tional layers in the backbone of the LightEyes, and we use AUC/F1-score to evaluate vessel/lesion
segmentation maps). Best results are bold.

Datasets NL = 6 NL = 12 NL = 18 NL = 24 NL = 30 NL = 36

DRIVE 0.9703 0.9746 0.9754 0.9770 0.9752 0.9735
CHASE_DB1 0.9539 0.9739 0.9751 0.9763 0.9737 0.9769

STARE 0.9419 0.9650 0.9634 0.9729 0.9781 0.9681
IDRiD (EX) 0.7452 0.7610 0.7849 0.7689 – –
IDRiD (MA) 0.4618 0.4711 0.4669 – – –

– : failed to train.

5.3. Performance of Auxiliary Losses

The segmentation performance of multiple receptive fields is shown in Table 14. We
can observe from Table 14 that when the receptive field increases from 33 × 33 (auxiliary
loss1) to 51 × 51 (auxiliary loss2), the performance is improved significantly in terms of
lesion segmentation and vessel segmentation. However, when the performance of auxiliary
loss2 is compared with auxiliary loss3, the increase in segmentation performance becomes
smaller. We think a 51 × 51 receptive field is adequate for lesion segmentation and vessel
segmentation. In addition, we can observe that the LightEyes achieves the highest metrics
compared with LightEyes_A1, LightEyes_A2, and LightEyes_A3, which demonstrates the
effectiveness of feature fusion. Meanwhile, we find that the performance of LightEyes_A1
is not bad, especially on lesion segmentation, which means it can also be deployed to
mobile sides with faster speed.
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Table 14. Comparison of segmentation results and the number of parameters (Fps was measured
under input with size 712 × 1072 and 584 × 565 on the IDRiD and DRIVE). Best results are bold.

Model Params
MA EX(IDRiD) DRIVE

Pr Re F1 fps Pr Re F1 Se Sp Acc AUC fps

LightEyes_A1 28369 0.4864 0.4797 0.4830 36.4 0.7533 0.7561 0.7547 0.7769 0.9800 0.9540 0.9760 79.4
LightEyes_A2 33625 0.4913 0.4973 0.4943 27.8 0.7833 0.7855 0.7844 0.7849 0.9808 0.9558 0.9788 58.5
LightEyes_A3 35377 0.4903 0.4935 0.4919 27.0 0.7937 0.7932 0.7934 0.7783 0.9814 0.9555 0.9788 56.2

LightEyes 35551 0.4960 0.4936 0.4948 25.6 0.7940 0.7933 0.7937 0.7896 0.9805 0.9562 0.9796 51.3

5.4. Less Training Samples

In this section, we will explore how the LightEyes behaves when only part of the
images sampled from the training set are involved in training. We employed two groups
of experiments; one is the EX segmentation on the IDRiD dataset, and the other one is the
vessel segmentation on the DRIVE dataset. On the IDRiD dataset, we sampled 9, 18, 27,
36, and 45 images for experiments, and we sampled 5, 10, and 15 images on the DRIVE
dataset. The experimental results are summarized in Tables 15 and 16. We can observe that
when only 27 (50%) images participate in training, the LightEyes obtains an F1-score of
0.7847, which is very close to 0.7937 (100%). For vessel segmentation, the LightEyes also
behaves well when using only five images, as can be observed in Table 16. This part of the
experiment shows that even with only a small amount of annotated images, our model can
learn well and obtains good generalization performance.

Table 15. The performance of the LightEyes when varying the number of training samples on the
hard exudate segmentation task (IDRiD dataset).

Proportion Pr Re F1

16.7%(9/54) 0.7483 0.7488 0.7486
33.3%(18/54) 0.7771 0.7762 0.7766
50%(27/54) 0.7842 0.7852 0.7847

66.7%(36/54) 0.7841 0.7838 0.7839
83.3%(45/54) 0.7843 0.7820 0.7831
100%(54/54) 0.7940 0.7933 0.7937

Table 16. The performance of the LightEyes when varying the number of training samples on the
vessel segmentation task (DRIVE dataset).

Proportion Se Sp AUC

25%(5/20) 0.7713 0.9799 0.9757
50%(10/20) 0.7758 0.9810 0.9779
75%(15/20) 0.7796 0.9806 0.9784

100%(20/20) 0.7896 0.9805 0.9796

5.5. Performance on Optic Disc Segmentation

Previous experiments over fundus vessels and lesions reveal that the proposed method
shows competitive performance compared with several deep segmentation models. In this
section, experiments were conducted on the segmentation of optic discs (OD), which usually
have much larger sizes than fundus vessels and lesions. The Messidor [47] dataset was used
in the experiments. Almazroa et al. [48] annotated the optic disc boundary of 460 fundus
images in the Messidor dataset. We used 400 images for model training and the remaining
60 images for testing. In addition, Dice index was used for performance evaluation. The
segmentation performance of the LightEyes and other models is summarized in Table 17.
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As can be seen, the proposed LightEyes has a higher Dice index than DeepLab-v2, but
it is lower than UNet. The reason behind this may be that LightEyes has insufficient ability
in learning high-level features, since the motivation of LightEyes is preserving spatially
detailed information to boost the segmentation of tiny objects.

Table 17. The performance of the LightEyes and comparison with other methods on the Messidor
dataset.

Models DeepLab-v2 [33] UNet [49] LightEyes

Dice Index 0.9197 0.9567 0.9358

6. Conclusions

In this paper, we present a lightweight model, called the LightEyes, for the segmen-
tation of fundus images on the mobile side. Considering the small size of fundus lesions
and other structures, we design a high-resolution encoder, and each convolutional layer
has less than 16 filters to decrease training difficulty since no pretraining model is avail-
able. Compared with other methods in lesion segmentation and vessel segmentation, the
LightEyes shows comparable, or even superior, performance in terms of segmentation
accuracy, inference speed, and memory usage. Specially, in fundus vessel segmentation, the
speed of the LightEyes is up to 3–700× faster than other models. Meantime, the LightEyes
achieves better segmentation accuracy than other deep models. Compared with MobileNet,
the proposed LightEyes achieves higher segmentation accuracy with very close, or even
faster, inference speed, achieving better accuracy–speed trade-off. Moreover, we deployed
the LightEyes to mobile devices. Results show that the LightEyes could not only process
large-resolution images, but also show high segmentation accuracy. The source code will
be released at https://github.com/guomugong/LightEyes (accessed on 1 March 2022).
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