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Abstract
Development of human autoimmune disorders results from complex interplay among genetic, environmental,
and immunological risk factors. Despite much heterogeneity in environmental triggers, the leading genes that
give the propensity for tissue-specific autoimmune diseases, such as type 1 diabetes, are those associated
with particular class II major histocompatibility complex alleles. Such genetic predisposition precipitates pres-
entation of tissue antigens to MHC-II-restricted CD4 T cells. When properly activated, these self-reactive CD4
T cells migrate to the target tissue and trigger the initial immune attack. Using the non-obese diabetic mouse
model of spontaneous autoimmune diabetes, much insight has been gained in understanding how presenta-
tion of physiological levels of self-antigens translates into pathological outcomes. In this review, we summar-
ize recent advances illustrating the features of the antigen presenting cells, the sites of the antigen
recognition, and the nature of the consequent T cell responses. We emphasize emerging evidence that high-
lights the importance of systemic presentation of catabolized tissue antigens in mobilization of pathogenic T
cells. The implication of these studies in therapeutic perspectives is also discussed.

Introduction
Type 1 diabetes (T1D) is a prototypic tissue-specific
autoimmune disease characterized by lymphocytic infil-
tration into the islets of Langerhans, resulting in loss of
insulin-producing β cells and hyperglycemia. Genome-
wide association studies have identified that the pri-
mary T1D-susceptibility loci are the Class II human
leukocyte antigen (HLA) genes in the major histocom-
patibility complex (MHC).1,2 Class II MHC (MHC-II) mole-
cules with a strong link to a high disease risk, such as
HLA-DQ8 and HLA-DQ2, display a unique structural
property, that is, substitution of the aspartic acid at the

57th position of the MHC-II β chain.3–6 Consequently,
these MHC-II molecules select a much distinct MHC-II
peptidome that largely favors binding of peptides hav-
ing acidic residues at the p9 position.7–9 Therefore, islet-
derived antigens containing such binding motifs, includ-
ing insulin5 and glutamic decarboxylase acid (GAD),10 can
be presented, generating a CD4 T cell repertoire skewing
to diabetogenic reactivity. Although the course of the dis-
ease can be modified by various environmental factors,11

these fundamental findings demonstrate a tight link
between genetic susceptibility and antigen presentation,
which in concert results in an autoimmune response.
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Development of T1D in the non-obese diabetic (NOD)
mouse requires expression of the I-Ag7 MHC-II mol-
ecule.12,13 Importantly, I-Ag7 is structurally homologous
to the human HLA-DQ8 and HLA-DQ2; it also lacks the
aspartic acid at the β chain 57th position. Thus, both I-
Ag7 and HLA-DQ8 select similar peptidomes,9 including
diabetogenic antigens. Transgenic modification14 of I-
Ag7 or expression of a different MHC haplotype (I-Ab)15

abolished T1D development in NOD mice. Several key
immunological features found in human T1D are reca-
pitulated in the NOD mouse: 1) early appearance of
anti-islet antibodies in the serum with predictive values
of disease onset16; 2) local invasion of CD4 and CD8 T
cells recognizing β cell antigens,17 forming a characteris-
tic lesion in the islets, termed insulitis; 3) chronic dis-
ease progression as a result of the effects of regulatory
mechanisms to counter the pathogenic elements18; and
4) persistence of autoreactive T cell responses post β cell
destruction,19 leading to rapid rejection of islet trans-
plants into already diabetic individuals.

More importantly, the NOD mouse is among few
models that spontaneously develop an autoimmune
disease without the need for immunization with a puta-
tive antigen. This valuable trait allows for examining
antigen presentation events that naturally take place to
initiate autoreactivity, a serious clinical problem diffi-
cult to study in human patients. This issue can be fur-
ther extrapolated to several questions: 1) What are the
major antigens required for disease initiation? 2) What
are the features of the antigen presenting cells (APCs)?
3) Where are the antigens being presented? 4) How can
a tissue antigen be made available to T cells? 5) How
does self-recognition generate pathogenic responses?
To place these questions in perspective, we first briefly
summarize studies that have examined insulin epitopes
and the clonotypic T cell reactivity. This topic was dis-
cussed in detail in our recent reviews.20,21

Insulin epitopes and autoreactivity
It is conceivable that diverse antigens are involved dur-
ing progression of a complex autoimmune disease; the
term “epitope-spreading” has been used in this regard.
However, at the initial phase, only a limited number of
antigens may be required to spark the process. This is
an attractive hypothesis because such antigens could be
targeted by antigen-specific therapies to achieve disease
prevention. Indeed, insulin has been identified as the
prime antigen essential for T1D initiation in the NOD
mouse. The initial evidence is summarized as fol-
lows16,21–29: 1) Insulin autoantibodies (IAAs) are detected
long before disease onset in NOD mice and in patients
with T1D, and therefore serve as a biomarker for disease
prediction; 2) According to genome-wide association
studies, polymorphism in the promotor region of the
insulin locus is the second strongest risk-conferring fac-
tor in T1D, following HLA; 3) Genetic overexpression of
insulin in APCs reduces T1D incidence in NOD mice; 4)

Insulin-reactive T cells transfer diabetes in non-diabetic
hosts; and 5) Genetic ablation of insulin expression in
the thymus accelerates T1D development in NOD mice.

The definitive evidence was obtained using NOD mice
containing a transgene coding a mutant insulin B chain
with a tyrosine to alanine change at the 16th position
(referred to as B16A).30 This mutation maintained bio-
activity of the insulin molecule; however, development
of IAAs, insulitis, and clinical diabetes was completely
suppressed.30 By contrast, the T cells in the B16A mice
were able to reject normal islets expressing wild-type
insulin.31 Therefore, without recognition of a small frag-
ment of the insulin B chain, reactivity to other antigens
cannot elicit effective pathogenic responses. These stud-
ies suggest that tissue-specific autoimmunity is not dri-
ven by random self-antigens but is finely programmed
by recognition of highly selective peptide-MHC com-
plexes (pMHCs), which elicits downstream epitope-
spreading. To note, insulin-specific T cells, including
those reactive to B:9–23, have been identified in the islets
of T1D patients.32,33

Using synthetic peptides and T cells as a biological
probe, a series of fundamental studies have demon-
strated that the “hot spot” of the insulin B chain that
generates immunogenicity is the 9–23 segment (B:9–23;
SHLVEALYLVCGERG).30,31,34–38 We have subsequently
determined that this peptide contained two 9-mer I-
Ag7-binding registers, B:12–20 (VEALYLVCG) and B:13–21
(EALYLVCGE), recognized by two specific sets of CD4 T
cells.38,39 Although these two epitopes differ by only a
one amino acid shift, the mechanisms underlying their
processing and presentation are profoundly distinct.
B:13–21 has a higher binding affinity to I-Ag7 because of
an acidic residue (Glu) at p9, and is therefore selectively
presented when the conformational insulin protein is
internalized and processed by APCs.39,40 Epitopes with
weaker affinities, including B:12–20, are released by the
peptide editor H2-DM in the late endosomal compart-
ments; however, B:12–20 can be presented when free
insulin peptides or denatured insulin are offered to
APCs via direct loading onto MHC-II molecules at the
cell surface or in the early endosomes, where H2-DM is
absent.39,40

We have identified CD4 T cells that recognize B:13–21
or B:12–20 and refer to them as type-A and type-B T cells,
respectively. The two sets of T cells display distinct fea-
tures in their specificity, selection, and effector function.
Because insulin expression by medullary thymic epithe-
lial cells (mTECs) is known to mediate negative selection
of autoreactive clones, it is possible that the B:13-21-spe-
cific T cells are deleted or functionally silenced in the
thymus, and those specific to B:12–20 may escape.
Indeed, most of the insulin-reactive T cell clones found
in the periphery reacted only to insulin peptides not to
the protein.38,39 Functional assays also confirmed that
B:12-20-reactive T cells were able to mount a robust
response upon antigen stimulation, whereas those spe-
cific to B:13–21 showed little reactivity.39 Importantly,
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such defect was not found in B16A mice.39 These results
were further supported by the 8F10 T cell receptor trans-
genic mouse to B:12–20, in which the 8F10 T cells
escaped thymic selection, seeded the periphery, caused
diabetes,41 and were able to facilitate germinal center
formation for production of class-switched IAAs.42 The
importance of T cells with a “type-B” feature has been
highlighted in other autoimmune diseases in mice and
humans.43–48 A notable example is a recent study that
characterized hypocretin-specific CD4 T cells in patients
with narcolepsy; most of these T cells recognized only
the exogenous peptides not those post protein-
processing.49

Antigen presentation in the islet: the
resident macrophages
Defining the role of insulin peptides and the type-B T
cells in T1D provides a platform to answer a central
question: How do the β cells communicate with the CD4
T cells? β cells do not express MHC-II, which suggests
that there is an intermediate cell population in the islet
that can transform β cell-derived products into the cor-
rect pMHCs for recognition by CD4 T cells.

We examined the myeloid cell compartment in purified
islets and found that the islet harbored a population of
tissue-resident macrophages exhibiting unique features.
The islet contained a small portion (1–5%) of hematopoietic
cells (defined by CD45+); this finding holds true in all the
mouse strains examined.50 In C57BL/6 (B6) mice, ~90–95%
of the hematopoietic cells were of macrophage lineage
(defined by CD45+CD11c+F4/80+CD11b+)50; in 3-week-old
NOD female mice, the macrophages were also the domin-
ant component (~85–90%), with the rest being a few den-
dritic cells (DCs) and infiltrating T cells.51 Of note, the islet
macrophages originated from definitive hematopoiesis
and could not be replaced by blood monocytes at steady
state.50

The islet macrophages were also transcriptionally
active; high levels of expression of genes encoding
MHC-II and costimulatory molecules52 support a role as
competent APCs. High levels of expression were also
found in a wide range of inflammatory genes, including
chemokines, chemokine receptors, toll-like receptors,
and cytokines.52 In general, these genes represented
active NFκb signaling,52 a feature consistent with other
barrier-tissue macrophages.53,54 At the protein level, we
confirmed that these macrophages spontaneously pro-
duced TNFα and pro-IL-1β.52 The islet macrophages are
intrinsically active regardless of autoimmunity in that
the basal level of activation was found in the transcrip-
tomes of both NOD mice and the B6 mice expressing
the I-Ag7 haplotype (B6g7), a strain that does not
develop T1D.52 Although the homeostatic function of
islet macrophages during adulthood is not completely
clear, this poised activation phenotype may be a self-
defensive mechanism that protects the islet from blood
pathogens. Indeed, the islet macrophages rapidly

responded to low concentrations of circulating LPS and
were able to capture microparticles from the vascula-
ture.55 This was partially supported by two-photon
imaging analysis showing that the islet macrophages
were anchored near the blood vessels and constantly
probed the lumen via extending filopodia, an activity
finely controlled by local glucose concentrations.55 The
islet macrophages also expressed purinergic receptors,
and a recent study proposed that they can sense ATP
released in the islet, a means to monitor β cell activity.56

Ultrastructural analysis by electron microscopy
revealed that the islet macrophages were in intimate
contact with the β cells.55 Importantly, they acquired
intact insulin dense core granules (DCGs), a process
requiring cell contact and mobilization of intracellular
calcium.55,57 Consequently, the islet macrophages were
spontaneously loaded with insulin products and could
activate the cognate T cells without the need to pulse
with exogenous antigens. Early CD4 T cells entering the
islet were found to be in close contact with the macro-
phages.58 These findings raised an important question:
What is the role of the islet macrophages in T1D? Using a
monoclonal antibody (AFS98) that preferentially depleted
the islet macrophages through blockade of CSF-1R signal-
ing, we found that T1D development in NOD mice was
largely abrogated.51 It seemed that treatment with AFS98
established a “local tolerance” state, in which the islet
was specifically protected from immune infiltration,
whereas sensitization of diabetogenic T cells in the per-
iphery was unaffected.51 The pathogenic function of the
islet macrophage was shown to operate widely across
disease course, with disease protection observed when
AFS98 administration was started in either 3- or 10-
week-old female NOD mice.51

Origin of insulin epitopes
The major component of regular DCGs is the insulin
molecule (~300 000 molecules/granule). The passage of
these granules to the islet macrophages should lead to
presentation of the B:13–21 epitope. However, surpris-
ingly, the islet macrophages preferentially activated the
B:12-20-specific type-B T cells.57 This suggests that free
insulin peptides and/or denatured insulin are the
source of the B:12–20 epitope and may explain how the
type-B T cells found proper conditions for their activa-
tion in the target tissue.

To locate the insulin peptides, we developed two
monoclonal antibodies, one that specifically recognized
B:9–23 (clone AIP),38,57,59 and another that recognized the
entire insulin B chain (B:1–30; clone 6F3.B8)59; neither
antibody reacted to native insulin. Immunofluorescent
analysis revealed a distinct positioning pattern of B:9–23
and B:1–30 in the islets; B:9–23 did not co-stain with insu-
lin but colocalized with LAMP-1,38 a marker of lyso-
somes, whereas B:1–30 largely co-stained with insulin
and was found in nearly all the β cells.59 These findings
were supported by further characterization of two sets of
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β cell vesicles that differed in their biology and contents.
We determined that the B:9-23-containing vesicles are
compatible with the crinophagic bodies described in β
cells as well as other endocrine organs.60,61 These vesi-
cles are generated through fusion of the regular DCGs
with lysosomes, by which the excessive number of insu-
lin DCGs are removed to maintain cellular homeosta-
sis.62 After lysosomal degradation, a series of catabolized
peptides are generated which can be identified in the cri-
nophagic bodies isolated by differential centrifuga-
tion.57,59 On the other hand, using immunogold
conjugated 6F3.B8 and electron microscopy, we con-
firmed the presence of the intact B chain together with
insulin molecules in regular DCGs.59 We speculate that
the intact B chain segments are generated via natural
denaturation of the interchain disulfide bonds of the
highly packed insulin molecules.

We emphasize that generation of catabolized insulin
fragments via the crinophagic pathway is a physiological
phenomenon regardless of prior inflammation; this
occurs naturally in both B6 and NOD mice as well as in
non-diabetic humans.59 Using mass spectrometry ana-
lysis, we compared the peptidome between the crino-
phagic bodies and the insulin DCGs.59 In three different
mouse strains and humans, the insulin DCGs mostly
contained C peptides and the long B chain. By contrast,
the crinophagic bodies were rich in a diversity of short
peptides. In particular, peptides associated with the 9–23
region of the B chain, including B:9–23 and B:11–23, were
exclusively found in the crinophagic bodies.

Three findings attracted our attention: first, many pep-
tides found in the crinophagic bodies contained patho-
genic epitopes compatible with those predicted in
previous studies using autoreactive T cell clones (dis-
cussed in the next section). Second, many of the peptides
with potential immunogenicity were natural sequences.
As pointed out in a recent review,63 although neoantigens
can be generated by various post-translational modifica-
tion mechanisms, their contribution to spontaneous T1D
development requires further exploration. Third, the seg-
regation patterns of the insulin peptides in the two sets
of vesicles are very similar between mouse and non-T1D
human islets. Immunogenicity may be elicited in indivi-
duals who carry MHC molecules able to bind these pep-
tides. We identified a sequence representing insulin
B:11–30 in human crinophagic bodies; this long peptide
contained the B:11–23 epitope recognized by T cells in
T1D subjects expressing HLA-DQ8.64

Sensitizing the periphery: peptide release
There is ample evidence showing that low concentra-
tions of circulating insulin can be presented to cognate
T and B cells in lymphoid tissues. In brief (see detailed
reviews in20), insulin presentation influenced develop-
ment of T and B cells in the thymus and in the bone
marrow, respectively. In secondary lymphoid tissues,
insulin presentation played a role in functional

silencing of autoreactive B cell clones. In a recent study,
we found that 8F10 T cells differentiated into competent
T follicular helper cells, facilitating formation of insulin-
specific germinal centers.42 The cognate T-B cell interac-
tions took place in various lymphoid organs, including
the spleen and different lymph nodes.42 There are two
implications of these results: 1) peripheral insulin pres-
entation was not restricted in the pancreatic draining
lymph node (pLN) but was disseminated throughout the
lymphoid structures; and 2) the B:12–20 epitope was
presented to the 8F10 T cells in the periphery, indicating
availability of free insulin peptides.

Systemic presentation of insulin epitopes was con-
firmed in a physiological setting.59 Using two-photon
imaging analysis, we found that naïve 8F10 T cells, when
adoptively transferred into young NOD recipients, had
reduced velocities in various lymph nodes relative to co-
transferred polyclonal CD4 T cells. Because T cells con-
strained their motility during antigen-specific interactions,
this finding was proof of peripheral insulin recognition.
Subsequent analyses reached several important conclu-
sions pertinent to this issue.59 First, insulin recognition by
8F10 T cells was precisely guided by the specific epitope,
as these T cells maintained normal motility in the B16A
mouse. Second, such recognition required expression of I-
Ag7 but not the NOD background; it occurred in diabetes-
resistant B6 mice expressing the I-Ag7 haplotype. Third,
both conformational molecules and free peptides were
sources of the insulin epitopes. This was determined by
in vivo blockade of the insulin receptor, which inhibited
uptake of the insulin molecule and presentation by APCs.
Under such settings, motility arrest of the 8F10 T cells was
unaffected.

The insulin peptides that sensitized the lymph nodes
were released from the islets.59 In standard insulin
secretion assays, insulin peptides, including B:9–23 and
B:1–30, were secreted from the islets along with insulin
molecules upon glucose challenge. Using mass spec-
trometry to map the secreted peptides, we identified
many sequences that were also found in the two sets of
β cell granules. For example, peptides in the crinophagic
bodies, especially those related to B:9–23, were identi-
fied as a component of the released peptidome. It is
worth noting that secreted insulin B chain peptides con-
stituted only a small portion of all the insulin peptides,
among which the C-peptide was most abundant.
Considering the essential role of B:9–23 in driving T1D,
these results support the notion that the major auto-
reactivity comes from recognition of a minor compo-
nent of self-antigens.

Notably, these peptides contained most of, if not all,
the immunogenic epitopes predicted in previous stud-
ies. We found a panel of peptides spanning the junction
of the B chain and the C peptide (B-C spanning). A pep-
tide with similar composition was shown to be involved
in T1D pathogenesis as an early autoantigen.65 In add-
ition to MHC-II epitopes, such as B:12–20 and B:13–21,
we found the pathogenic B:15–23 MHC-I (H2-Kd) epitope
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recognized by the G9C8 CD8 T cells.66 Moreover, three
peptides of the A chain contained the A:14–20 epitope,
which bound to H2-Db despite lacking a C-terminal
anchor residue and activated highly pathogenic AI4 CD8
T cells.67,68 The presence of the MHC-I epitopes is per-
tinent to an enlightening study that identified circulat-
ing CD8 T cells in both healthy and diabetic subjects
responding to HLA-I peptides derived from β cells.69

Importantly, many HLA-I-bound peptides in β cells were
derived from proteins associated with secretory gran-
ules,69 raising the possibility that they may be gener-
ated via degradation in the crinophagic bodies. Whether
and how the crinophagic pathway plays a role in deli-
vering the peptides to the MHC-I presentation machin-
ery remains an important issue to be addressed.

Impacts on T cell biology during
peripheral antigen recognition
Further evidence that insulin peptides entered the circula-
tion came from experiments that identified a sequence
representing B:9–23 in mouse urine.58 Seeding of insulin
peptides into the periphery led us to determine whether
this process influenced T cell biology, an important issue
concerning the essential role of the entire peripheral
lymphoid system for development of full-blown diabetes.
Specifically, surgical removal of the pLN in 3-week-old NOD
mice led to a reduction in diabetes in ~25% of the control
mice,70 implying the availability of bioactive T cells in such
mice. By contrast, ablation of all lymph nodes by adminis-
tration of lymphotoxin-β receptor-Ig fusion protein to the
pregnant mice completely abolished diabetes development
and the reactivity of diabetogenic T cells.71 These two find-
ings highlight the importance of other peripheral lymph
nodes, in addition to the pLN, in interactions with T cells.

We compared the transcriptional profile of the 8F10 T
cells transferred into NOD or B16A mice. In the former
the T cells are exposed to insulin peptides but not in the
latter. We found that recognition of insulin peptides had
imposed an effector-like signature in the 8F10 T cells.58

Specifically, during antigen recognition, the 8F10 T cells
turned on a transcriptional program that reflected T cell
activation and effector function, but not T cell anergy,
tolerance, and exhaustion.58 In support of these findings,
8F10 T cells with prior exposure to insulin peptides
responded more robustly upon a secondary antigen chal-
lenge in vitro; they underwent a greater degree of cell div-
ision and produced more effector cytokines.58 More
importantly, they accelerated diabetes development
when transferred into lymphopenic recipients.58

Considering the nature of the B:12–20 epitope, these
findings were unexpected. The low affinity of this epi-
tope with I-Ag7 has been demonstrated previously, indic-
ating a fast dissociation rate.39 It is also expected that
the amount of the pMHCs displayed by peripheral APCs
is very low. The low affinity/avidity of the B:12–20 presen-
tation may not cause a full program of T cell activation.
This is evident by the finding that the 8F10 T cells only

underwent significant proliferation when they migrated
into the islets, where the antigens were considerably
more abundant, but not when they migrated to peripheral
sites, including the pLN.41 However, repeated encounters
of the B:12–20 epitope had positive biological effects in the
T cells, an issue relevant to previous studies showing that
T cells can accumulate and integrate sequential signals
upon antigen encounters to reach a threshold triggering
activation.72,73 Furthermore, the result that prior antigen
exposure enhanced 8F10 T cell pathogenicity is reminis-
cent of elegant studies showing that tonic self-recognition
promoted efficient T cell responses to foreign antigens.74

At the molecular level, the transcriptional profile of 8F10
T cells undergoing continuous antigen recognition corre-
lated with an effector-like phenotype but not exhaustion,
as it happens on some chronic viral infections. This differ-
ence may be attributed to a much higher density of effect-
ive viral-specific pMHCs during viral infection.75 Although
the example of the 8F10 T cell highlights that diabetogenic
potential can be influenced in peripheral sites via
repeated weak antigen recognition, these outcomes may
vary with other insulin-reactive T cells having different
affinities. Given the complexity of T cell specificities and
phenotypic variations in autoimmune diabetes,76 future
studies using unbiased approaches to examine the entire
autoimmune repertoire would be instructive.

Concluding remarks
The propensity of tissue-specific autoimmunity is highly
influenced by certain MHC haplotypes. It is long known
that self-tolerance is established to lymphocytes recogniz-
ing native proteins, but that autoreactivity may occur when
a denatured version of the same protein is available for rec-
ognition. Generation and release of catabolized protein frag-
ments is a natural process of a target tissue; this finding
may explain how tissue antigens can be presented to T
cells in situ by resident APCs, and furthermore, it suggests a
pathway by which self-peptides are made available in the
lymphoid tissues where the lymphocytes can be sensitized
(Fig. 1). From the perspective of autoimmunity, this process
seems to be a “loophole” in a given individual that precipi-
tates disease risks. However, it is expected that many pep-
tides with undefined bioactivities may also be released.
Recognition of such pMHCs may have evolutionary benefits
that remain to be determined. We also suggest two thera-
peutic implications derived from the described studies.
First, analyzing the peptidome released into the periphery
may help to provide a targeted approach identifying anti-
gens responsible for triggering the original T cell reactivity.
Second, many antigen-specific strategies involve adminis-
tration of self-peptides.77–79 Our findings regarding T cell
biology suggest that caution is needed when administering
self-peptides to achieve inducible tolerance. Considering
the heterogeneity of T cell receptor affinities, the MHC
densities, and the features of the APCs, administration of
self-peptides, even in a tolerogenic manner, may mobilize
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pathogenic responses that counter the desired regulatory
effects.
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