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Abstract

Log analysis shows that PubMed users frequently use author names in queries for retrieving 

scientific literature. However, author name ambiguity may lead to irrelevant retrieval results. To 

improve the PubMed user experience with author name queries, we designed an author name 

disambiguation system consisting of similarity estimation and agglomerative clustering. A 

machine-learning method was employed to score the features for disambiguating a pair of papers 

with ambiguous names. These features enable the computation of pairwise similarity scores to 

estimate the probability of a pair of papers belonging to the same author, which drives an 

agglomerative clustering algorithm regulated by 2 factors: name compatibility and probability 

level. With transitivity violation correction, high precision author clustering is achieved by 

focusing on minimizing false-positive pairing. Disambiguation performance is evaluated with 

manual verification of random samples of pairs from clustering results. When compared with a 

state-of-the-art system, our evaluation shows that among all the pairs the lumping error rate drops 

from 10.1% to 2.2% for our system, while the splitting error rises from 1.8% to 7.7%. This results 

in an overall error rate of 9.9%, compared with 11.9% for the state-of-the-art method. Other 

evaluations based on gold standard data also show the increase in accuracy of our clustering. We 

attribute the performance improvement to the machine-learning method driven by a large-scale 

training set and the clustering algorithm regulated by a name compatibility scheme preferring 

precision. With integration of the author name disambiguation system into the PubMed search 

engine, the overall click-through-rate of PubMed users on author name query results improved 

from 34.9% to 36.9%.

Introduction

With the fast growth of scientific literature, author name ambiguity has become a critical 

issue in managing information at the individual level. Due to the lack of universal standards 

for name information, there are two aspects of name ambiguity: name synonymy (a single 

author with multiple name representations), and name homonymy (multiple authors sharing 

the same name representation). In practice, name synonymy and homonymy cause different 

problems in information retrieval. For authors with synonymous names, it is hard to retrieve 

relevant information at high recall without complete knowledge of various name 

representations shared by the same author. On the other hand, queries with a homonymous 

name often lead to irrelevant information retrieval from other authors sharing the same 

name. Therefore, ambiguous names pose a serious challenge to the efficacy of a modern 

bibliographic retrieval system aimed at both high precision and high recall.
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There have been many efforts to study author name ambiguity and solutions have been 

proposed in numerous fields (Smalheiser & Torvik, 2009). Libraries have developed and 

maintained authorship control with manual curation, such as the Library of Congress. 

Recently, some web services have encouraged users to help with the disambiguation task at 

the community level (DBLife) or the individual level (Community of Science) by inviting 

authors to register their publications online (orcid.org, authorclaim.org, Google Scholar) or 

assigning a unique ID (Thomson Reuters ResearcherID). Compared to the high cost of 

centralized manual authorship control, community level efforts involving authors are more 

efficient. However, voluntary participation can only benefit from active authors, with 

accuracy and coverage subject to the motivation and integrity of the participants. Recently, 

some automatic methods have been proposed to provide less costly and more efficient 

solutions (Huang, Ertekin, & Giles, 2006; Song, Huang, Councill, Li, & Giles, 2007; Torvik 

& Smalheiser, 2009; Treeratpituk & Giles, 2009). There are also various applications 

strongly related to author name disambiguation, such as word sense disambiguation, topic 

modeling, research assessment, collaboration networks, reference analysis, and stylometry, 

as recently reviewed (Smalheiser & Torvik, 2009; Elliot, 2010; Ferreira, Gonçalves, & 

Laender, 2012). These applications can benefit the name resolution task by providing 

important information other than conventional features extracted from metadata (Lin & 

Wilbur, 2007; Yin, Han, & Yu, 2007; Varol, Stafford, Kovvuri, & Chitti, 2010; Bernardi & 

Le, 2011). On the other hand, high-quality name disambiguation can also benefit these 

applications. The demand from these related applications strongly implies the importance of 

effective author name disambiguation.

As the entry point to the large-scale National Library of Medicine database for biomedical 

literature, the PubMed engine provides online access to more than 22 million scientific 

citations. Millions of users search this biomedical database through PubMed every day. An 

analysis of the PubMed web log in 2009 showed that about 36% of the queries contain an 

author name (Islamaj Dogan, Murray, Névéol, & Lu, 2009). Out of more than 79 million 

names in the PubMed collection, more than 10% will lead to retrieval of over 100 citations 

that are authored by multiple authors. PubMed user behavior statistics indicate that users 

tend to issue a new query with additional details rather than click through to an abstract as a 

response to a large number of citations retrieved for an author name query, as shown in 

Figure 1.

To improve the users’ search experience and facilitate other related applications, we have 

implemented author name disambiguation for PubMed citations. Our system provides an up-

to-date author name disambiguation function for a large-scale biomedical literature 

information retrieval system. Motivated by previous approaches, our implementation is 

based on a machine-learning method, which is trained on features extracted from various 

fields of PubMed citations. Our system makes two unique contributions to the field. First, 

instead of using the author name to be disambiguated as a source of features for machine 

learning, we propose a name compatibility scheme to regulate the relationship between 

citations sharing similar name variants in creating training data and producing final 

clustering results. Second, to learn the feature weighting for PubMed metadata, we design an 

unsupervised method to automatically create large-scale training data sets. Positive training 

data are based on the low-frequency author names, which with high probability represent the 
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same individual. Negative data are randomly generated. The positive training data are 

filtered with name compatibility and a publication year check to further improve the label 

accuracy. Considering namespace size and the expected proportion of positive pairs, 

similarity scores are converted to pairwise probabilities with the pool adjacent violators 

(PAV) algorithm (Zadrozny & Elkan, 2002; Wilbur, Yeganova, & Kim, 2005). With a 

clustering priority ordering scheme combining both name compatibility and probability 

level, the clustering algorithm produces final clustering results by focusing on the highest 

quality initial clustering and minimizing false-positive clustering.

The details of our presentation are laid out as follows: Related Work focuses on discussing 

comparable techniques proposed in the past and justifying our technical decisions; the 

Materials and Methods section presents a detailed description of training set generation, 

machine-learning methods, and the clustering algorithm; the Results and Discussion sections 

evaluate the advantage of our technique through a number of experiments and comparisons; 

and the Conclusion section presents conclusions and outlines future work.

Related Work

Due to the limitations of manual authorship management, numerous recent name 

disambiguation studies focus on automatic techniques for large-scale literature systems. To 

process large-scale data efficiently, it is necessary to define the scope (block) of author name 

disambiguation appropriately to minimize the computation cost without losing significant 

clustering opportunities. A block is a set of name variants that are considered candidates for 

possible identity. Several blocking methods handling name variants are discussed (On, Lee, 

Kang, & Mitra, 2005) to find the appropriate block size. Collective entity resolution 

(Bhattacharya & Getoor, 2007) shows that clustering quality can be improved at the cost of 

additional computational complexity by examining clustering beyond block division. In our 

work, a block (namespace) consists of citations sharing a common last name and first name 

initial.

Normally disambiguation methods estimate authorship relationships within the same block 

by clustering similar citations with high intercitation similarity while separating citations 

with low similarity. The intercitation similarities are estimated based on different features. 

Some systems use coauthor information alone (On et al., 2005; Kang, Na, Lee, Jung, Kim, et 

al., 2009). Some systems combine various citation features (Han, Zha, & Giles, 2005; 

Torvik, Weeber, Swanson, & Smalheiser, 2005; Soler, 2007; Yin et al., 2007), and some 

combine citation features with disambiguating heuristics based on predefined patterns (Cota, 

Ferreira, Nascimento, Gonçalves, & Laender, 2010). Besides conventional citation 

information, some works (Song et al., 2007; Yang, Peng, Jiang, Lee, & Ho, 2008; Bernardi 

& Le, 2011) also exploit topic models to obtain features. McRae-Spencer and Shadbolt 

(2006) include self-citation information as features and Levin et al. (2012) expand features 

to the citation information between articles. Similar to some previous works, the features in 

our machine-learning method are also created from PubMed metadata which are strongly 

indicative of author identity. However, instead of using the name to be disambiguated as part 

of the similarity profile, we use author name compatibility in restricting the clustering 

process.
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Numerous methods have been developed to convert authorship features to intercitation 

distance. In unsupervised learning (Mann & Yarowsky, 2003; Ferreira, Veloso, Gonçalves, & 

Laender, 2010), extraction patterns based on biographic data and recurring coauthorship 

patterns are employed to create positive training data. Supervised machine-learning 

approaches require training data sets to learn the feature weighting (Han, Giles, Zha, Li, & 

Tsioutsiouliklis, 2004; On et al., 2005; Torvik et al., 2005; Treeratpituk & Giles, 2009). 

Some supervised methods (Han et al., 2004; On et al., 2005; Huang et al., 2006) train 

machine-learning kernels such as SVM with training data to find the optimal separating 

hyperplane and perform feature selection as well. In Treeratpituk and Giles (2009), a 

Random Forest approach is shown to benefit from variable importance in feature selection, 

which helps to outperform other techniques. We use a supervised machine-learning method 

to characterize the same-author relationship with large training data sets. Our positive 

training data are assembled based on the assumption that a rare author name generally 

represents the same author throughout, similar to the construction of matching data in Torvik 

and Smalheiser (2009). However, our training data sets are much larger and the positive data 

are filtered with a name compatibility check and a publication year check to minimize false-

positive pairs.

Typical methods for computing authorship probability include computing similarity based 

on term frequency (On et al., 2005; Treeratpituk & Giles, 2009), and estimating the prior 

probability from random samples (Soler, 2007; Torvik & Smalheiser, 2009). In our work, the 

similarity profile for a citation pair is converted to a pairwise probability with the PAV 

algorithm. In this process, both name frequency and a prior estimation of the proportion of 

positive pairs play an important role.

Name disambiguation is implemented by assigning citations to a named author based on the 

relationship among citations, usually during a clustering process. Various clustering 

algorithms include agglomerative clustering with intercitation distance (Mann & Yarowsky, 

2003; Culotta, Kanani, Hall, Wick, & McCallum, 2007; Song et al., 2007; Kang et al., 2009; 

Torvik & Smalheiser, 2009), K-way spectral clustering (Han et al., 2005), boosted-tree 

(Wang, Berzins, Hicks, Melkers, Xiao, et al., 2012), affinity propagation (Fan, Wang, Pu, 

Zhou, & Lv, 2011), quasi-cliques (On, Elmacioglu, Lee, Kang, & Pei, 2006), latent topic 

model (Shu, Long, & Meng, 2009), and density-based spatial clustering of applications with 

noise (DBSCAN) (Huang et al., 2006). To minimize the impact of data noise on clustering 

quality, transitivity violations of pairwise relationships are corrected in DBSCAN (Huang et 

al., 2006) and with a triplet correction scheme in (Torvik & Smalheiser, 2009). To correct 

transitivity violations, we apply a correction scheme similar to Torvik and Smalheiser (2009) 

with a stronger boosting for false-negative pairs. As previously (Mann & Yarowsky, 2003; 

Torvik & Smalheiser, 2009), an unsupervised agglomerative clustering algorithm 

disambiguates citations within a namespace. As pointed out before (Mann & Yarowsky, 

2003; Tang, 2012), clustering the most similar citations first can help create a high-quality 

clustering result. In addition to ordering clustering by similarity level, our clustering process 

is also regulated by another ordering scheme based on name compatibility, which schedules 

merging clusters with closer name information at earlier stages.
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Materials and Methods

A popular framework adopted by successful author name disambiguation techniques (Torvik 

& Smalheiser, 2009; Wang et al., 2012) is clustering citations based on pairwise intercitation 

probabilities. First, all the citations sharing common author names to be disambiguated are 

grouped into namespaces. Then all the citations satisfying our name compatibility check 

within each namespace are compared with one another to measure overall intercitation 

similarity scores based on machine-learned feature weighting. The intercitation similarity 

scores are then transformed into pairwise probabilities through a PAV function, and then 

delivered to the clustering algorithm where correction of transitivity violations is performed. 

Similar citations are clustered into different partitions with maximum likelihood, with each 

partition of citations expected to belong to an individual author. This process is illustrated in 

Figure 2 and explained in the following sections.

Processing Names in PubMed

PubMed provides online access to the National Library of Medicine database (MEDLINE) 

and other publications, which contain more than 22 million scientific citations from 1865 to 

the present. A small fraction (2.4%) of all PubMed citations has an empty author field. The 

rest of the PubMed citations, which are the focus of this work, list authors in the same order 

as the publication. There were more than 76 million name instances in ~22 million citations 

in 2012. Except for a small number of cases with only a last name, the names in the author 

field are formatted as last name, first name, or first name initial, with middle names or 

middle name initials also available for a minority of cases.

Some issues have to be addressed before author names can be processed appropriately. The 

first issue is how to properly handle names encoded in Unicode other than ASCII characters. 

As a global database, PubMed collects publications by authors from all around the world in 

a variety of languages. Many authors choose to use different character encodings for the 

representation of their names in various situations. For example, German authors may use 

German characters for their names in German journals while converting the German 

characters to English characters for an English publication. Normally, PubMed collects 

publications of different languages in Unicode encoding. In this work, to unify the same 

name in different characters, all non-ASCII characters in author names are converted to their 

corresponding ASCII characters using a mapping table we developed based on the database 

from the Unicode Consortium (http://www.unicode.org). A number of Unicode characters 

are represented as named and numeric HTML entities, and they are also converted to ASCII 

characters, or removed if no ASCII character can be found. With all names unified with an 

ASCII character representation, the names in disambiguation results are mapped back to 

their original encoding for the purpose of PubMed indexing.

The second issue has to do with the structure of the author field. Normally the authors are 

organized as a single list, and each author appears only once. However, some publications 

involving a large number of collaborating authors tend to group authors according to their 

contribution to the work. For example, the Alliance for Cellular Signaling is a large-scale 

cross-discipline and cross-institution collaboration involving dozens of investigators and 

scientists serving on different committees. An article (PMID: 12478301) published in Nature 
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lists members of each committee, while Adam P. Arkin serves on both the Steering 

Committee and Editorial Committee. In the PubMed database, this structured author list is 

flattened. As a result, Adam P. Arkin appears twice in the author field. The assumption that 

an individual author appears only once in the author field would end up treating those two 

instances of Adam P. Arkin wrongly as two individuals. However, currently this issue has 

not been addressed. It would require either referencing the original publication, or manually 

detecting and correcting these errors individually in the database.

The third issue in the name field concerns nonauthor entities. For example, some 

organizations publish reports under their institutional names (e.g., American Pharmacists 

Association). Although they are not individual author names, they are still treated as 

individual authors, with the institutional name as last name without first or middle name 

information.

Based on the author name instances found in the PubMed database, all the citations are 

organized into namespaces in a similar blocking fashion as (On et al., 2005). The namespace 
is defined as follows:

Given a last name (LN) and a first name initial (FNI), a namespace consists of all the 

PubMed citations, in whose author field one or more author names are compatible 

with (LN+FNI).

Any two names NAMEi and NAMEj are mutually compatible if the following conditions 

hold for at least one ordering of (i, j):

1. NAMEi.last_name == NAMEj.last_name

2. NAMEi.first_name == NAMEj.first_name

or NAMEi.first_name.first_character == NAMEj.first-_name (the first name 

information for NAMEj is only initial letter)

or NAMEi.first_name == NULL

or NAMEi.first_name == NAMEj.first_name.variant

3. NAMEi.middle_name == NAMEj.middle_name

or NAMEi.middle_name.first_character == NAMEj.middle_name

or NAMEi.middle_name == NULL

The name compatibility check allows two names potentially belonging to the same author to 

be considered in the disambiguation process. Any two names failing the compatibility check 

are regarded as belonging to different authors. Note that some authors do change their names 

due to various reasons (e.g., marriage), and it requires external information to relate these 

incompatible names, which is not implemented in this work. As shown in Torvik and 

Smalheiser (2009), name variants such as nicknames and partially matching names should 

be considered in the name compatibility check. We built a name variant map based on the 

database from the USGenWeb Project (http://www.usgenweb.org) to support variant 

matching for first names sharing common initials in the compatibility check. We also 

supplement this map with other variants found in PubMed.
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According to the definition of name compatibility, one namespace includes all the citation 

members sharing author names compatible with a common last name and first name initial. 

For example, the citations with names such as J. Miller, Joel S. Miller, and Judith Miller all 

belong to the namespace MILLER+J, since they all share the same last name and first name 

initial.

Note that the cases with only a last name (without first or middle name) are grouped into a 

separate namespace. Although this case is compatible with any name having the common 

last name and any first or middle name, we place it into a separate namespace to avoid 

oversize namespaces and unnecessary computation. In total, 3.88 million namespaces are 

created, and 2.43 million namespaces own more than one citation and require name 

disambiguation.

Features for Machine Learning

Designated with a distinct PMID (PubMed ID number), each PubMed citation contains a 

number of fields for metadata, providing information for title, journal name, publication 

date, authors, affiliation, abstract, MeSH (Medical Subject Headings) terms, substance, 

grant, etc. The availability varies for each field, as shown in Table 1.

For historic reasons, availability is low for some fields. Since the metadata fields provide 

important evidence for name disambiguation tasks, the lack of key metadata could result in a 

poor disambiguation outcome. With publishers providing more metadata with more frequent 

updating, recent citations have higher metadata availability. Recently, new information has 

also been added to complement traditional metadata. For example, some corresponding 

authors provide personal e-mail addresses, which normally appear as part of the affiliation 

field. Previous work (Torvik et al., 2005) shows that personal information (i.e., e-mail and 

author web page) improves the disambiguation accuracy.

Different PubMed fields are not equally significant in gauging similarity. To determine how 

each field contributes to the overall intercitation similarity, machine-learning methods are 

applied on positive and negative training data sets. The positive data set contains sample 

pairs of citations by the same author, while the negative data set contains sample pairs of 

citations by different authors. Ideally, manual author name disambiguation is required to 

create positive and negative training samples for PubMed citations. However, it is 

prohibitively time-consuming to prepare large size training data sets. Instead, we observe 

that citations from small namespaces tend to belong to the same author. To obtain high-

quality training data sets for machine-learning methods, we take advantage of this 

observation to approximate true authorship relations.

Our positive data set includes about 6.7 million sample pairs from namespaces with two to 

five citations. Although machine-learning algorithms benefit from a large number of positive 

samples, their performance can be compromised by potential false-positive samples. To 

minimize the impact of such imperfect pairs, the pairs with incompatible names (identical 

last name and first initial but conflicting first names) are excluded, as well as the pairs of 

documents with publication dates over 50 years apart. For the negative data set, about 6.5 

million sample pairs are randomly selected as pairs of citations from different namespaces. 
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Each sample pair is represented by a set of features, from which its similarity is estimated. 

This computation is based on the contents of the nine fields as summarized in Table 2. The 

nine fields were selected as features because they are highly indicative of author identity. 

Among these nine fields, the Date field is represented by the publication year. The feature 

for this field is computed as the absolute difference in publication year of the pair of 

citations:

After a stopword list based on PubMed general stopwords (http://www.nlm.nih.gov/bsd/

disted/pubmedtutorial/020_170.html) is applied, each of the remaining eight text fields is 

individually processed to create a similarity score with the conventional IDF (inverse 

document frequency) (Spärck Jones, 1973) computation using statistics from different fields. 

At the corpus level, N denotes the total number of all the PubMed citations. Each field F is 

composed of tokens f, and we use nf to denote the number of citations containing the term f. 
Suppose we have a pair of citations D1 and D2, with their token sets T1 and T2 from F. The 

pairwise similarity computation starts by producing a set of common tokens C = T1∩T2. The 

sum of idf of the common terms is computed as:

Similarly, the sum of idf over all the unique terms in each citation is computed as:

To measure the relative significance of common terms for each citation, the idf sum is 

normalized by the sum of idf of all tokens:

The overall pairwise similarity score is then computed as the average of the normalized idf 
sum of the citations:

The author field is a special text field, and is handled differently. The two citations are 

considered to share a common name if a name appears in compatible forms in the two 

citations. For positive samples, which can have multiple common names, a randomly chosen 

common name is excluded from the common coauthors set and both all authors sets. For 

negative samples, which are chosen from different namespaces, the author names qualifying 
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for each namespace are excluded from each all authors set. Like other text fields, the 

similarity score for the author field is valued in the range from 0 to 1.

The positive and negative training sets are employed to train a wide margin classifier with a 

variation of quadratic loss function, the modified Huber loss function (Zhang, 2004; Smith, 

Kim, & Wilbur, 2012). The Huber classifier analyzes the similarity scores from all the 

PubMed fields for each sample in both positive and negative training sets, and creates 

overall Huber score for each sample as the sum of weights of all fields (see Table 2).

Each field is assigned with a weight function which converts its similarity score to a weight. 

The Huber classifier learns these weight functions, to achieve overall optimal classification 

for the training data. The weight functions for all the PubMed fields are shown in Figure 3. 

For each of the first eight text fields, the X axis indicates the similarity score similarityi in 

the range from 0 to 1, and the corresponding Huber score weight via weight function 

weighti(similarityi) is shown along the Y axis. For the Date field similarity score, the 

absolute publication year difference between two citations ranges up to 200.

The weight functions reveal the significance of each field in the machine-learning process. 

Generally, text fields contribute positively to the Huber score, while the publication Year 

difference makes negative contributions, which suggests that the greater the disparity in 

publication dates, the less likely the two papers have the same author. Among the text fields, 

the Author field has the greatest positive impact on the overall Huber score. Other text fields, 

such as Title, Affiliation, Journal, and MeSH fields are similarly important in measuring 

pairwise similarity. Lower-weighted than other text fields, the Abstract field normally 

consists of significantly more terms, many of which are not strongly associated with author 

identity, and hence are not as informative. For the Grant and Substance fields, a small 

amount of similarity is actually evidence of a different grant or a different substance, and 

hence evidence against having the same author. For example, the grant information from 

different researchers might only match on the token “NIH.” Consequently, the similarity 

scores for these two fields have to be relatively high to make a positive contribution to the 

overall Huber score. The Huber classifier achieves average precision of 97.3% in a 10-fold 

cross-validation test over the training data. This high precision is strong support for the 

assumption that low frequency namespaces are almost completely positive data. We also 

observe that a smaller training set leads to the degradation of precision. In classification with 

different sizes of training data and the same test data, the precision starts to decrease 

noticeably when the training data shrink by a factor of 100, and drops by more than 1% 

when the training data shrink by a factor of 1,000. The weight functions resulting from 
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smaller training sets become rough and irregular (compared to Figure 3), and this signals 

overtraining.

Recently, some techniques have been proposed to train on a large number of samples, that is, 

the probabilistic similarity metric (Torvik et al., 2005), bootstrapping (Levin, Krawczyk, 

Bethard, & Jurafsky, 2012). The probabilistic similarity metric is based on the pairs of 

citations created by examining if they share matching names. In bootstrapping, a set of high-

precision rules are applied to search for positive samples, as well as negative rules to detect 

negative samples, with some rules based on external information (self-citation). While these 

techniques (i.e., name matching and name rule) work in a similar fashion to our name 

compatibility check, the high-precision sample-selecting rules tend to cherry-pick the 

positive samples with the features reflected in the rules and ignore other information 

indicating the same-author relationship. Our training set construction is able to collect 

positive cases without unfairly biasing towards features which strongly indicate the same-

author relationship and this allows us to conduct machine learning in a more balanced 

fashion.

Converting Huber Score to Probability

Similarity scores computed by the Huber classifier need to be converted to pairwise 

probabilities of same author to be used in the clustering algorithm. This allows a fair 

comparison of pairwise similarity among different pairs. Given a Huber score s, the PAV 

algorithm (Zadrozny & Elkan, 2002; Wilbur et al., 2005) can estimate its probability p of 

representing a positive (same author) pair. The PAV algorithm produces a monotonically 

nondecreasing function p(s), which assigns a higher probability p(s) to a higher score s. The 

resulting probability estimation is then employed to represent similarity between the pair of 

citations in the clustering computation for a namespace. Because prior probabilities need to 

be considered, p(s) needs to be tuned for each namespace.

Creation of PAV functions requires high-quality data containing positive and negative data 

points faithfully reflecting the distribution of Huber scores. A data set of precise same-

author relationships is constructed by collecting self-citation pairs. The positive data set 

totals 2.7 million such pairs sampled within a time window of over 30 years. For the 

negative data set, we reuse the same 6.5 million pair negative data set constructed for 

machine learning.

One characteristic of the PAV algorithm is that the function p(s) is highly dependent on the 

relative distribution of positive and negative samples in the input data set. Therefore, only 

the PAV function obtained from an appropriately constructed input data set is applicable for 

the namespaces with similar distribution of positive and negative data points. To simulate the 

namespaces with various distributions of positive and negative pairs, a number of input data 

sets at different positive portions are constructed by randomly sampling the initial positive 

and negative data sets. Figure 4 shows the PAV functions derived from input data sets with 

different positive pair proportions, which enable the Huber similarity scores to be converted 

to pairwise probabilities in the range of 0~1 for different namespaces. After the positive pair 

proportion is estimated for a namespace, an appropriate PAV function is selected to convert 

Huber scores to pairwise probabilities.
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Of course, it is hardly feasible to know the percentage of positive pairs for a given 

namespace before clustering is conducted for it. Instead of pursuing the precise positive 

proportions, we use the most significant feature we employed in the machine-learning 

process: the coauthor feature. The pairs of documents which share at least one common 

coauthor are counted as the approximate number of positive pairs. This method produces 

reasonable estimates of positive pair proportion for many namespaces. There are some 

exceptions. For example, some authors publish mostly without any coauthors. The common 

coauthor method then tends to capture fewer positive pairs than the reality. Another 

exception would be that two different authors within the same namespace may publish with 

different coauthors who happen to share the same name, which may mislead the coauthor 

method into overcounting the positive pairs. To handle these difficult cases, the measurement 

of positive pair percentage is adjusted by taking the namespace size into consideration. 

Normally, a larger namespace contains more individual authors, which results in a smaller 

proportion of positive pairs. To characterize the relationship between positive pair 

probability and namespace size, the percentage of common coauthor pairs is measured for 

about 2,500 sample namespaces of different sizes. These samples are grouped by the integer 

floor of the natural logarithm of their sizes and average positive pair percentage is taken for 

each group. Their relationship is demonstrated in Figure 5. Although individual coauthor 

pair percentages are distributed widely within each size group, the average percentage is 

steadily decreasing with increasing name space size.

In practice, the coauthor pair percentage (CPP) measured for a particular namespace is 

checked against the average coauthor pair percentage (ave.CPP) for the corresponding size 

group. If the measured coauthor pair percentage deviates from the average percentage more 

than some threshold (Δ is selected as 0.2 empirically), a preset percentage based on the 

average percentage is used instead as the prior probability in choosing an appropriate PAV 

function.

Correcting Transitivity Violations

The methods in our disambiguation system can generate precise pairwise probabilities to 

faithfully gauge the relationship among most PubMed citations by assigning high 

probabilities to true positive pairs and low probabilities to true negative pairs. However, due 

to the imperfect information in some citations, the pairwise probabilities of the pairs 

involving these citations may falsely deviate from their true values. False-negative pairs, 

whose calculated probabilities are lower than their true values, and false-positive pairs, 

whose calculated probabilities are higher than their true values, can cause splitting and 

lumping errors (Torvik & Smalheiser, 2009), respectively.

False-negative pairs usually involve those citations created decades ago which suffer from 

missing information in such key fields as affiliation, abstract, etc. As a result, these empty 

fields produce low similarity scores and hence low pairwise probabilities. Another 
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phenomenon leading to artificially low pairwise probabilities is the segmentation of an 

individual author’s publication record into different areas, due to a researcher’s education in 

multiple institutes, change of research interest, or collaboration with different groups of 

researchers. It is difficult to connect publications from the same author but with different 

affiliations, coauthors, and research areas.

False-positive pairs usually have two individual authors with similar names who happen to 

work in the same institute, or share some common research interest, or publish with some 

common collaborators. The citations from such authors are likely to produce high pairwise 

probability, while they are different individuals. Previous work (Torvik & Smalheiser, 2009) 

shows that splitting errors happen more frequently than lumping errors, which suggests that 

there exist more false-negative pairwise probabilities than false-positive pairwise 

probabilities. To handle false-negative pairwise probabilities, correction is executed upon 

triplet transitivity violations:

Here δ > 0 is a tunable parameter. The violation occurs in a triangle consisting of three 

citations (i, j, k), in which the high probabilities of the citation pairs (i, j) and (j, k) suggest 

that these three citations belong to the same author, while the low probability for the pair (i, 
k) indicates otherwise. To correct this contradiction in a violating triangle, high probabilities 

are decreased and the low probability is increased while minimizing the overall probability 

variation (Torvik et al., 2005). This solution is reasonable because it penalizes potential 

false-positive probabilities and boosts potential false-negative probabilities simultaneously. 

Due to the observation that false-negative probabilities are more probable than false-positive 

probabilities, a weighting factor is designed to control the variation by favoring false-

negative probabilities. A typical triangle correction lifts the low probability at the cost of 

lowering the high probabilities. However, the upper bound limit of the renewed value of the 

low probability pik is pij + pjk − 1, which may not be boosted enough in some cases. On the 

other hand, some true positive probabilities may be overcompromised if they are involved in 

multiple triangle violations. As a result, some false-negative probabilities are underboosted 

and some true positive probabilities are overreduced, which fail to capture some potential 

correction and disambiguation opportunities.

To improve the efficiency of triangle correction, a simplified correction scheme is applied in 

our work. Instead of reaching minimal overall probability variation, we leave the high 

probabilities in a violating triangle unchanged while boosting the low probability:
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Since pij * pjk ≥ pij + pjk − 1, the low probability is assigned with a new value , which 

represents a more powerful boosting. On the other hand, high probabilities are allowed to 

keep their original values because the high-precision machine-learning method in capturing 

same-author relationship helps to minimize the occurrence of false-positive pairs. In 

previous work (Torvik et al., 2005), some false-positive pairs occur for authors with different 

first names while sharing a common initial. We automatically regard such pairs as absolute 

negatives based on the name compatibility check. By strictly checking name compatibility, 

the name-incompatible true negative pairs are also prohibited from correction and their low 

probabilities are protected. With name-incompatible pairs excluded from correction, the 

amount of violation checking is greatly reduced, especially for large namespaces. Thus, this 

simple method improves both effectiveness and speed of correction.

Clustering Framework

Based on pairwise distance, agglomerative clustering methods have proven effective in 

numerous name disambiguation techniques (Torvik & Smalheiser, 2009). This clustering 

method examines the connectivity of all clusters (C) within a namespace and merges 

documents with short distance (high similarity) to maximize the overall clustering score for 

the namespace:

Here δij = 1 if document i and j belong to the same cluster, and δij = 0 otherwise. A popular 

greedy clustering mechanism starts with each document constituting a singleton cluster, 

which is labeled by the author name instance in that document. Then clusters are allowed to 

merge if it contributes positively to the matching score for the clusters:

If all the pairwise probabilities pij across two clusters C1 and C2 can lift the matching score 

between C1 and C2 above threshold 1, these two clusters are allowed to merge into a new 

cluster. The name label of the new cluster is inherited from the more specific name label of 

the old clusters. For example, in the namespace of SMITH+J, the new cluster merged from 

two clusters labeled as J. Smith and John Smith, respectively will be labeled as John Smith, 

since every document in the new cluster is considered to be authored by John Smith after the 

merging process determines J. Smith in one cluster is John Smith in the other cluster.

As a bottom-up approach, the quality of the agglomerative clustering method is significantly 

impacted by the behavior during the initial clustering stages, during which small clusters 

start to develop and determine the future clustering path. Therefore, it is critical to schedule 
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the merging process among clusters effectively. Our clustering algorithm has two 

mechanisms to facilitate creating more accurate clusters at earlier stages.

Name information

Atypical namespace, especially a large namespace consisting of multiple individual authors, 

contains documents with various name information. Within a namespace, while sharing 

common family name and first name initial, the name instances could have different or 

absent first names, different or absent middle names or initials. Based on the assumption that 

most individual authors normally keep a consistent name representation through their 

publication records, a clustering priority scheme is designed to coordinate the merging 

process between two clusters properly, as shown in Table 3.

The higher clustering priority is given to two clusters with better odds of belonging to the 

same person based on the matching condition of their first and middle name information, 

and author’s first name is considered of more significance than the middle name in setting 

priorities due to its higher importance and availability in publications. This clustering 

priority scheme is also synchronized with the creation of new cluster name labels, which 

involves less ambiguity in the clustering at higher priority. This scheme helps to create high-

quality clusters at earlier clustering stages based on the original name information with little 

interference from the clustering algorithm. By checking the name information, clusters with 

incompatible name labels are prohibited from merging.

Previous work has proposed similar methods to handle name variants, such as rules in 

bootstrapping (Levin et al., 2012), and use of author name similarity profiles (Torvik et al., 

2005). Compared to these techniques, our name compatibility scheme works in a more 

systematic fashion in name disambiguation. In addition to enforcing a name compatibility 

check on the pairs of citations, we also apply a name compatibility check at the cluster level. 

When citations with compatible name variants are attributed to a new cluster, the new cluster 

is assigned with the more specified form of name variant, which is compared with other 

cluster-level name information for further clustering opportunities. A name compatibility 

check at the cluster level helps to recover missing name information within clusters and 

enables efficient cluster merging by avoiding the need to check cross-cluster pairs of 

documents.

Probability level

Another important issue in clustering quality is to choose the best clusters for merging. Even 

at the same clustering priority, there could be multiple candidate clusters to be selected for 

critical early merging. An effective policy reinforced in our clustering algorithm is to 

schedule the merging between clusters based on the value of their cross-cluster probabilities 

and choose the pair of clusters with the best matching score to merge, as shown in the 

following algorithm:

function Cluster(D, prob)

         inputs: D, the set of all the citations from a namespace
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                 prob(a, b), the pairwise probability for the name-

compatible pair

                 of citations (a, b) in D×D

         output: C, the set of clusters consisting of citations in D

C = {{x}|x ∈ D}, each initial cluster consisting of one citation x

iteration {

for p in [1, 2, 3]

        for CT (clustering threshold) in [0.9, 0.8, …, 0.1, 0]

                foreach cluster i in C:

                        foreach cluster j in C (i ≠ j and priority(i, j) == 

p):

                                if ∃ prob(a, b) < CT, a∈i, b∈j: break

                                else: compute MS(i, j)

                        in all j’s with MS(i, j) > 1, select J = 

argmaxjMS(i,j) and

                        merge cluster pair (i, J) in C

}

return C

For each priority level, the clustering threshold is decreasing from 0.9 down to 0 at the step 

of 0.1. At each threshold level, cluster merging is allowed to occur under the condition that 

all the pairwise probabilities across the clusters must be above the threshold. At a particular 

clustering threshold, the pairs with all the intercluster probabilities above the threshold and 

matching scores above 1 are considered for merging, with the pair with the highest matching 

score selected to be merged. The threshold starts from 0.9 initially, which permits the 

clusters with high intercluster connection to be considered for merging. The threshold is 

decreased gradually in stages, which allows clusters with lower connection to merge. One 

complete iteration works through priority 1, 2, and 3 in order, and the whole clustering 

process ends when no more merging opportunities can be found.

Final clustering results are often dependent on how the clustering algorithm starts initially. 

To add randomness to our clustering framework, the order of the documents can be 

scrambled to create a number of random initial states, which drive the same clustering 

algorithm and produce different sets of clustering results. The sets of results are compared 

with each other by their overall clustering scores, and the highest scoring result is selected as 

the final clustering.

Results

Disambiguation Accuracy

All the PubMed authors are processed with our disambiguation system and updated weekly. 

Currently PubMed collects more than 22 million citations, which have 76 million author 

name instances. About 4 million namespaces are created from all the author instances, and 

about 2.5 million namespaces owning multiple citations are subject to name disambiguation. 

In total, 10.2 million clusters are produced by the disambiguation process, and the average 
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number of citations per individual author is 7.3, which is similar to other studies. We apply a 

variety of methods to evaluate the disambiguation accuracy of our clustering results: (1) 

measure the error rate of random pairwise samples; (2) measure the precision and recall of 

clustering results against manually curated author profiles; (3) measure the split error with 

gold standard data (self-reference and common-grant).

Previous work (Torvik & Smalheiser, 2009) measures lumping error (merging citations by 

different authors to the same cluster) and splitting error (separating citations by the same 

author into multiple clusters) to evaluate the disambiguation performance. To measure the 

overall error rate, the pairwise lumping error rate and splitting error rate are defined:

Then the overall error rate is evaluated by combining both lumping and splitting error rates 

based on their distribution:

In addition to the clustering performance metrics, we also define precision and recall as 

follows:

To evaluate our disambiguation performance and compare to another state-of-the-art 

method, over 2 million pairs are sampled from Authority 2009 data (Torvik & Smalheiser, 

2009), and compared against the same set of pairs from our disambiguation results. All 

possible pairs within a namespace are considered as candidates for sampling. For a 

namespace of size N, there are in total N×(N−1)/2 possible pairs. A namespace with more 

than one citation is randomly sampled at a probability in proportion to its total possible pair 

counting. A sample pair is either clustered (C) or unclustered (U) by the clustering 

algorithm. Our results agree with Authority 2009 data on about 83% of the samples, while 

making different decisions on the remaining 17% of samples, as shown in Table 4.
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Random samples are extracted from the four groups of samples for validation by human 

reviewers. To ensure a fair comparison, these samples were re-disambiguated within the 

same namespace but only with the citations dated until 2009. Each sample is first examined 

by two reviewers with all the information that a reviewer can obtain from all possible 

information sources to independently determine if the pair of citations belong to the same 

author. If both reviewers make the same decision for a sample, the validation ends with that 

consensus judgment. For those samples without consensus, the result depends on if one 

reviewer can persuade the other reviewer to reach agreement. If the reviewers still disagree, 

the pair will be arbitrated as unclustered.

Since consensus is reached for the samples in group CC (pairs clustered in both Authority 

2009 and our result) and group UU (pairs unclustered in both Authority 2009 and our 

result), the clustering decisions for those samples highly match the human judgments. This 

is proven by reviewing 50 random samples from group CC and 50 random samples from 

group UU. Initially, the reviewers disagreed on 6% and 2% of samples for CC and UU 

groups, respectively. After discussion the disagreement rates dropped to 2% for CC group 

while UU group remained the same. Compared with the reviewers’ labeling, the observed 

error rates of our clustering are 2% and 6% in group CC and group UU, respectively, as 

shown in Table 5.

However, in group CU (pairs clustered in Authority 2009 but unclustered in our result) and 

group UC (pairs unclustered in Authority 2009 but clustered in our result), there is a higher 

level of error. For 100 samples in group CU and 100 samples in group UC, initially the 

reviewers did not agree on 23% and 16% of samples, respectively. Discussions between 

reviewers reduced disagreement rates to 5% and 4% for CU and UC groups, respectively, 

which were eventually solved through examination and majority voting by all participating 

reviewers. Based on reviewers’ labeling, our clustering outperforms Authority 2009 in group 

CU while underperforming in group UC. As a result, pairwise splitting error rate (PSER) is 

9.3% for Authority 2009 and 23.1% for our result, while lower pairwise lumping error rate 

(PLER) is 12.5% for Authority 2009 and 3.2% for our result, respectively. The performance 

on the 100 samples for each of CU and UC groups comparing our clustering and Authority 

2009 is examined with one-tailed Sign test (Mendenhall, Wackerly, & Scheaffer, 1989), 

which gives P values of 0.097 and 0.242 for CU and UC groups, respectively.

Splitting errors contribute 7.7% and 1.8% to the final error rates for our clustering and 

Authority 2009, respectively, while lumping errors contribute 2.2% and 10.1%. Since group 

CU is almost 10 times the size of group UC, our clustering reduces the overall pairwise error 

rate to 9.9% from 11.9% for Authority 2009. Based on the pairwise error results, we also 

compute precision and recall scores for both Authority 2009 and our clustering. Compared 

to Authority 2009, our clustering improves precision while lowering recall. Overall, the F-

score increases to 92.9% from 92.2% for Authority 2009.

In addition to evaluation based on random samples, researchers also propose computing 

precision, recall, and F-scores by comparing reliable reference authorship records with 

clustering results generated by a disambiguation process (Kang et al., 2009; Ferreira et al., 

2010; Levin et al., 2012). With knowledge of all the publications by a particular author (gold 
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cluster), a cluster is selected as the matching cluster, which among all the computed clusters 

has the most overlapping publications with the gold cluster, and if a tie occurs, choose the 

one with the fewest nonoverlapping publications. Then pairwise precision, recall, and F-

score are defined:

We collected reference authorship information by examining more than 200 researchers in 

the clinical medicine field from the preliminary lists of Highly Cited Researchers (http://ip-

science.thomsonreuters.com/hcr/clinical_medicine.xlsx). Based on availability, some 

profiles of these researchers are downloaded from various sources, including 

www.researchgate.net (an online research profile hub based on researchers’ own 

contribution), Harvard Catalyst Profiles (http://catalyst.harvard.edu/, an academic profile 

database created with aid of faculty members), COS Pivot (http://pivot.cos.com, a 

commercial profile database editorially created from publicly available content, university 

websites and user input), and www.researcherid.com (online profiles managed by 

researchers with a unique identifier). However, these sources also suffer from inaccurate 

bibliographies for some authors. Institutional databases (e.g., Harvard Catalyst) may not 

collect publications written at other institutions, and the COS Pivot database divides some 

authors’ publications into separate profiles by the different institutions, with which the same 

author has been affiliated. On the other hand, some authors may be associated with 

publications that are not authored by them (e.g., more than half of the publications listed 

under Peter M. Schneider’s ResearcherID do not list his name as author). By comparing and 

reconciling bibliographic information from different sources, we created gold standard 

publication records for 40 highly cited researchers complemented with their individual 

homepage information, and used them as reference clusters for evaluation.

With reference clusters of the 40 researchers, we compare precision, recall, and F-scores in 

Table 6 for our clustering results against Authority 2009. Our clustering results are generated 

for the namespaces including the 40 author names based on the citations until 2009. The 

average precision of our clustering registers a 0.6% increase over Authority 2009 while the 

average recall is 0.3% lower. The overall F-score is improved by 0.4% over Authority 2009. 

To test if these differences are statistically significant, we chose the Wilcoxon signed rank 

test (Neuhäuser, 2012), a nonparametric test examining the magnitudes and signs of the 

differences between paired observations. The Student’s t-test is not applicable because the 

samples fail the Shapiro–Wilks normality test (Neuhäuser, 2012). With the one-tailed 
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Wilcoxon test, the P values for precision, recall, and F-score are 0.015, 0.326, and 0.136, 

respectively. The test confirms a statistically significant precision improvement in our 

clustering over Authority, while the loss of recall is not statistically significant at the 0.05 

level. As a result of the combined effects, the average gain of F-score is not statistically 

significant. Additionally, to evaluate the impact of name compatibility check on the 

disambiguation performance, we conduct disambiguation for the 40 researchers by removing 

first name information. Consequentially, more lumping errors and fewer splitting errors 

occur, with average precision and F-scores dropping from 95.7% to 87.9% and from 93.4% 

to 89.0%, and recall increasing from 92.3% to 92.7%, respectively.

We also collected individual publication records from NIH researchers (many in 

fellowships) who had at least two publications before 2009. In total, 47 profiles were 

collected and are employed here as gold standard clusters for evaluation. Compared to 

Authority 2009 results, the average pairwise precision, recall, and F-scores of our clustering 

improve by 2.0%, 2.3%, and 2.2%, respectively. Compared to the highly cited researchers, 

our NIH researchers have significantly smaller numbers of publications (most <100 papers). 

Small gold standard clusters tend to produce higher variance in performance numbers, and 

the performance gains are not statistically significant.

In addition to gold standard author profiles, we also evaluated the pairwise error rate with 

two other gold standard data sets: self-reference pairs and grant participants. By analyzing 

citation data in PubMed Central (PMC), more than 2.7 million pairs of citations were 

verified as same author by self-citation. Some pairs of self-citation papers share multiple 

common authors, and each coauthor is converted to a sample pair for its own namespace. In 

total 4.7 million such pairs constitute a high-quality gold standard data set for true positive 

pairs as it is rare for one author to cite another same-name author and our name 

compatibility check removes incompatible author names automatically. Our results fail to 

cluster 3% of all these pairs, while 2.1% are unclustered in Authority 2009. The second gold 

standard test data are created from analyzing over 173 thousand distinct grants in over 1.3 

million citations in PubMed. With name compatibility check applied on papers sharing 

common grant information, about 23 million pairs of common-grant citations are created for 

all the common authors from those pairs. For a pair of citations sharing multiple grants, only 

one pair is created. Authority 2009 splits 7.4% of all the pairs, while our result splits 8.5% of 

all the pairs.

Both self-reference and common grant information are high-quality features indicating the 

same author relationship; therefore, these data sets demonstrate much lower splitting error 

rates than random samples. In self-reference data, there is a strong tendency for a pair of 

papers to share a common topic, as well as coauthors. On the other hand, in large grants, 

different citations by the same author may be published with completely different 

collaborators, and share fewer features (e.g., different affiliations), which may lead to lower 

pairwise similarity and higher splitting error rates.
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Discussion

There are still some cases that our author name disambiguation framework cannot handle 

correctly, for various reasons, such as unavailability of key information, imperfect data, and 

noise in the data, among other obstacles. It is necessary in the name disambiguation task, as 

a practical solution, to consider the tradeoff between different aspects of performance. 

Compared to other name disambiguation methods, our framework commits to minimizing 

disambiguation errors while focusing on limiting lumping errors. To improve the user 

experience with our information retrieval system, precision is very critical for delivering 

relevant search results. In the case of name disambiguation, lumping errors (although 

increasing recall) hurt the user experience by mixing citations from different authors in the 

same cluster and therefore impact search efficiency negatively: (1) the clusters with lumping 

errors are larger than necessary and may cause a prohibitively long list of retrieval results, 

(2) citations from different authors may compete for the top ranks, which increases the time 

for the user to find relevant citations and lowers the chance of success. On the other hand, 

with a good retrieval interface, some splitting errors may be tolerated by a user, especially 

when the splitting errors are due to the same author publishing with different coauthors in 

different areas. A user who queries an author name is usually interested in retrieving closely 

related citations on similar topics. For such users, a splitting error is a relatively minor issue 

when the retrieval interface displays the citations from the same cluster in decreasing order 

of similarity to the query citation. The critical top ranks are still occupied by the most 

similar citations and are most likely to satisfy the user’s query, which is shown by the 

improved click through rate of PubMed users on these queries (reported here).

Considering these performance issues, our disambiguation framework takes precautions to 

minimize lumping errors in the whole process. As shown in Table 4, our clustering only 

clusters 66.6% of all the sample pairs, while Authority 2009 clusters 80.4%. Most of the gap 

consists of the pairs clustered in Authority 2009 but separated in our clustering (CU group). 

In fact, our clustering achieves lower error rate (43%) than Authority 2009 (57%) within this 

group of pairs. Consequently, our clustering increases overall precision to 96.8%.

One of the important factors leading to lower clustering level and higher precision in our 

clustering is the strict name compatibility check enforced in the clustering algorithm. Due to 

lack of a standard for name information among publishers, it is a daunting task to analyze all 

the author name instances in PubMed correctly. For the same author, there could be various 

representations in different journals and in different languages. Normally, PubMed employs 

a last/first/middle name template for author name information. However, due to 

heterogeneous data sources, an author name could be represented in different ways: first 

name reduced to initial, and/or, missing middle name information. There are also groups of 

authors whose naming systems are more complicated than simply last/first/middle names, 

such as Arabic and Indian names. Regardless of an author’s cultural background, PubMed 

tries to parse the name instance by a last/first/middle name template, which can cause 

inconsistency among the name representations of the same author. For some international 

authors, the publishers may encode author names with non-ASCII characters differently and 

it takes careful Unicode mapping to connect different encodings of the same name. When 
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Unicode mapping is not applicable for non-roman characters, the names may be romanized 

in multiple ways (e.g., various phonetic systems exist for romanizing Chinese characters).

Serious efforts are required to handle author names properly, and the tradeoff should be 

considered when balancing the targets of precision and coverage. Previous work favors 

coverage more than precision by allowing partial matching or low edit distance when 

comparing author names. This approach maximizes clustering opportunities regardless of 

the cultural background of authors. However, for some groups of author names (e.g., 

Chinese names), partial matching or low edit distance may not be as applicable due to the 

nature of phonetic transcription. To avoid connecting some apparently different authors, we 

take a different approach by strictly enforcing name compatibility in our system. This 

feature helps to achieve a significantly lower PLER in our clustering. To improve recall, we 

also add some frequent low edit distance name variants to the traditional nickname list. 

Although it is infeasible to take cultural context of names into consideration for all the 

authors, we plan to implement more accurate name analysis mechanisms to detect an 

author’s cultural background for the highly populated author groups. With such mechanisms 

in place, we will be able to compare names based on the naming customs within a cultural 

group and compute the similarity properly. For example, partial matching and lowedit 

distance name pairs may be considered as possibly belonging to the same author among the 

European population, while regarded as different author identities for those of East Asian 

background.

Some difficult cases are due to the lack of information. Compared to the high availability of 

Author, Title, and Journal fields, the other two important PubMed fields, Abstract and 

Affiliation, are available in only about half of the PubMed citations. External information 

from publishers, the web, and social networks (Kanani, McCallum, & Pal, 2007; Yang et al., 

2008; Pereira, Ribeiro-Neto, Ziviani, Laender, Gonçalves, et al., 2009; Torvik & Smalheiser, 

2009; Levin & Heuser, 2010) has been shown to help in such cases. Since our current 

clustering is completely based on PubMed data, the coverage could be improved with 

external information. Besides the per-document metadata available in current PubMed 

citations, modern publishers usually provide more per-author details about recent research 

papers, some of which are highly indicative of author identity, such as full author names, 

affiliation information per author, and e-mail contact per author. Previous work takes 

advantage of some of the information available from publisher websites, and shows a 

positive impact on coverage. We believe such additional information definitely helps in 

disambiguation and we plan to extract and incorporate more information from external 

sources in our future development efforts. Some errors arise from imputing affiliation 

information to all authors on a citation when such information only applies to the 

corresponding author. More information specific to individual authors would remedy this 

problem.

Online Performance

Since May 2012, the PubMed website has provided access to our disambiguation results by 

retrieving author clusters for author name queries (http://www.nlm.nih.gov/pubs/techbull/

mj12/mj12_pm_author_ranking.html). In the past, clicking on an author name would 
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retrieve all the citations containing that name without disambiguation. Now the author name 

disambiguation feature provides access to the relevant citation cluster for that clicked author 

name. The retrieved citations are displayed in the descending order of similarity score 

against the clicked citation, with more similar citations at higher positions.

By measuring user click-through rate (CTR), an analysis of the PubMed user experience 

shows that the disambiguation feature has considerably increased the rate that users continue 

to click on the citations retrieved from an author name query, which suggests that the query 

results are more relevant to their search interests. Before disambiguation became available, 

upon clicking on an author name in a citation, PubMed users continued by clicking on one 

of the retrieved citations 34.9% of the time. This is based on an analysis of 1 week of the 

PubMed log data for April 2012. A similar analysis was performed 3 months later after 

PubMed started to provide author name disambiguation functionality. One week of PubMed 

log data for July 2012 showed that CTR increased to 36.9%. In reality, there is up to 1 week 

of latency between the appearance of new citations and the appearance of their 

disambiguation results. During this latency, disambiguation results are not available for 

~20% of users’ author name clicks. For the 80% of author name clicks where 

disambiguation results are available, PubMed users continue to click on a result 39.5% of 

the time compared to 26.3% for the remaining 20% of author name clicks without a 

disambiguation result.

Conclusion

We have presented a complete description of our author name disambiguation system for 

PubMed citations. The evaluation of the disambiguation results demonstrated that our 

methods perform well on the entire PubMed collection and help to improve the PubMed 

users’ online experience.

To provide high-quality author name disambiguation results for a large-scale information 

retrieval system such as PubMed, machine learning and clustering methods were designed 

with key features to improve precision. With the ability to detect conflicting name variants, 

the name compatibility scheme facilitates accurate large-scale training data creation and 

regulates a clustering algorithm to minimize false clustering. Considering namespace size 

and proportion of positive pairs, the PAV function enables faithful conversion from similarity 

scores to pairwise probabilities. By creating the most probable initial clustering, our 

clustering algorithm chooses clustering paths leading to high-quality final results. The 

accurate author name disambiguation results benefit PubMed users by providing more 

relevant information to their name queries.

Our future work will focus on the following aspects. Author name information, the key input 

to our system, is still imperfect with errors and information loss. Considering the variety of 

cultural backgrounds of PubMed citation authors, a better human name processing system is 

necessary to recover the name information lost during the data collection stages. Based on 

an author’s cultural background, this system will process author names more intelligently 

and faithfully, providing more accurate information for disambiguation methods. Another 

possible direction of future work is to take advantage of author relationships to construct 
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author networks which can further capture potential clustering opportunities, as shown to be 

effective in (Bhattacharya & Getoor, 2007). Author networks can transcend namespaces and 

provide new features to enhance machine learning and the clustering process. The obstacle 

to applying this technique to PubMed data is the substantial amount of additional 

computation. An intelligent method is required to locate the most profitable relations by 

examining current clustering results. Last but not least, non-PubMed information is shown to 

have a significant positive impact on disambiguation quality. In addition to correcting errors 

in PubMed citations, information extracted from publishers can help complement the per-

author information which is now lacking in current PubMed data. An author’s personal 

webpage is another rich source of additional information which may provide the most up-to-

date bibliography and help indicate personal identity.
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FIG. 1. 
User behavior statistics with different number of retrieved citations.
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FIG. 2. 
Workflow of similarity computation and clustering.
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FIG. 3. 
Weight functions of PubMed field features.
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FIG. 4. 
PAV functions of Huber score.
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FIG. 5. 
Coauthor pair proportion and name space size (x-axis shows the floor of natural logarithm of 

namespace size).
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TABLE 2

Computed features from PubMed fields.

Field Field content Stopword list Feature

Title text string General similarityoverall(similarity1)

Affiliation text string affiliation similarityoverall(similarity2)

Grant text string General similarityoverall(similarity3)

Journal text string General similarityoverall(similarity4)

Abstract text string General similarityoverall(similarity5)

Substance text string General similarityoverall(similarity6)

MeSH text string MeSH similarityoverall(similarity7)

Author text string similarityname(similarity8)

Date numerical yeardiff (similarity9)

Note. The affiliation stopword list is the PubMed general stopword list with addition of common affiliation terms.The MeSH stopword list is the 
PubMed general stopword list with addition of common MeSH terms.
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TABLE 3

Name information based clustering priority.

Name label information per cluster

First name Middle name

Priority Cluster 1 Cluster 2 Cluster 1 Cluster 2

1 Same Same Same Same

2 Same Same Middle name None

3 Full first name First initial Compatible
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TABLE 4

Comparing clustering results.

Our clustering

Clustered (C)
66.6%

Unclustered (U)
33.4%

Authority 2009 Clustered (C) 80.4% CC: 65% CU: 15.4%

Unclustered (U) 19.6% UC: 1.6% UU: 18%
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