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Abstract: Intracellular peptides are produced by proteasomes following degradation of nuclear,
cytosolic, and mitochondrial proteins, and can be further processed by additional peptidases
generating a larger pool of peptides within cells. Thousands of intracellular peptides have been
sequenced in plants, yeast, zebrafish, rodents, and in human cells and tissues. Relative levels
of intracellular peptides undergo changes in human diseases and also when cells are stimulated,
corroborating their biological function. However, only a few intracellular peptides have been
pharmacologically characterized and their biological significance and mechanism of action remains
elusive. Here, some historical and general aspects on intracellular peptides’ biology and pharmacology
are presented. Hemopressin and Pep19 are examples of intracellular peptides pharmacologically
characterized as inverse agonists to cannabinoid type 1 G-protein coupled receptors (CB1R), and
hemopressin fragment NFKF is shown herein to attenuate the symptoms of pilocarpine-induced
epileptic seizures. Intracellular peptides EL28 (derived from proteasome 26S protease regulatory
subunit 4; Rpt2), PepH (derived from Histone H2B type 1-H), and Pep5 (derived from G1/S-specific
cyclin D2) are examples of peptides that function intracellularly. Intracellular peptides are suggested
as biological functional molecules, and are also promising prototypes for new drug development.

Keywords: intracellular peptides; proteasome; epilepsy; endocannabinoid; cancer; drug discovery;
obesity; insulin resistance

1. Introduction

Peptides are produced by cells from proteins synthesized specifically for this purpose, or as
byproducts of protein metabolism. Many of the products formed in the first case are known cellular
modulating agents that contribute to the maintenance of homeostasis of living organisms. These latter
peptides are frequently designated neuropeptides or hormonal peptides such as insulin, vasopressin,
opioid peptides, SAAS peptides, corticotrophin, neurotensin, among many others [1]. In the second
case, in compartments other than those specialized in protein degradation, specific cellular mechanisms
such as protein ubiquitination induce proteins to limited digestion generating intermediate peptides [2].
Cells can also produce peptides by directly translating small mRNA sequences [3,4]. However, most
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of the endogenous bioactive peptides identified and investigated to date come from proteolytic
processing or degradation of proteins, compared to peptides generated directly from small mRNAs
translation. Antigenic peptides are another well-known class of peptides that escape further lysosomal
and extra-lysosomal proteolytic degradation, and are presented at the cell surface associated to either
major histocompatibility complex (MHC) class I (MHC-I) or class II (MHC-II). It is quite fascinating
that every self-protein is represented at the cell surface by a single peptide of 9–12 amino acids bound to
MHC-I [5–8]. Therefore, cells have multiple pathways to generate functional peptides and mechanisms
to select specific peptides to escape complete degradation.

2. Intracellular Peptides—A Brief Historical Retrospective

To the best of our knowledge, the first descriptions of intracellular peptides appeared in
the scientific literature in 1957 and 1958, and at that time they were described in Gram-negative
bacteria Pseudomonas hydrophila and yeast Torula utilis, without any findings on their biological
or pharmacological function [9,10]. Two decades later, one functional intracellular peptide named
“diazepam binding inhibitor” (DBI; TVGDVNTDRPGLLDL) derived from acyl-CoA-binding protein
was identified, and its biological activity as a GABA receptor agonist was characterized [11,12]. Later,
a yeast Saccharomyces cerevisiae intracellular peptide termed “a-Factor” was described and characterized
as a mating pheromone [13]. This a-Factor mating pheromone is produced within the cytoplasm by a
series of steps involving lipid attachment (prenylation), N-terminal proteolytic cleavages by Ste24p
and Axl1p, and transport of the cytosol into the extracellular space by Ste6p [13]. After secretion by an
unconventional secretory pathway, a-Factor binds to a specific receptor (Ste3p) and stimulates mating.

Lately, our group used site-directed mutagenesis to produce catalytically inactive forms of
oligopeptidases thimet-oligopeptidase (EC 3.4.24.15; THOP1) and neurolysin (EC 3.4.24.16; Nln),
which were used in a substrate-capture assay, aiming to identify natural substrates for these
oligopeptidases [14,15]. These original assays identified a previously unknown group of 13 intracellular
peptides [14]. The first intracellular peptide characterized to have pharmacological activity was
hemopressin (PVNFKFLSH), which is a highly conserved peptide sequence derived from hemoglobin
alpha-chain [16]. Further use of substrate-capture assay allowed the isolation of eight additional
and novel intracellular peptides from mouse adipose tissue, which were shown to contain putative
post-translational modification sites [17]. Two of these intracellular peptides (LVVYPWTQRY and
VVYPWTQRY) containing a putative protein kinase C (PKC) phosphorylation site competitively
inhibited the phosphorylation of a standard PKC substrate, and were suggested to participate in the
metabolic changes observed in angiotensin-converting enzyme transgenic mice [17]. Furthermore,
phosphorylation of peptides that were degraded by oligopeptidases THOP1 and Nln led to reduced
degradation, whereas phosphorylation of peptides that interacted as competitive inhibitors of these
enzymes altered only the K(i)’s [18]. Taken together, these data suggested for the first time that
extra-lysosomal proteolysis by proteasomes and oligopeptidases could produce novel functional
peptides, which may modulate protein interactions within cells [19]. Further studies using electron
spray mass spectrometry and peptidomics techniques corroborated these initial findings, and thousands
of novel intracellular peptides have now been identified in plants [20,21], yeast [22], zebrafish [23],
rodents [24–26], human cell lines [27–29], and human tissues [30,31]. It is worth to mention that MHC
proteins and immunoproteasomes emerge later in evolution than regular proteasomes [32]. Therefore,
intracellular peptides appear in evolution earlier than MHC-I antigens, and their evolutionary presence
among species, from plants to humans, corroborates their biological significance. On the other hand,
pharmacological activities have been shown for several intracellular peptides (Table 1).
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Table 1. Intracellular peptides with characterized pharmacological activities.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

Hemopressin PVNFKFLSH Hemoglobin alpha-chain

First intracellular peptide identified
using the substrate-capture assay. Has
hypotensive action in anesthetized rats if
administered intravenously or intra
arterially. Was found to bind CB1R
receptor as an inverse agonist and to
have oral activity in rats and mice with
antinociceptive action in hyperalgesia
models. Also, orally administrated is
capable to reduce appetite in
experimental rat and mouse models. It
has potent activity inducing myelination.

Bind CB1R receptor as inverse agonist
(EC50 = 0.35 nM); increases adenylyl
cyclase activity in rat striatal membranes.
The short hemopressin sequence
PVNFKF was shown to have inverse
agonist activity on CB1R receptors.

[14,25,33–70]

VD and
RVD-hemopressin RVDPVNFKFLSH Hemoglobin alpha-chain

Found as the endogenous hemopressins,
have CB1R receptor agonist activity in
opposition to inverse agonist activity of
hemopressin. Also described as negative
allosteric modulator of CB1R receptors.

Found in mouse blood. Increase
cannabinoid 1 and 2 receptor-mediated
intracellular Ca2+ levels in HEK-293 cells;
effect is blocked by SR141716. Induce
neurite outgrowth in Neuro 2A cells.
Several variants of RVD-hemopressin
retain CB1R pharmacological activity.

[35–37]
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Table 1. Cont.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

NFKF NFKF Hemoglobin alpha-chain

Hemopressin (PVNFKFLSH; HP) and its
smallest CB1R active fragment NFKF are
both orally active, and delays symptoms
and seizures of pilocarpine-induced
seizures in mice. Orally administrated
NFKF is 100 times more potent than
cannabidiol in delaying the first seizure
induced by pilocarpine in mice. Orally
administrated NFKF is more efficient in
protecting mice from death after
pilocarpine-induced seizures. NFKF has
the advantage of being more functionally
stable than hemopressin after freezing
and heating.

Molecular docking suggests that NFKF
has a better Goldscore for binding to
CB1R than AM6538, cannabidiol, and
rimonabant. In vivo assays show that
orally administrated NFKF is very
efficient in preventing seizures and its
symptoms in pilocarpine-induced mice
model. NFKF administered orally is a
potent cannabinoid for treating epilepsy
seizures and has economic advantages
over cannabidiol use. In vivo assays
show that orally administrated
NFKF-derived sequence NFKL has
similar properties compared to NFKF,
whereas NFK, FKL, NF, FK, KF, or KL
shown no pharmacological activity in
preventing or altering seizures and its
symptoms in pilocarpine-induced mice
model (data not shown).

Original data,
presented herein.

Pep19 DIIADDEPLT None (synthetic
non-natural peptide)

The original intracellular peptide is
derived from peptidyl-prolyl cis–trans
isomerase A (DITADDEPLT), and was
rationally modified in specific amino
acids to generate pep19 (DIIADDEPLT),
which, compared to the natural
intracellular peptide, shows a better
inverse agonist activity binding to CB1R
receptors, with a lack of undesired CNS
effects. Changes in Pep19 amino acid
sequence strongly affect its specificity
and CB1R pharmacological properties.
Pep19-induced uncoupling-protein 1
expression in both white adipose tissue
and 3T3-L1 differentiated adipocytes
activates pERK1/2 and AKT signaling
pathways. Uncoupling-protein 1
expression induced by Pep19 in 3T3-L1
differentiated adipocytes is blocked by
AM251, a CB1R receptor antagonist.

In vivo and in vitro inverse agonist of
CB1R receptors; has the pharmacological
advantage of not having undesired CNS
cannabinoid activity; bind CB1R receptor
as inverse agonist (EC50 = 0.49 nM);
orally administrated in rats reduces
adiposity index and body weight, and
improves several metabolic parameters
including reduction in the glucose,
triacylglycerol, cholesterol, and blood
pressure, without altering heart rate in
obese rats.

[35,36]; Patent
granted in USA
(US9796760) and
Europe (EP2878306).
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Table 1. Cont.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

FE2 PGANAAAAKIQASFR Neurogranin

Modulates AT1 and β1/2-adrenergic
G-protein coupled receptors signal
transduction in CHO and HEK293 cells.
The mechanism of action likely involves
competition to protein kinase C’s natural
substrates, and binding to specific
proteins or protein complex including
dynamin 1, alpha-adaptin A2, alpha1-
and beta2c-tubulin, vesicular fusion
protein NSF, Rab GDP dissociation
inhibitor, and several 14-3-3 isoforms.

Only if coupled to cell-penetrating
peptide through a Cys–Cys bond that
dissociate from the intracellular peptide
upon internalization in HEK293 and
CHO-S cells, this peptide at 80 µM
concentration potentiates both
angiotensin II and isoproterenol agonist
action. The high concentration needed
for pharmacological activity is probably
due to the high degradation ratio of the
free intracellular peptide, after it is
released from cell-penetrating peptide
into the cytosol.

[71]

FE3 SSGAHGEEGSARIWKA Cytochrome-c oxidase

Modulates AT1 and β1/2-adrenergic
G-protein coupled receptors’ signal
transduction in CHO and HEK293 cells.
The mechanism of action is not related to
competition to protein kinase C, whereas
it binds to specific proteins or protein
complex including dynamin 1, alpha1-
and beta-tubulin, vesicular fusion protein
NSF, amphyphisin 1, and alpha-adaptin
C. It was observed to increase the
interaction of both calmodulin and 14-3-3
epsilon with mice brain proteins.

Only if coupled to cell-penetrating
peptide through a Cys–Cys bond that
dissociate from the intracellular peptide
upon internalization in HEK293 and
CHO-S cells, this peptide at 80 µM
concentration potentiates both
angiotensin II and isoproterenol agonist
action. The high concentration needed
for pharmacological activity is probably
due to the high degradation ratio of the
free intracellular peptide, after it is
released from cell-penetrating peptide
into the cytosol.

[71,72]
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Table 1. Cont.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

DBI TVGDVNTDRPGLLDL Acyl-CoA-binding protein

Intracellular peptide originally described
as an agonist of benzodiazepine
receptors and termed “diazepam-binding
inhibitor” (DBI); facilitates the transport
of glucose stimulated by insulin in
3T3-L1 adipocytes both in regular and
insulin-resistant 3T3L1 differentiated
adipocytes; binds to heat shock protein 8
only in epididymal adipose tissue
extracts obtained from obese rats that
were fed a Western diet.

DBI is a competitive inhibitor for the
binding of [3H] diazepam to GABA
receptors with a Ki of 4 µM
concentration. DBI’s relative
concentration was found to increase in
the epididymal adipose tissue extracted
from obese rats that were fed a Western
diet, compared to non-obese rats that
were fed a control diet. At concentrations
of 0.1–1 nM, the peptide potentiated
insulin-induced glucose uptake in 3T3-L1
differentiated adipocytes. DBI has no
effects in glucose uptake in the absence
of insulin or without being cell
internalized through transient cell
permeabilization with CHAPS 0.1%.

[11,73]

LDBI GDVNTDRPGLLDL Acyl-CoA-binding protein

LDBI is a shorter version of DBI lacking
the two N-terminal amino acids. It was
shown to facilitate glucose transport
stimulated by insulin in 3T3-L1
adipocytes, both in regular and
insulin-resistant 3T3L1 differentiated
adipocytes. In addition to heat shock
protein 8, LDBI specifically binds to
additional proteins only in epididymal
adipose tissue extracted from obese rats,
including annexin A6, asporin, ATP
synthase H+ transporting mitochondrial
F1 complex beta polypeptide isoform
CRA_a, complement component 4A,
protein 1 (HMG-1), and Ig gamma-2A
chain C region.

LDBI’s relative concentration was found
to increase in the epididymal adipose
tissue extracted from obese rats that were
fed a Western diet compared to
non-obese rats that were fed a control
diet. At concentrations of 0.1–1 nM, the
peptide potentiated insulin-induced
glucose uptake in 3T3-L1 differentiated
adipocytes. LDBI has no effects in
glucose uptake in the absence of insulin
or without being cell internalized
through transient cell permeabilization
with CHAPS 0.1%.

[73]
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Table 1. Cont.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

VFD-7 VFDVELL Peptidyl-prolyl cis–trans
isomerase

In vitro, using surface plasmon resonance
assay, it was found that the peptide
inhibits the interaction of calmodulin
and 14-3-3 with mice cytoplasmic brain
proteins. It strongly inhibits the
interaction of recombinant THOP1 with
calmodulin at 1 and 10 µM
concentrations; however, VFD7 is not
able to disrupt this interaction after it is
assembled. It stimulates the
unconventional secretion of THOP1 at
10 µM concentration. It increases the
concentration of Ca2+ in a
dose-dependent manner starting at
10 µM concentration.

Intracellular VFD-7 quantification using
MS with isotope labeling suggest that in
HEK293 cells, its intracellular
concentration is 16 ± 3 µM. Treatment of
HEK293 cells with either 0.2 µM of
epoxomicin or carfilzomib 1µM, for 1 h
or 35 min, respectively, reduces more
than 5 times the concentration of VFD7
in HEK293 cells, which may suggest its
participation on clinical benefits obtained
with proteasome inhibitors.

[29,72,74]

AGH AGHLDDLPGALSAL Hemoglobin alpha-chain

Identified in rat brain homogenates
using the substrate-capture assay;
inhibits peripheral hyperalgesia response
through the activation of opioid
receptors.

AGH (10 µ/paw) has peripheral
antinociceptive effects on paw
carrageenan-induced hyperalgesia in
Wistar rats, which was antagonized by
naloxone. However, AGH was neither
observed to bind opioid receptors nor to
have similar opioid analgesic central
effects.

[75]
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Table 1. Cont.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

Pep5 WELVVLGKL Cyclin D2

Identified to increase in G1/S cell cycle of
HeLa cells. Only if coupled to a
cell-penetrating peptide (Pep5-cpp), the
peptide induces cell death in several
tumor cells, and in vivo reduces 50% of
the size of C6 glioblastoma in rat brain.
Pep5-cpp activates caspases 3/7 and 9,
inhibits the phosphorylation of Akt2,
activates p38α and -γ, and inhibits
proteasome activity. N-terminal
tryptophan removal as well as Leu to Ala
substitutions totally abolishes the cell
death activity by Pep5-cpp; the minimal
pharmacological active sequence is
WELVVL. Pep5-cpp also induces cell
death in epimastigotes, trypomastigotes,
and amastigotes forms of Trypanosoma
cruzi parasites responsible for Chagas
disease. At low doses, Pep5-cpp
decreases the percentage of infected cells
without any detectable toxic effects in
mammalian host cells. The infective
form of T. cruzi, i.e., trypomastigotes,
pre-treated with Pep5-cpp was unable to
infect LLC-MK2 cells.

Pep5-cpp (25 µM) cell death was
significantly increased when the peptide
was added at G1/S or S phases of the cell
cycle compared to the effects of the
peptide on asynchronous cells. Pep5-cpp
treatment caused a major disruption of
the stress F-actin fibers’ integrity after
only 4 h of treatment at 25 µM. ERK1/2
phosphorylation is increased following
pep5-cpp treatment in both
asynchronous or synchronized cells;
however, if added to cells synchronized
in S phase, pep5-cpp induces a significant
increase in ERK1/2 phosphorylation that
remains high for more than 4 h. In
mammalian cells, pep5 binds to different
proteins depending of the cell cycle
phases; however, at least two proteins,
plectin and cytosolic cloride channel
(CLIC1), were targeted by pep5 in either
asynchronous or synchronized
MDA-MB-231 cells. In Tripanossoma cruzi,
a different set of specific proteins were
identified to bind pep5, including
calmodulin-ubiquitin-associated protein,
GTPase activating protein, and a
putative protein kinase.

[76–78]
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Table 1. Cont.

Peptide Name Amino Acid Sequence Protein Precursor Pharmacological Activity Level of Evidence Reference(s)

EL28 VGSELIQKY Human 19S ATPase
regulatory subunit 4

Peptide identified after its relative
concentration increased in HeLa cells
following treatment with gamma
interferon. Intracellular peptide activator
of immune proteasome and proliferation
of CD8+.

In vitro, EL28 (50 µM) increased the
chymotrypsin, trypsin, and caspase-like
proteasome activities. In vivo only when
linked to a cell-penetrating peptide, EL28
(100µM) potentiated the ability of
interferon-gamma to stimulate the
expression of the immunoproteasome
β5i subunit, and increase the
proliferation of CD8+ T-cells. The
EL28-cell-penetrating peptide improved
and positively modulated the secondary
IgG anti-bovine serum albumin immune
responsiveness elicited in high
antibody-responder mice.

[79]

PepH SEGTKAVTKYTSSK Histone H2B In Neuro2A cells, PepH bound to a
cell-penetrating peptide (PepH-cpp, 50
µM) showed a protective effect against
cell death. PepH-cpp (10–50 µM)
significantly prevented Neuro2A cells
death induced by lipopolysaccharide.

Decreased in the anterior temporal lobe
of brains of patients with schizophrenia
when compared with healthy individuals
(postmortem). [30]
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3. Intracellular Peptides Generation

One of the crucial questions about intracellular peptides refers to the enzymes involved in their
synthesis and degradation. The major extra-lysosomal proteolytic system ubiquitously distributed
among living organisms is the ubiquitin–proteasome system (UPS). Therefore, UPS was suggested
to be responsible at least for the initial generation of intracellular peptides [19]. Indeed, the use of
epoxomicin (an irreversible proteasome inhibitor) in human embryonic kidney 293T cells (HEK293T)
caused a marked decrease in the levels of the vast majority of intracellular peptides [74]. On the other
hand, treatment with bortezomib, a reversible proteasome inhibitor used in medical practice, causes
increased levels of intracellular peptides in HEK293T and SH-SY5Y cells of human neuroblastoma [80].
A reduction in intracellular peptide levels was observed in a cell model of Huntington’s disease,
which resembles that found after proteasome inhibition [81]. Further studies have tested a wider
variety of irreversible and competitive proteasome inhibitors including carfilzomib, MG132, MG262,
MLN2238, AM114, and clasto-lactacystin-β-lactone [29]. Only MG262 caused a substantial increase
in intracellular peptide levels comparable with the effects of bortezomib, although carfilzomib and
MLN2238 raised the levels of some intracellular peptides [29]. Acting subsequent to the proteasome,
other intracellular peptidases may also be related to the metabolism of intracellular peptides. Potent
inhibitors of tripeptidyl-peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not
substantially alter intracellular peptide levels [29]. A recent review article points to the fact that
proteasomes in the organism are diverse, and that structurally different proteasomes are present not
only in different types of cells, but also in a single cell [82]. Therefore, it is possible that inhibition of
different proteasome pools can cause different effects on generation and degradation of intracellular
peptides. However, it seems evident that proteolytic processing by proteasomes is essential for the
regulation of intracellular peptide homeostasis.

Oligopeptidases THOP1 and Nln were suggested to contribute to increase the diversity of
intracellular peptides. Overexpression of THOP1 in HEK293 cells decreased 5 intracellular peptides by
more than 70% (mean proportions less than 0.3-fold of controls) and another 12 peptides decreased
from 30 to 70% (mean ratios of 0.3–0.69); these peptides represent possible substrates of THOP1
in vivo [27]. In these same conditions, three peptides were increased (mean ratios higher than 1.3) by
overexpression of THOP1, representing possible products in vivo [27]. The concentration of additional
peptides remained unchanged, suggesting that these peptides were neither substrates nor products of
THOP1 [27]. Further studies, using the knockdown of THOP1 by siRNA, confirmed the participation
of this enzyme in the metabolism of intracellular peptides in HEK293T cells [83]. In these latter
analyses, approximately 100 peptides were identified, with 20 peptides increasing in the experimental
samples (ratio ≥ 1.80) representing possible natural substrates of THOP1. Six peptides decreased in the
experimental samples and may represent natural products of THOP1. Eighty-seven peptides were
considered unaltered and thus are neither substrates nor products of THOP1 [83]. Therefore, THOP1
acting downstream of the proteasome is capable of both generating and degrading specific intracellular
peptides [27,83].

Participation of Nln in the metabolism of intracellular peptides was demonstrated in an animal
model of C57BL6 knockout mice for Nln (KO; Nln−/−) [84,85]. Semi-quantitative peptidomics in Nln−/−

brain tissue found that of the 18 identified peptides showing slight changes, 5 are present in secretory
vesicles suggesting that Nln can also metabolize neuropeptides. Three of the identified peptides were
found to be fragments of mitochondrial proteins, and also corroborate previous suggestions that Nln is
relevant for mitochondrial metabolism of peptides. Intracellular peptides from α- and β-hemoglobin
are increased in Nln−/− mouse brain, and decreased after in vitro incubation with recombinant Nln.
In vitro analysis showed that RVD-hemopressin (also known as pepcan12) [37] and VD-hemopressin
(longer hemopressin forms) are less hydrolyzed by Nln than RVDPVNFKLL and VDPVNFKLL (shorter
hemopressin forms). RVD-hemopressin are increased in Nln−/− when compared with the C57BL6
wild-type mice, whereas VD-hemopressin shows no alteration in Nln−/− mice compared with wild-type
mice [84,85]. These data suggest that Nln plays a biological role metabolizing hemopressin-containing
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peptides. In non-neuronal tissues such as skeletal muscle (gastrocnemius), two intracellular peptides
derived from troponin I increased more than twofold, whereas in adipose tissue two different peptides
derived from acyl-CoA-binding protein and hemoglobin alpha subunit increased more than twofold.
In the liver, several endocannabinoid peptides containing the mouse hemopressin sequence decreased
more than twofold. In the soleus muscle, only one peptide derived from the hemoglobin alpha subunit
decreased more than twofold. Together, these data suggest that Nln metabolizes specific intracellular
peptides in both neuronal and non-neuronal tissues [84,85].

The majority of intracellular peptides identified in mouse brain slices remain within cells [54].
However, approximately 15% (50 out of 344 identified) of the intracellular peptides identified
in mouse brain slices can be secreted, including VD-hemopressin and RVDPVNFKL. However,
at least 28 intracellular peptides identified were only found in the secreted media of cultured
mouse brain slices, including hemopressin-derived peptides RVDPVNFKLL and RVDPVNF [54].
These data suggest that extracellular processing of secreted intracellular peptides can increase the
number and complexity of intracellular peptides functions; the secretory mechanism and enzymes
involved in the extracellular processing of intracellular peptides remains unknown [80]. Inhibition
of a mammalian nervous-system-specific membrane proteasome complex with a cell-impermeable
proteasome inhibitor has been shown to block the production of extracellular peptides and to attenuate
neuronal-activity-induced calcium signaling [86]. Thus, it is possible that nervous-system-specific
membrane proteasome complexes could be involved in the secretion of intracellular peptides.

Taken together, proteasomes and the oligopeptidases THOP1 and Nln were proposed to contribute
to intracellular peptide proteolytic processing. Further studies are necessary to investigate additional
peptidases that may contribute to intracellular peptide processing inside and outside the cells.

4. Intracellular Peptides Acting on G-protein Coupled Receptors

Hemopressin (PVNFKFLSH), the first intracellular peptide identified using the substrate-capture
assay, is an inverse agonist of CB1R with antinociceptive action and also the ability to regulate food
intake in animal models [14,33–35,80]. Gomes et al. [35,36] identified amino acid extension variants at
the N-terminal of hemopressin in the brains of mice, which were defined as RVD- and VD-hemopressins.
It is noteworthy that hemopressin-containing peptides (i.e., RVD- and VD-hemopressins) were the
first peptides shown to have CB1R agonist endocannabinoid activities [35]. Subsequent work by
several groups has shown that endogenous hemopressins are preferably RVD- and VD-hemopressins,
although more than 20 peptides containing the hemopressin sequence have been identified in
mouse brain extracts, and at least RVD-hemopressin was suggested to behave as negative allosteric
modulator of CB1R [35,37]. Recently, Hofer et al. [38] have demonstrated the predominant presence of
hemopressins in the adrenal medulla, as well as in catecholaminergic neurons of the rodent central
nervous system, further suggesting their biological and physiological significance as endocannabinoids.
Additional investigations have corroborated the analgesic [87–89] and anorexigenics [90,91] properties
of hemopressins. Xapelli et al. [39] showed that hemopressin acting as a modulator of CB1R receptors
enhances the differentiation of oligodendroglia in neural cultures containing stem cells derived from
the subventricular region of newborn mice. These results further suggested that hemopressins have a
physiological function as endocannabinoids, and could be used therapeutically to treat demyelinating
diseases [39].

Previous studies have suggested that cannabidiol, ∆9-tetrahydrocannabinol (THC), and marijuana
have antiepileptic effects, and could be used as adjunctive therapy for epilepsy patients [92–96].
The anticonvulsive effect of ∆9-THC and the CB1R agonist WIN55,212-2 was also shown in models
of electroshock-induced generalized convulsive crisis, and pharmacological effects were reversed by
administration of CB1R antagonist SR141716A [97,98]. Hemopressin and its fragment NFKF were
shown herein to be orally active delaying the first salivation and seizure of pilocarpine-induced seizures
in mice (Figure 1A,B). Orally administered NFKF is hundred times more potent than cannabidiol
in delaying the first seizure induced by pilocarpine in mice (Figure 1C). Orally administered NFKF
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is also more efficient in protecting mice from death after pilocarpine-induced seizures (Figure 1D).
NFKF has the advantage of being more functionally stable than hemopressin after freezing and heating
(Figure 1E). Molecular docking studies using the crystallographic structure of CB1R available at the
Protein Data Bank (5TGZ), and selection of the best scoring function of the Gold Program [99–101],
suggested that NFKF has a higher binding affinity for CB1R than AM6538, cannabidiol, and rimonabant
(Figure 1F–I; corresponding Goldscore). Allosteric binding of NFKF to CB1R was suggested by in vitro
binding assays (data not shown). In vivo, orally administrated NFKF-derived sequences NFK, FKL, NF,
FK, KF, or KL showed no pharmacological activity in preventing or altering seizures and its symptoms
in pilocarpine-induced mice model, whereas NFKL has pharmacological effects similar to that of NFKF
(data not shown).
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Figure 1. Pharmacological and molecular characterization of cannabinoids in cannabinoid type 1
G-protein coupled receptors (CB1R)-associated epilepsy treatment. (A–D) adult male C57BL/6J wild-type
mice weighting approximately 24 g were kept in animal room with a controlled temperature (22 ± 1 ◦C)
and a light–dark cycle of 12 h, and water and feed was supplied ad libitum. The number of animals
used was the minimum necessary to obtain statistically significant results and they were maintained
and used in accordance to the guidelines of the National Council for Control of Animal Experiments
(CONCEA), following international norms of animal care and maintenance (Ethics protocol number
ICB/USP 5100050218). Induction of epilepsy was by intraperitoneal administration of pilocarpine
hydrochloride (Merck, SP, Brazil; 320 mg/kg) dissolved in 0.9% sterile saline. Hemopressin, NFKF,
rimonabant, and cannabidiol (kindly provided by Professor Raphael Mechoulam, Hebrew University of
Jerusalem, Israel, to Professor Francisco Guimarães, Ribeirão Preto Medical School, University of São
Paulo, Ribeirão Preto, SP, Brazil) were administered 10 min prior to the administration of pilocarpine.
Time to salivation, time to the first motor seizure, number of seizure events, and death were quantified
from 0 to 30 min after pilocarpine injection, as previously described [102]. (E) Hemopressin or NFKF
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(1 mg/mL, 500 µL) were freshly prepared in sterile water, or incubated at −20 ◦C for 24 h or at
100 ◦C for 15 min, and the peptides that remained in solution were compared by high performance
liquid chromatography (HPLC), as previously described [103]. All biological results are expressed
as the means ± standard error of the mean (SEM). The statistical comparisons were performed using
Student’s t-test or analysis of variance (ANOVA), followed by ad-hoc Tukey’s test. Probability less
than 0.05 was considered as statistically significant (p < 0.05). * p < 0.05 vs. control, # p < 0.05 vs. HP,
** p < 0.05 vs. control, *** p < 0.001 vs. control. Data were statistically analyzed with GraphPad Prism
software (GraphPad Software Inc, San Diego, CA, USA). (F–I) Molecular docking studies using the
crystallographic structure of CB1R available at the Protein Data Bank (5TGZ). NFKF (panel I) has higher
binding affinity (higher Goldscore) for CB1R than AM6538 (panel F), cannabidiol (G) and rimonabant
panel (H).

Recently, several conformation-sensitive antibodies targeting G-protein coupled receptors [104,105]
were used to screen for novel pharmacologically active intracellular peptides. These screenings
identified a novel peptide, DIIADDEPLT (Pep19), with inverse agonist activity at CB1R; Pep19 is
derived from a natural intracellular peptide [106]. Oral administration of Pep19 to diet-induced
obese Wistar rats significantly reduced adiposity index, whole body weight, glucose, triacylglycerol,
cholesterol, and blood pressure, without altering heart rate. In addition, Pep19 oral treatment increased
the number of uncoupling-protein 1 (UCP1)-immunostained cells and increased the number and
reduced the size of inguinal adipocytes when compared with saline or other treatments. Pep19 also
increased UCP1 expression in 3T3-L1 differentiated adipocytes and activated pERK1/2 and AKT
signaling pathways. UCP1 expression induced by Pep19 in 3T3-L1 differentiated adipocytes can be
blocked by AM251, a CB1R antagonist. Pep19 has no central nervous system effects, as suggested by
the lack of brain c-Fos expression, cell toxicity, induction of the cannabinoid tetrad, depressive- and
anxiety-like behaviors [88].

It seems worth to mention that in addition to plasma membrane localization of CB1R, it also localizes
inside the cells at the membranes of neuronal mitochondria [87]. Through activation of mitochondrial
CB1R, hemopressins and other intracellular peptides with affinity for CB1R, such as Pep19-precursor
peptide DITADDEPLT [33,88], could modulate cyclic AMP concentration, protein kinase A activity,
and mitochondrial function, similar to what have been shown for lipid-derived endocannabinoids.
Note that intracellular peptides with endocannabinoid activity are hydrophilic, and co-exist at least in
some neuronal populations with hydrophobic endocannabinoids [38]. Therefore, it is possible that
intracellular peptides with CB1R activity could function as hydrophilic endocannabinoids from the
cytosol to activate mitochondrial CB1R directly, co-modulating with hydrophobic endocannabinoids
neuronal energy metabolism [87].

Furthermore, using the substrate-capture assay combined with isotopic-labeling and electron
spray mass spectrometry, a new bioactive fragment derived from hemoglobin called AGH
(AGHLDDLPGASAL) was identified and pharmacologically characterized [75]. AGH inhibits
peripheral hypernociception responses, preferably through µ-type opioid receptors. Although AGH is
derived from hemoglobin and has opioid activity, it lacks the key sequence of hemorphins (YPWT),
indicating that it may belong to a new class of opioid peptides derived from hemoglobin [75].

5. Pharmacological and Biochemical Analyses of Intracellular Peptides Suggest to Function
within Cells

Investigating the functionality of intracellular peptides within cells, Cunha et al. [71] used the
substrate-capture assay and identified a new group of intracellular peptides. These intracellular peptides
were chemically synthesized and artificially reintroduced into the intracellular environment using a
covalently bound cell-penetrating peptide. The effects of these intracellular peptides reintroduced into
the cells were observed to positively modulate G-protein-coupled receptor (GPCR) signal transduction
in CHO and HEK293 cells using a luciferase gene report assay; these intracellular peptides were
inactive if administered in the extracellular medium without previous covalent-coupling to the
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cell-penetrating peptide [71]. Either THOP1 overexpression [71] or siRNA inhibition in HEK293T
cells [83] causes change in GPCR signal transduction of both isoproterenol and angiotensin II agonists;
cells overexpressing THOP1 respond less to these agonists, while cells with inhibited THOP1 have
an increase in signal transduction that was shown to be mediated by protein kinase A [71,83]. Taken
together, these studies suggest that intracellular peptides and THOP1 modulate signal transduction of
GPCR agonists [71,83]. Since oligopeptidases have substrate-size structural restrictions and metabolize
peptides only, one possibility to explain these results is that the intracellular peptide substrates and/or
products of THOP1 can alter protein interaction networks affecting the signal transduction of GPCRs.
Indeed, intracellular peptides FE2 and FE3, which potentiate the signal transduction of angiotensin
and isoproterenol in CHO-S and HEK293T cells, when covalently immobilized on affinity columns
interacted with specific proteins involved in signal transduction including dynamin and 14-3-3 [71].
Thus, indirect evidence suggests that intracellular peptides can modulate protein interaction, which
results in GPCR signal transduction activation.

Using the in vitro technique of surface plasmon resonance, the effect of various intracellular
peptides was analyzed on protein interactions related to THOP1, calmodulin (CAM) or 14-3-3ε.
At concentrations of 1–50 µM, most of the intracellular peptides tested, including FE2 and FE3,
modulated brain cytoplasm protein interactions with CAM or 14-3-3ε. One of these intracellular
peptides (VFDVELL; VFD7) that markedly altered the interaction of THOP1 and rat brain proteins
with both CAM and 14-3-3ε when introduced into HEK293T cells raised the concentration of cytosolic
calcium. The intracellular concentration of this peptide VFD7 in HEK293 cells was estimated to be
16 µM, suggesting its possible biological function in intracellular protein–protein interaction and
calcium homeostasis [83]. Therefore, acting on protein–protein interactions may be one of the main
mechanisms through which intracellular peptides have biological significance [83].

5.1. EL28

The proteasome is an ATP-dependent proteolytic complex consisting of the 19S regulatory particle,
which is responsible for recognizing, deploying, and routing the protein into the 20S complex in which
the regulatory particle (19S) is attached at both ends [9,107–111]. The 20S complex consists of four
heptameric rings, two outer rings (α), and two inner rings (β) [109]. The catalytic subunits of the
proteasome are β1, β2, and β5, and have different cleavage specificities in the substrate. The β1 subunit
cleaves after acid residues (caspase-like), the β2 subunit cleaves after basic residues (trypsin-like),
and the β5 subunit cleaves after hydrophobic residues (chymotrypsin-like). Following proteolytic
cleavage, the proteasome releases in the nucleus and cytoplasm peptides containing 2–20 amino acid
residues, which may be degraded to amino acids, perform cell signaling functions and/or be presented
as antigens via MHC-I [111,112]. Under stress conditions or acute immune response, an alternative
form of the proteasome can be induced and the β1, β2, and β5 subunits are replaced by β1i, β2i, and
β5i, altering the catalytic specificity and providing better presentation of antigens by MHC-I by the
immune proteasome [112]. This change in catalytic specificity that occurs between the constitutive and
the immune proteasome at least partially alters the content of various antigenic peptides.

After induction of the immune proteasome in interferon-gamma (INF-γ)-treated HeLa cells, the
intracellular peptide repertoire was compared to that of control cells, using semi-quantitative electron
spray mass spectrometry [79]. Forty-two peptides were identified, and only one (called EL28) had a
threefold increase in relation to the control [79]. EL28 was characterized as a degradation product from
proteasome 26S protease regulatory subunit 4 (Rpt2), which is one of the six ATPases present in the
19S regulatory particle of the proteasome [113,114]. When analyzing the effect of the peptide EL28
in vitro and in vivo on the activity of the proteasome, there was an increase of the caspase-, trypsin-,
and chymotrypsin-like activities of the proteasome. The biological significance of EL28 was assessed
by measuring its effects on CD8+ T cell proliferation. Using murine splenocytes of C57BL/6JOT1
(OVA-specific CD8+ T cells), there is an increase in CD8+ T cell proliferation after treatment with EL28
(100 µM) compared with controls [79,115]. Therefore, EL28 is an intracellular peptide derived from
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Rpt2 ATPase whose concentration increases in HeLa cells treated with INF-γ. EL28 was reintroduced
into cells covalently bound to a cell-penetrating peptide (EL28-cpp) and specifically induced the
overexpression of proteasome β5i subunit thereby increasing CD8+ T cell proliferation. Moreover,
EL28-cpp was shown to improve and positively modulate the secondary IgG anti-bovine serum
albumin immune responsiveness elicited in high antibody-responder mice [79].

5.2. PepH

PepH is an intracellular peptide identified in postmortem samples of schizophrenia (SCZ)
patients [30]. Histone H2B type 1-H that gives rise to PepH is located in the 8-Mb xMHC region on
chromosome 6 that contains over 250 protein-coding genes. Chromosome 6 constitutes about 6% of the
human genome according to the “Wellcome Trust Sanger Institute”. The xMHC contains, according
to the GWAS (genome-wide association studies), the most significant association for schizophrenia.
There are previous reports of histone expression dysregulation in schizophrenia, Huntington’s disease,
and autism versus controls cases [116]. PepH contains the highly functional AVTKY motif of histone
2B C-terminus [117]. PepH at 50 µM increased Neuro2A cell survival by almost 200% in comparison
with the control peptide. Moreover, Neuro2A cells treatment with PepH at 10 µM and 50 µM protected
the cells from the toxic effects of LPS. Thus, PepH is an intracellular peptide with cytoprotective
effects, suggesting exciting possibilities for its pharmacological use as a modulator of inflammation and
oxidative stress responses repeatedly reported in the onset and progression of schizophrenia. Further
experiments are necessary to clarify the mechanism of action and the function of PepH in SCZ patients.
However, it is possible that PepH participate in structural heterochromatin reorganization/compaction,
changing cell survival and protecting Neuro2A cells from LPS toxicity. These findings add evidence to
previously described works suggesting the biological significance and functional activity of intracellular
peptides in humans.

5.3. Pep5

The division cycle of a cell consists of two processes, DNA replication and chromosome segregation
to the two nascent cells. This cell division is an alternation between two major stages: (1) mitosis
(M), when chromosome condensation, nuclear membrane disassembly, chromatid migration, and
separation in two daughter cells takes place, and (2) interphase, which is composed of two gap phases,
G1 and G2, and a phase dedicated to DNA synthesis, the S phase [118]. The regulation of the phase
transition and the progress through the cell cycle is performed by several complexes of kinases and
cyclins. Cyclins are regulatory proteins produced and degraded throughout each phase of the cell cycle
that bind to their respective phase-specific partners, cyclin-dependent serine/threonine kinases (CDKs),
forming the cyclin-CDK complexes [119,120]. In mammals, there are four major types of cyclins–A,
B, D, and E. To perform their roles, cyclins must transit from cytoplasm to nucleus where they can
be degraded by the proteasomes; examples include cyclins D and E that translocate to the nucleus to
regulate gene transcription [121–123]. D-type cyclins (D1, D2 and D3) are expressed in a wide variety
of tissues and cell types and are the main allosteric regulators of CDK4 and CDK6 to coordinate cell
cycle progression from G1 to S phase. Cyclin D1 is ubiquitously expressed in most cells [124] and more
frequently dysregulated than cyclins D2 and D3 in human cancers [125]. On the other hand, cyclin D2
is more tissue-specific and equally related to cancer phenotypes. However, a dual activity has been
attributed to cyclin D2 as an oncogene or a tumor suppressor, since its expression can vary depending
on the cancer tissues [125].

The cell cycle can also be controlled through proteolysis, for instance, mediating the degradation
of cyclins and other biomolecules by the UPS [2,126]. During the cell cycle, two complexes are
responsible for poly-ubiquitination of substrates, SCF (Skp1/cullin/F-box proteins) complexes, and
APC/C (anaphase promoter complex/cyclosome) [127,128]. Cyclin D1 levels increase during the onset
of G1 phase and remain high until the G1/S transition, when it declines [129]. Cyclin D1 degradation is
essential for the cells to enter the DNA synthesis phase, and its overexpression in fibroblasts prevents
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entry of these cells into the S phase [130]. The cell cycle is also controlled by CDKs inhibitory proteins,
also known as CKIs, including p21, p27, and p53, whose activities and half-lives are also controlled by
SCF-dependent degradation [131].

Therefore, distinctive intracellular peptides could be produced during specific phases of the cell
cycle, considering, for instance, the phase-dependent degradation of cyclins and other molecules, and
this could be relevant for progression and/or control of cell division (Figure 2). To investigate a possible
relationship between generation of intracellular peptides and cell cycle progression, HeLa cells were
used in a well-defined strategy. This human cell line has been extensively used to investigate different
molecular aspects of cell cycle control. HeLa cells were synchronized using the double-thymidine block
protocol, and intracellular peptides were collected at S, G2/M, and G0/G1, and also from asynchronous
control cells. Using isotope labeling and electron spray mass spectrometry experiments, it was possible
to compare the relative levels of the different peptides identified in these time periods (Figure 3). A total
of 19 peptides, named pep1 through pep19 accordingly, were quantified and sequenced. Among
these intracellular peptides, two (pep3, AKADGIVSKNF, a fragment from 40 S ribosomal protein S21;
and, Pep5, WELVVLGKL, a fragment of G1/S-specific cyclin D2) varied in specific cell cycle phases.
These peptides were chemically synthesized either free or covalently bound to a cell penetrating
peptide (cpp, YGRKKRRQRRR) at their C- or N-terminus. This cpp peptide was necessary to allow
cell penetration and consequent investigation of the intracellular function of these peptides [40,41].
The initial pharmacological properties of these peptides in cell proliferation and cell death were
evaluated in HeLa cells.
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Figure 2. Hypothetical model of Pep5 generation by the ubiquitin–proteasome system (UPS). During
G1 phase, cyclin D2 forms a complex with cyclin-dependent kinases (CDKs) to regulate several
processes. At the G1/S boundary, the cyclin D2 levels decrease after ubiquitination (Ub) and proteasome
degradation. As a result of this degradation, several peptides are formed and released in the intracellular
environment. Some of the peptides will be entirely degraded by peptidases whereas some peptides
(e.g., Pep5) will remain in the cells to participate in biological processes.
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Figure 3. Schematic representation of isotopic-labeling of peptide-containing cellular extracts isolated
in different phases of the cell cycle of the Hela cell line. Peptides were extracted from the asynchronous
cells and labeled with D0-TMAB, whereas those synchronized in S, G2/M, and G0/G1 were, respectively,
labeled with D3-TMAB, D9-TMAB, or D12-TMAB.

In these initial pharmacological experiments, Pep5-cpp has shown to cause extensive cell death
in HeLa cells, unlike Pep3 and additional control peptides; neither the other peptides nor the Pep5
without the cell-penetrating peptide covalently coupled changed cell cycle progression or induced cell
death [76,77]. Further experiments indicated a strong structure–activity relationship of Pep5 dependent
on the tryptophan located at the N-terminus and on the two internal leucines. Thus, the minimal
pharmacologically active sequence of Pep5 was determined as WELVVL with the cell-penetrating
peptide covalently bound to its C-terminus (WELVVLYGRKKRRQRRR). This minimal Pep5-cpp
sequence was also efficient to induce cell death in vivo, decreasing the rat C6 glioblastoma tumor
volume by approximately 50% after 14 days of treatment. The in vivo treatment with Pep5-cpp was
conducted during two weeks, using osmotic mini-pumps for constant infusion at the tumor site of
0.5 µL/h of a solution containing 100 µM of either Pep5-cpp or control peptide, diluted in artificial
cerebrospinal fluid [76].

Further analyses demonstrated that Pep5-cpp, in concentrations from 50–100 µM, was able to
increase cell death in several asynchronous tumor cell lines, such as HeLa, SKRB (human breast cancer
cell line), SK-MEL-28 (human skin melanoma cell line), and a rat glial tumor cell line (C6), among
others. Some cells seem to be even more sensitive to the pharmacological effects of Pep5-ccp, such
as human breast adenocarcinoma cell lines MDA-MB-231 and MCF-7. Normal human thyroid cell
line (Nthy-ori 3-1) treated with Pep5-cpp shows a higher survival ratio, suggesting that Pep5 is more
effective in tumor cells than in normal cells. More interestingly, MDA-MB-231 cells synchronized in
G1/S transition or S phase are more sensitive to Pep5-cpp cell death, which could be associated with
the availability of specific targets for the Pep5 in these specific moments of cell cycle [77].

An overview of all these results together led us to assume that the cell death caused by Pep5-cpp
was likely to be due to a combination of events (Figure 4). Pep5-cpp induces apoptosis through
activation of caspases 3/7 and caspase 9 and increases phosphorylation of six proteins related to the
MAPK pathway involved in survival and apoptosis induction, such as Akt2, p38, and ERK1/2. This
peptide also promotes necrosis, as seen by the cell population labeled with annexin V and propidium
iodide. These data were corroborated by pharmacological treatments using distinctive inhibitors
of cell death. A combination of necrostatin-1, an inhibitor of necroptosis [132], and qVD, a potent
caspase inhibitor, protects cells from death by Pep5-cpp [133]. IM-54, a selective inhibitor of oxidative
stress-induced necrosis [134] also reduced the cell death induction caused by Pep5-cpp. Additionally,
Pep5-cpp or Pep5 inhibited the beta-5 subunit of the proteasome both in vivo and in vitro, respectively.
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Figure 4. Pep5-cpp leading to cell death seems a combination of events. Once Pep5 is bound to a
cell-penetrating peptide, it will carry the cyclin D2 fragment to intracellular compartments such as
the cytoplasm and nucleus. (1) Pep5-cpp binds to chloride intracellular channel protein 1 (CLIC1)
and (2) Plectin, leading to (3) actin cytoskeleton disorganization and (4) ERK1/2 phosphorylation.
The sustained increase in ERK1/2 phosphorylation may contribute to the activation of caspases 3/7
and 9, culminating in the induction of apoptosis. On the other hand, Pep5-cpp also seems to bind to (5)
proteasome components causing its inhibition, which in turn can cause protein accumulation in both
the cytosol and nucleus, generating signals that will induce programmed necrosis (necroptosis).

Potential Pep5 targets were investigated in extracts from MDA-MB-231 cells asynchronous or
synchronized at G1/S or S phase, using affinity chromatography with covalently immobilized Pep5
followed by electron spray mass spectrometry; empty columns and the cell-penetrating peptide alone
were used as controls. Approximately, thirty proteins from each of the experimental conditions
evaluated in MDA-MB-231 (i.e., asynchronous or synchronized at G1/S or S phase) were shown to
specifically interact with Pep5. Among these proteins, only two proteins were observed to interact with
Pep5 in all the experimental conditions evaluated—chloride intracellular channel protein 1 (CLIC1)
and plectin [77]. These two proteins are both involved in apoptotic cell death and seem to be relevant
to the pharmacological activity of Pep5, as it was shown to induce cell death independent of the phase
of the cell cycle.

CLIC is a family of ion channel proteins formed by six cytosolic proteins (CLIC1-6) regularly
found soluble or localized in the inner membrane of cells, functionally related to apoptosis and
cell cycle regulation [135–137]. CLIC1 inhibition increases reactive oxygen species culminating in
apoptosis induction through activation of phospho-ERK1/2 in both colon cancer cells and prostate
cancer cells [138,139]. The interaction of Pep5 with CLIC1 would be feasible as Pep5-cpp was seen to
induce a sustained activation of phospho-ERK1/2 that lasts for at least four hours [77].
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Plectin is a member of the plakin family implicated in organizing actin filaments and anchoring
the cytoskeletal system to cell junctions. Plectin can be used as a cancer biomarker, since its presence
is involved in cell proliferation, migration, and invasion due to its known ability to bind different
cytoskeletal components such as tubulin, actin, keratin, and vimentin [140–145]. Indeed, Pep5-cpp
was seen by confocal microscopy to disorganize actin stress fibers in the MDA-MB-231 cells stained
with AlexaFluor 488-labeled phalloidin [77]. Therefore, it is possible that Pep5 induction of apoptosis
is mediated at least in part, through the inhibition of CLIC1 and plectin, somehow preventing them
from exerting their normal functions inside the cell. Pep5-cpp inhibited the proteasome activity in vitro
and in addition, several proteins related to the proteasome complex were identified associated with
Pep5. This suggests that part of the cell death induced by Pep5-cpp may be through inhibition of
the proteasome. It is known that inhibition of proteasome complex by heme proteins causes high
oxidative stress and accumulation of damage proteins leading to a programmed necrosis induction in
macrophages [146,147].

In view of what was shown above, we believe that Pep5 can promote the activation of cell death
in different cell lines via a combination of apoptosis and programmed necrosis. This hypothesis
is sustained by using necrostatin-1, a well-known inhibitor of necroptosis (a programmed form of
necrosis), combined with inhibitors of caspase-dependent apoptosis, which abolished the cell death
effects of Pep5-cpp in HeLa cells.

Recently, Pep5-cpp has been shown to induce cell death in epimastigotes, trypomastigotes, and
amastigote forms of Trypanosoma cruzi, a parasite vector that is responsible for Chagas disease which is
a neglected disease that occurs mainly in the Americas, being considered an important public health
issue. Pep5-cpp at lower doses was able to decrease the percentage of infected cells without causing
any detectable toxic effects in mammalian host cells. The infective form of T. cruzi, i.e., trypomastigotes,
pre-treated with Pep5-cpp was unable to infect LLC-MK2 cells. These data suggest that Pep5 can be
used as a novel alternative for the treatment of Chagas disease [78]. Altogether, these findings highlight
the therapeutic potential of Pep5.

6. Perspectives

The initial and intriguing question that raised our interest in investigating intracellular peptides
biology and pharmacology, was that only one peptide from each cellular protein was supposedly
to escape degradation to be presented to the immune system associated to MHC-I. Hypothetically,
if every cell can express one peptide from its ~10,000 different proteins, and each protein has in
average 500 amino acids, 500,000 different peptides can be potentially generated by UPS in every
cell considering that the average size for proteasome products are peptides of 10 amino acids. Based
on these initial questionings, we started investigating if these additional intracellular peptides could
be natural substrates of oligopeptidases THOP1 and/or Nln within cells. These initial studies on
intracellular peptides became a broad field for investigation, with many unanswered questions. Some
of these unanswered questions include (1) the mechanism of action of intracellular peptides, (2) the
enzymes participating in their biosynthetic and degradative pathways, (3) the secretory pathways,
and (4) how intracellular peptides escape complete degradation. Because the majority of intracellular
peptides were shown to remain inside the cells [54], it is possible that their main biological functions
occur within cells. However, a significant portion of intracellular peptides can be secreted and many
can be functional, binding to cell surface receptors similar to neuropeptides.

In general, peptides are selective and effective signaling molecules that bind to extracellular sites
of specific plasma membrane receptors, such as GPCRs, enzyme-linked receptors, integrins, or ion
channels, where they trigger signal transduction. Given their attractive pharmacological profile and
intrinsic properties, peptides represent an excellent starting point for planning new therapeutics,
and their specificity and usually low toxicity, translates into excellent safety, tolerability, and efficacy
profiles for human administration. However, the short half-life and the immunogenic potential of
peptides seems to limit the interest of many pharmaceutical industries for peptide-based new drugs.
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Intracellular peptides are produced by limited proteolysis from a specific set of intracellular proteins,
and within cells must have been selected for their increased proteolytic stability. Therefore, screening
intracellular peptides for new peptide-based drug discovery could be advantageous at least in the
number of hits to test, compared to screenings using peptide libraries or cryptides from enzymatic
digestion of different protein sources. Some advantages of using intracellular peptides to screen for
potential drugs could be (1) smaller number of peptides to start screening for pharmacological activity
(e.g., Pep19); (2) possibility to choose the intracellular peptides to screening after challenging cells with a
stimulus of interest (e.g., Pep5 and EL28); (3) possibility to find functional intracellular peptides that are
differentially present when comparing health and disease states of patients (e.g., PepH); (4) possibility to
find functional intracellular peptides comparing different animal models (e.g., wild-type C57BL6 versus
knockout mice). Hemopressin, NFKF, and Pep19 were also used herein as examples of intracellular
peptides with the advantage of been orally active. Oral administration of intracellular peptides should
be relevant to reduce their potential to elicit immune response after chronic administration.

Changes in the intracellular peptidome following inhibition of THOP1 expression by siRNA altered
the relative concentration of specific intracellular peptides, and in parallel caused a protein-kinase
A-mediated potentiation of isoproterenol signal transduction in HEK293 cells [83]. An increase in
specific intracellular peptides in gastrocnemius and epididymal adipose tissues correlated with an
increased glucose tolerance and insulin sensitivity of Nln−/− [84]. Therefore, changes in the intracellular
peptidome correlates with changes in cell signal transduction and animal physiology, suggesting that
intracellular peptides are biologically significant.

Delivery of intracellular peptides within cells is challenging and novel technological developments
for in vivo peptide-drug delivery systems are still necessary. One possibility is that intracellular
peptides bound to a cell-penetrating peptide could be administrated directly inside tumors [76]. Other
possibilities that need further investigation are the use of fusion proteins to deliver and internalize
peptides to specific tissues, peptide-carrier systems like liposomes or nanoparticles, and the use of viral
vectors. It is important to mention that a rationally-designed retroinverse peptide that inhibits the
nuclear interaction of FOXO4 and p53, was capable of neutralizing doxorubicin-induced chemotoxicity
and restored fitness and renal function in both fast aging XpdTTD/TTD and naturally aged mice [148].
Moreover, another rationally-designed peptide (SAMβA) that selectively antagonizes intracellular
Mfn1–βIIPKC association, protects cultured neonatal and adult cardiac myocytes, and re-establishes
mitochondrial morphology and function and improves cardiac contractility in rats with heart failure.
These results suggest that SAMβA may be a peptide-based drug for treatment of patients with heart
failure [149].

Taken altogether, intracellular peptides seem an exciting area for additional scientific investigations.
The biological significance of intracellular peptides could be broad, modulating cell signaling from
inside and outside the cells. Intracellular peptides could also be interesting prototypes for developing
novel therapeutically efficient peptide-based drugs.
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