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Copy number variations (CNVs) are structural variants associated with human diseases. Recent studies verified that disease-
related genes are based on the extraction of rare de novo and transmitted CNVs from exome sequencing data. The need for more
efficient and accurate methods has increased, which still remains a challenging problem due to coverage biases, as well as the
sparse, small-sized, and noncontinuous nature of exome sequencing. In this study, we developed a new CNV detection method,
ExCNVSS, based on read coverage depth evaluation and scale-space filtering to resolve these problems. We also developed the
method ExCNVSS_noRatio, which is a version of EXCNVSS, for applying to cases with an input of test data only without the need
to consider the availability of a matched control. To evaluate the performance of our method, we tested it with 11 different simulated
data sets and 10 real HapMap samples’ data. The results demonstrated that EXCNVSS outperformed three other state-of-the-art

methods and that our method corrected for coverage biases and detected all-sized CNVs even without matched control data.

1. Introduction

Recent technological advances in next-generation sequenc-
ing (NGS) and massively accumulated exome sequencing
data highlight the need to detect disease-related genes and
genetic variations from exome sequencing. The analysis of
exome sequencing data became available even in small-
scale laboratories due to its low-level memory requirement
and decreased computational complexity compared to whole
genome sequencing data. Furthermore, recent developments
in many web-based and/or cloud-based pipelines of exome
sequencing data analysis facilitate analyses, such as pre-
processing, alignment processing, variant detection, and
functional study, especially in small-scale laboratories [1, 2].
However, these pipelines are restricted to the extraction
of simple variants, such as SNPs and short indels, which
are not suitable for detecting structural variants (SV), such
as copy number variations (CNVs) and large indels. A

CNV is defined as a DNA segment of 50 bp or larger and
present at a variable copy number in comparison with a
reference genome. A CNV is an important variant associated
with human diseases such as autism, intellectual disability,
epilepsy, schizophrenia, obesity, and cancer [3-6]. Specif-
ically, researchers verified disease-causing genes based on
the extraction of rare, de novo, and transmitted CNV's from
exome sequencing data [7-9].

However, exome-based CNV detection still remains a
challenging problem due to two obstacles: one is the pres-
ence of coverage biases introduced by the capture and
sequencing of exomes and the other is the sparse, small size,
and noncontinuous nature of target regions [10]. There are
publically available CNV detection methods based on read
depth approaches, including ExomeCNV [11], Contra [12],
CoNIFER [13], XHMM [14], and Excavator [15]. Each of
these methods implements key strategies to mitigate coverage
biases caused by the capture and sequencing of exomes.
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ExomeCNYV involves a modeling method using the Geary-
Hinkley transformation to obtain normally distributed read
coverage data. Contra adopts a normalization method that
includes the use of base-level log-ratios and corrects for an
imbalanced library size. Both CoNIFER and XHMM com-
bine read coverage data with singular value decomposition
(SVD) and principal component analysis (PCA) methods to
identify and remove experimental noise. Excavator adopts a
median normalization procedure to reduce systematic biases
due to GC content, mappability, and exon size. While some
of these methods reduce systematic biases in test data by
efficiently utilizing many samples, they may have a limited
application only in sequencing experiments dealing with a
large number of samples. CoNIFER and XHMM require
many samples at once in order to normalize the test data by
SVD and PCA procedures. The baseline control suggested
by Contra also requires many samples to generate a pooled
model.

To detect the boundaries of variant regions, some of these
CNYV detection methods adopt a simple or modified circular
binary segmentation algorithm [16], which usually performs
well for subdividing a continuous region. However, this may
result in missing larger or smaller variants due to sparsely
targeted regions in exome sequencing data [15].

To overcome the obstacles presented by conventional
methods, we developed a new CNV detection method,
ExCNVSS, based on read coverage depth evaluation and
scale-space filtering [17]. Our key strategies include correct-
ing coverage biases introduced by capture and sequencing
through read coverage depth evaluation and consideration
for the sparse, small size, and noncontinuous nature of
target regions through the multiresolution system of scale-
space filtering. This enables the detection of different types
and the exact location of CNVs of all sizes. Furthermore,
ExCNVSS_noRatio, a version of EXCNVSS developed with
the intention of applying it to the case of only the input of test
data and without using control data, can detect all-sized copy
number gains and losses for concatenated, arbitrary-sized
exonic regions even when a matched control is not available.

Our method can be summarized as follows: (1) It extracts
base-level read coverage depth within each targeted exonic
region from the read alignment data and merges them to
generate concatenated base-level read coverage data. (2) To
reduce the coverage bias effect, base-level read coverage data
are normalized by our four-step normalization protocol. In
each step, target exon read coverage data are considered to
be evaluated from test data only or from the ratio of test
and control data, according to the contents of the input,
test data only, or both test and control data. (3) The scale-
space filtering is then applied to normalized base-level read
coverage data using a Gaussian convolution for various scales
according to a given scaling parameter. By differentiating the
scale-space filtered data twice and then finding zero-crossing
points of the second derivatives, inflection points of the scale-
space filtered data are calculated per scale. (4) Finally, the
types and exact locations of CNVs of test data are obtained
by using parametric baselines, which are evaluated from the
normalized base-level coverage data, and by analyzing the
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finger print map, which is the collection of contours of the
zero-crossing points for various scales.

We carried out simulation experiments to assess the
performance of EXCNVSS and to extract the optimal values
of parametric baselines from the results. The performance
assessment of EXCNVSS was obtained by evaluating the false
negative rate (FNR) and false positive rate (FPR) on the
basis of the number of detected target-level CNV regions in
transcript coordinates. The performance of EXCNVSS was
then compared with conventional methods. In addition, the
performance of EXCNVSS was validated by experiments with
10 individual HapMap samples using optimal parametric
baselines. The results of the experiments showed a reasonable
trade-off between FNR and FPR, even when an artificial
data set was used as a pseudo-control, which showed that
ExCNVSS could precisely detect CNVs of various types and
sizes.

2. Materials and Methods

Figure 1 shows the flowchart of the overall process of our
method. It includes two procedures: data preprocessing and
CNV estimation. A new, four-step normalization protocol
was implemented for the data preprocessing procedure. The
scale-space filtering, which is consisted of Gaussian convo-
lution, finger print mapping, baseline adjustment, interval
search, and CNV detection, was applied for the CNV estima-
tion procedure [18].

2.1. Preprocessing Data. The normalization protocol of the
preprocessing procedure implemented consisted of four
steps: evaluation of base-level read coverage data, segmen-
tation, estimation of segment-level normalized mean read
coverage data, and estimation of base-level normalized distri-
bution of read coverage data in order to minimize the effect of
the sources of variation, such as GC content bias [19], library
size effect [20], and exon edge bias [21]. In each step, the read
coverage data were considered to be evaluated from test data
only or from the ratio of test and control data, according to the
contents of the input, test data only, or both test and control
data. The details of each step are described in the following
subsections in which the case of the input with respect to test
and control data is considered.

2.1.1. Evaluation of Base-Level Read Coverage Data. Read
coverage data Ry and R were extracted from input data
Tand C, which were read alignment results of test and control
genomic sequencing data, respectively. The concatenated
target exon read coverage data R, = RpR:---R} and
RS, = RLRZ-- R were extracted from the read coverage
data Ry and R, respectively, where R}, = tit;--~t;i and
R. = cd- --c:;i are the ith target exon read coverage data
with length #; of test and control data, respectively, and #,
is the total number of target exons. Then, the base-level read
coverage data were obtained by evaluating the target exon
read coverage ratio data Ry = R%CR%'C a R;“l o> Where RiTIC

is the sequence of the ratio [r;.] = [t;/c;], 1 <j<mof
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FIGURE I: The flowchart of our method. It includes two procedures: data preprocessing and CNV estimation. The data preprocessing procedure
included a four-step normalization protocol. The CNV estimation procedure included a Gaussian convolution, finger print mapping, baseline

adjustment, interval search, and CNV detection.

the ith target exon read coverage data R} = tit) -t and
R =cicl--- ¢, multiplied by the parameter w for correcting
the imbalanced library size effect between test R and control
R read coverage data. The parameter w is the ratio mR¢,/mR%.
N, oN; i XM XM
of the total sums mR7. = ) 2 tand mR¢ = }; 2 c; of
the test and control read coverage data in all the target exons.
In the estimation of the sequence of the ratio [r;.], 1<j<m,

the cases of the read coverage data with values of nearly zero
are considered as follows, where € represents a very small
nonnegative number which is here set to be 107°:

0, tj. <€
. 1, t<e)&(c <e
r'l. — ( 7 ) ( ] ) (1)
J ti<
2 others.
]

2.1.2. Segmentation. The sequence RiT|C = [w- r;.], 1 <ic<
n,, lmod (n;,b,)/2] < j < |mod(n;,b,)/2] + b, x |n;/b] of
each target exon is partitioned into n\ = [n;/b,| segment
sequence [R'], 1 < s < #, with b, equal size starting from j =
[mod (n;,b,)/2] + 1, where the remnant sequences between
1 < j < |mod(n;,b)/2] and |mod (n;,b,)/2] + b, x |n;/b,] <
j < n; are neglected.

2.1.3. Estimation of Segment-Level Normalized Mean Read
Coverage Data. The mean mR; = Y, w - ri/b, 1 < s <

n,1 < i < n, of each segment was adjusted to be the
normalized mean tR; = (mR{ — mean; ., 1<, (MR)))/
(stdlgssni,lsigne(mRi)/ noxn), 1l <s<n,1<ic<n,
by using its t-score, where mean; ., <, (MR;) and
std <sen 1<icn, (MR;) are the mean and standard deviation of
the means of each segment in all target exons. Then, the
normalized mean tR, 1 < s <, 1 < i < n,, of each segment
was shifted by the minimum value min, . ., <<, (tR() of the

normalized means in order to ensure that the mean of each
segment was not to be less than zero.

2.1.4. Estimation of the Base-Level Normalized Distribution of
Read Coverage Data. The sequence R\, 1 <s<n,1<i<n,
of each segment of the ith target exon read coverage ratio
data was readjusted into nR, 1 < s < n,1 < i < n,
to be normally distributed within the segment based on the
normalized mean tRi and the standard deviation std, S(Ri) of
the segment.

2.2. Copy Number Estimation. The CNV estimation proce-
dure included five steps: Gaussian convolution, finger print
mapping, baseline adjustment, interval search, and CNV
detection as described in our previous work [18]. Some
changes were necessary in the steps of baseline adjustment
and CNV detection to reduce the effect of the sources of
variation. Therefore, descriptions of the CNV estimation



procedure mainly concerned changed parts in the steps of
baseline adjustment and CNV detection in this section.

In the Gaussian convolution step, the sequence c[i'] =
[MR)] = ¢+, = by x Y nl, of readjusted target exon
read coverage ratio data obta1ned in the preprocessing proce-
dure was decomposed into [ layers by Gaussian convolution
with increasing o as in the following equation:

c [i',k] =c [i'] * g [j',ok]
m (2)

_ _ ot 12t
SO B Pkl

j==m

where c[i', k] is the scale-space image ofc[i'],k (0 < k <1-1),
representing the index of the layer of the scale-space image,
0y is the value of the scale parameter at layer k, and m is the
window size of the Gaussian kernel g[j', o;], which is set to
m = 30;. The scale parameter oy, is the standard deviation
of the Gaussian kernel g[j’,0;] and is set to o, = 10* x
(1.1)* considering the range of detectable CNV size and time
complex1ty Here, we obtained the scale-space image c[i’, k] of

c[i'] by applying a discrete Fourier transform in the frequency
domain to reduce the computational complexity. Let Clw]

and Glw, k] = ¢¥'%/2 be the discrete Fourier transform of
c[i'] and g[j',0;], respectively. The scale-space image was
then obtained by cli',k] = S YGw, k]C[w]}, where T
is the inverse discrete Fourier transform operator. Then, the
zero-crossing points of the second-order derivatives of the
scale-space image cli’, k] were searched for in each layer k(0 <
k <1-1) in the step of ﬁngerprint mapping. Here, the second
derivative ¢ [i, ] of c[z k] was approximated by the second-
order difference, ¢"'[i', k] = c[i’ + 1, k] = 2¢[i’, k] +c[i’ - 1, k].
A zero-crossing signal z[i’, k] was defined as follows:

z [i',k]
+1, (c" [i' + l,k] >
=41, (c” [i' + 1,k] <

0, others,

0)&(c" [i' - 1,k] <0) )

0)&(c" [i' - 1,k] > 0)

where the condition (¢'[i' + 1,k] > 0)&(c"[i' - 1,k] < 0)
represents the zero-crossing point i’ at which ¢”'[i’, k] crosses
zero from minus to plus and the condition (¢"[i’ + 1,k] <
0)&("[i' = 1,k] > 0) from plus to minus. Next, in the
baseline adjustment step, two parametric baselines, u;,(k)
and [, (k), were calculated for each layer that had more than
two nonzero elements in the zero-crossing signal using an
empirical cumulative distribution function of the scale-space
image, cli’, k]. The parametric baseline u;, (k) was estimated
to be the lowest value of the scale-space image among those
ranked within a given threshold p, .. from the top at layer
k. Similarly, the parametric baseline (k) was estimated to
be the highest value of the scale-space image among those
ranked within a given threshold p,;, from the bottom at
layer k, where the threshold p,;, was especially decided
considering the portion of the test read coverage data with
a value of zero. In the interval search step, intervals were
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searched from the zero-crossing signal z[i’,k] using the
parametric baselines 1, (k) and [, (k) for each layer. The mth
interval [1,, 1, u,, ;] at layer k was defined as a closed interval
{i" | Lyx <i' < u,,} in the position index i’ of the zero-
crossing signal z[i', k], which is a set of the position indices
of z[i',k] between I, and u,, inclusive, satisfying the
following three conditions to be a putative CNV region.
First, the interval [1,, 1, u,, ;] does not include position indices
corresponding to all regions of CNVs already declared at
layers above the layer k. Second, zl[l,, 1, k] - z[u,,;, k] < 0
and z[i', k] = 0 for all the position indices between I, and
u,, - Third, the average :f'il"mk cli', K1/ Wy = Ly + 1) of the
scale-space image on the position indices between I, and
u,, ;. inclusive is beyond the given parametric baselines, u;, (k)
or [, (k). Once we had the mth interval I, ;, 1, ;] as a putative
CNV region, we traced the zero-crossing signal z[i', k] from
the positions I, and u,,, at layer k until we obtained the
corresponding positions l:n’k and u:n’k, respectively, bounded
at layer k = 0, where the closed interval [l,'nk, :nk] i
U, < i < u mk is to be declared as a CNV. Finally,
the CNV detection step was preceded by searching for
intervals from the top layer to the bottom layer sequentially.
When searching for intervals at layer k, the sum of sets
Uf,‘“:*‘]zﬂ UZ‘:‘I“’ [l,'m, , u:m,] corresponding to all the regions of
CNVs already declared at the upper layers from k + 1 to k,,,
were excluded, where m is the total number of CNVs
detected at layer s', as described in a previous work [18]. The
type and localization of a CNV were determined by using the
results of the interval search. An interval [1,, ;, 1, ;] identifies
the region where a statistically significant variation occurred
on the input sequence and a CNV gain or loss was to be
detected. That is, a CNV gain or loss was identified if the
average ,'”lk cli k1/(u o =L g + 1) of a scale-space image

in the 1nterval was above u, (k) or below [, (k), respectively.
Then, the localization of a CNV was defined by tracing to the
corresponding region [/ ) as the layer k converges to
zero.

max,s’

mk’

2.3. Materials. TargetedSim [http://sourceforge.net/projects/
targetedsim/] is a simulation tool that creates paired-end
reads from targeted regions in a chromosome and can also
simulate gains or losses of CNVs at random locations within
targeted regions. For generating a simulated exome read data
set, we used the TargetedSim tool, which has been developed
by the Contra project group [12]. Test and control data were
simulated as Illumina paired-end reads using chromosome
1 of the human reference assembly (hgl9). The read length
and median insert size of the simulated data were 36 bp
and 200 bp, respectively. The simulated data covered 21,881
target regions (a total length of 5,256,986 bp, average length
of 240 bp, minimum length of 115 bp, and maximum length
of 8,551 bp) in chromosome 1, which are the same data used
by the Agilent SureSelect Human All Exon 50 Mb V3 cap-
ture platform [https://earray.chem.agilent.com/suredesign/].
We generated 11 test data sets, each of which contained
approximately 20 to 30 CNV regions, corresponding to
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approximately 70-100 target regions of an appropriate size
(an average length of 222 bp, a minimum length 0f 120 bp, and
a maximum length of 8,260 bp in the transcript coordinate).
We aligned test and control read data to the human reference
assembly using BWA [http://bio-bwa.sourceforge.net/] and
obtained test and control BAM files with an average coverage
level of 40x, respectively, which is assumed to be the bottom
limit of a reasonable amount of sequence for variants calling.

The exome sequencing data downloaded from the 1000
Genome Project website (http://www.1000genomes.org) were
used for the experiment with real human data. The down-
loaded data were BAM format files of 10 HapMap samples:
NA12843 (47x), NA12842 (182.6x), NA12748 (49.5x), NA12718
(102.9x), NA12275 (86.9x), NA12273 (77.2x), NA12272 (92.6x),
NA11843 (50.9x), NA10847 (99.2x), and NA06984 (54x), each
of which is a member of the Utah residents (CEU) population
and was sequenced in the same BI genome center and
captured using the same assay (Agilent SureSelect Human
All Exon V2). One individual sample of NA19152 (101.6x)
was also downloaded for use as a control data set, which
is a member of the Yorba (YRI) population, sequenced and
captured by using the same technology as the test data sets.
The capture platform covered 20,258 target regions (a total
length of 4,775,342 bp, average length of 235 bp, a minimum
length of 115bp, and a maximum length of 8,551bp) in
chromosome 1.

As the downloaded 10 germline data sets were generated
without the availability of matched control data sets, a
pseudo-control data set had to be created to serve as the
control. There are two methods that have been used to
generate a control sample data: one derives a matched control
data set from a pool of other samples by averaging the depth
of coverage of each exon across all exomes; the other uses
a specific and different germline sample as the control. In
general, generating a pooled sample is tedious and time-
consuming work that entails preprocessing tens or hundreds
of samples, which are captured and sequenced by the same
platform. When a specific individual sample is used as a
pseudo-control, the selection is made carefully such that (1)
the pseudo-control sample is a member of other populations
having a different background (not genetically related), (2) it
is captured using the same probe set and capture method and
sequenced in the same manner as the test samples, and (3) it
has the same gender as the test samples.

However, even if a pooled sample is generated from many
well-selected independent samples or a specific sample is
selected from unrelated individuals, such as from a different
population, we cannot ascertain that this pseudo-control data
actually has an average genomic normal copy number of
2 and does not share common CNV regions with the test
sample data [11].

The pseudo-control should capture the technical varia-
tion of a platform, but not CNV variations in the test sample.
With these considerations, we propose using an artificially
simulated data as pseudo-control data. Currently, there
have been various simulation methods that generate reads
by emphasizing different characteristics of real sequenc-
ing data for various applications. Wessim [22] particularly
aims for a real exome sequencing simulation. As effective

pseudo-control read data, we adopted a simulated exome
data by Wessim. Wessim emulates conventional exome
capture technologies, such as Agilent’s SureSelect and
Roche/NimbleGen’s SeqCap, and generates realistic synthetic
exome sequencing data, in which fragment length and GC
content are rigorously considered to reproduce accurate
coverage biases. We aligned the pseudo-control read data to a
human reference assembly using BWA and generated a BAM
file with an average coverage level of 40x.

The BAM file of each of the test and control samples was
processed, sorted, and filtered with SAMtools [http://samtools
.sourceforge.net/]. After removing PCR duplicate reads with
MarkDuplicates of Picard [http://picard.sourceforge.net],
local realignment around indel was performed using the
RealignerTargetCreator and IndelRealigner of GATK [https://
software.broadinstitute.org/gatk/].

The performance of EXCNVSS was assessed by estimating
the FNR and FPR on the basis of the number of detected
target-level CNV regions in transcript coordinates. Each
region was considered validated if an algorithm called for
more than 30% of synthetic or known CNV regions. ExCN-
VSS was compared with three conventional CNV detection
methods: ExomeCNYV, Contra, and Excavator. Furthermore,
the performances of all four methods were assessed and
compared with ExXCNVSS_noRatio.

The experiments were carried out in Windows 7 and Cen-
tOS 6.2 on an Intel Core i7 3.5 GHz CPU with 32 GB of main
memory and a 2 TB hard drive. The programming language
used for the development of EXCNVSS was MATLAB.

3. Results and Discussion

3.1. Experiments with Simulated Data. The first experiment
was carried out to assess the performance of ExCNVSS
according to various values of the threshold values p,..
and p,;,» which were used for determining the parametric
baselines. Performance was assessed by estimating FNRs and
FPRs on the basis of the number of detected target-level
CNV regions. The experiments for each threshold value were
performed with 11 different simulated data sets, the results of
which were averaged for the assessment. The overall FNRs
and FPRs were in the range of 10.93-13.76% and 3.11-62.21%,
respectively, for various threshold values (p,,. and p,i). The
best performance was obtained at threshold values of p, .. of
0.9875 and p,;, of 0.0125, where the values of FNR and FPR
were 13.76% and 3.11%, respectively. Therefore, the threshold
values p, .. 0f 0.9875 and p,,;, of 0.0125 were used as defaults
for ExCNVSS. Similarly, ExCNVSS_noRatio showed FNRs
and FPRs in the range of 26.73-29.33% and 5.94-46.66%,
respectively. The best performance of ExCNVSS_noRatio
was obtained at p, .. of 0.9875 and p,;, of 0.04, where the
values of FNR and FPR were 26.73% and 5.94%, respectively.
Therefore, threshold values of p,,,, 0f 0.9875 and p,,,;, of 0.04
were used as defaults for EXCNVSS_noRatio.

The performance of EXCNVSS was compared with that
of ExXCNVSS_noRatio, Contra, Excavator, and ExomeCNV
on 11 simulated data sets, where various parameters of each
method were determined according to the instructions in
each manual. The parameters variable in Contra, Excavator,
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F1GUre 2: The ROC curves of the five methods. FNRs and FPRs were calculated on 11 simulated data sets at different threshold levels, and
ROC curves were generated on the basis of averaged values. The circled symbol on each curve represents the performance of each method

using default parameters.

and ExomeCNYV are as follows: Contra (numBin, minRead-
Depth, minNBases, pval, and nomultimapped); Excavator (w,
0, dNorm, ¢, seg, u, and [); ExomeCNV (coverage.cutoff,
admix, sdundo, alpha, min.spec, and min.sens). We calcu-
lated the performance in order to check the increase in
FPRs and the change in FNRs while changing values of
pval (p value threshold for filtering) for Contra, 0 (baseline
probability) for Excavator, and min.spec (desired minimum
specificity) for ExomeCNV, which seemed to be directly
related to FPR.

The overall FNR of Contra was between 23.11% and
33.88% and the FPR between 0.02% and 93.83% for various
pval values. Contra achieved an average FNR of 33.88% and
FPR of 0.02% with its default setting. The overall FNR for
Excavator was between 27.99% and 52.60% and the FPR
between 0.23% and 82.11% for various 0 values. Excavator
showed an average FNR of 52.60% and FPR of 0.23% with its
default parameter settings. The overall FNR for ExomeCNV
was between 45.52% and 88.69%, and the FPR was between
0.02% and 94.02% for various min.spec values. ExomeCNV
showed an average FNR of 88.69% and FPR of 0.02% with its
default setting.

Figure 2 presents the receiver operation characteristic
(ROC) curves of ExCNVSS, ExCNVSS_noRatio, Contra,
Excavator, and ExomeCNV for comparison. As shown in
the ROC curves, the performance of EXCNVSS was better
than those of the other four methods. The conventional
methods, including Contra, Excavator, and ExomeCNYV, were
very conservative in calling a region significant, resulting
in high FNRs and low FPRs with default parameter set-
tings. Although some parameters can be varied to relax the
specificity for these methods, remarkable improvements have
not been observed in FNRs. However, ExXCNVSS_noRatio
provided a good performance in FNR with little increase in
FPR, even though control data to compensate for inherent
coverage biases were not applied. These results suggest that
both EXCNVSS and ExXCNVSS_noRatio can be very robust in

error-prone environments, resulting in a good performance
even at relatively low-level coverage data.

The second experiment was carried out to assess the
performance of EXCNVSS with respect to the size of CNVs.
The size of a target region in most exome capture platforms
is typically small and approximately 90% of target regions
are <300bp in length. For the experiment, we simulated
861 loss and gain target regions (minimum length of 120 bp,
maximum length of 8,260bp, and an average length of
222bp), including single exon losses and gains, as well as
variations spanning multiple exons in the test data sets. We
also generated control data sets with no CNVs and the same
mean coverage (40x) as the test data sets.

Table 1 shows the performance of methods on simulated
data sets, representing the total number of correctly detected
instances of small (100-159 bp), medium (160-299 bp), and
large (300-8260bp) variants, along with the fraction of
gain/loss regions of each in parentheses. The second and third
columns for each method represent false negative and false
positive rates and the range of detected gain/loss region sizes
(min/max), respectively.

The results show that ExCNVSS is superior to the other
four methods in terms of detecting CNVs of various sizes.
As EXCNVSS detects larger CNVs at a higher scale and
smaller CNVs at a lower scale, the FNR can be reduced in
various CNV sizes compared to conventional methods using
target-level log-ratio detection and segmentation. Addition-
ally, compared with other methods, ExCNVSS detects more
CNV loss regions, which may represent severe mutations
in Mendelian diseases. It has been acknowledged that CNV
losses are usually more harmful because a great deal of genetic
information is missing, whereas CNV gains involve repeating
nucleotide units.

ExCNVSS_noRatio showed a slightly lower performance
in detecting larger CNVs than the small or medium-sized
CNVs. This could be because biases may not be compensated
sufficiently at large CNV regions by our segmentation and
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TABLE 1: CNV detection performances across variant sizes using simulated data sets. Each method was run with its default parameters.
Size of variants 100~159 bp 160~299 bp 300~8260 bp
Number of simulated instances (gain/loss) 438 (212/226) 430 (219/211) 93 (52/41)
Size of gain instances (min/max) Gain (120 bp/151 bp) Gain (184 bp/296 bp) Gain (305 bp/8260 bp)
Size of loss instances (min/max) Loss (120 bp/151 bp) Loss (178 bp/299 bp) Loss (301 bp/1561bp)
ExCNVSS
Number of correctly detected instances (gain/loss) 365 (164/201) 383 (192/191) 82 (45/37)
FNR/FPR (%) 16.7/2.7 10.9/2.2 12.1/6.3
Detected region size (bp) Gain (120/151) Gain (184/296) Gain (305/8260)
(Min/max) Loss (120/151) Loss (178/299) Loss (301/1561)
ExCNVSS_noRatio
Number of correctly detected instances (gain/loss) 294 (105/189) 332 (141/191) 56 (18/38)
FNR/FPR (%) 32.8/6.4 22.8/4.3 42.0/9.5
Detected region size (bp) Gain (120/151) Gain (184/296) Gain (305/8260)
(Min/max) Loss (120/151) Loss (178/299) Loss (301/1561)
Excavator
Number of correctly detected instances (gain/loss) 221 (100/121) 202 (94/108) 43 (26/17)
FNR/FPR (%) 50.3/0.1 53.4/0.1 52.8/0.8
Detected region size (bp) Gain (120/151) Gain (207/296) Gain (305/871)
(Min/max) Loss (120/151) Loss (178/271) Loss (359/603)
Contra
Number of correctly detected instances (gain/loss) 247 (147/100) 371 (182/189) 44 (35/9)
FNR/FPR (%) 42.7/0.2 13.1/0.0 51.7/0.0
Detected region size (bp) Gain (120/151) Gain (184/296) Gain (305/8260)

(Min/max)
ExomeCNV
Number of correctly detected instances (gain/loss)
FNR/FPR (%)
Detected region size (bp)

Loss (120/151)

Loss (196/299)

Loss (303/1561)

24 (24/0) 69 (69/0) 18 (17/1)
94.3/0.0 84.3/0.0 78.8/0.0
Gain (120/151) Gain (191/296) Gain (305/8260)
Loss (=/-) Loss (=/-) Loss (1561/1561)

(Min/max)

normalization method without control data. Contra achieves
a good performance in detecting medium-sized CNVs,
while the FNR increased in detecting smaller and larger
CNVs. As previously mentioned, Contra, Excavator, and
ExomeCNV are conservative in calling a region significant
and they show relatively high FNRs and low FPRs with
default parameter settings. We can deduce that ExXCNVSS and
ExCNVSS_noRatio are effective methods in detecting CNV's
of various sizes by reducing the inherent noise in exome read
coverage data.

3.2. Experiments with HapMap Samples. The downloaded
BAM files of 10 HapMap samples were used for experiments
with real human data. The performance assessment was
accomplished by evaluating the FNR and FPR on the basis of
the Phase 3 variant list of the 1000 Genome project released
in 2014. Each region was considered validated if the algorithm
called for more than 30% of the known CNV region profiled
in the Phase 3 variant list. However, it should be noted that a
true gold standard CNV list for these HapMap samples is still

not available, and this list does not have 100% sensitivity and
specificity [23].

As previously mentioned, ExXCNVSS, Excavator, Contra,
and ExomeCNYV require two input data samples, test and con-
trol, to identify CNV variants. In this real data experiment,
two different types of pseudo-control data were used: one was
an artificial data set that simulates realistic synthetic exome
sequencing data, and the other was a specific sample data set
that was selected from unrelated individuals, such as from a
different population.

In the first experiment, we used an artificial exome
data generated by Wessim [http://sak042.github.io/Wessim/].
Wessim provides two distinct approaches for exome read
generation: ideal target approach and probe hybridization
approach. Using probe hybridization approach is recom-
mended when the probe sequence is available; it is much more
realistic and recovers the statistics of real data with default
parameter setting. Table 2 describes a quantitative analysis
of experimental results on the whole region of chromosome
1 of the 10 HapMap samples, in which the performance of
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ExCNVSS was compared with those of EXCNVSS_noRatio,
ExomeCNYV, Contra, and Excavator. Here, ExomeCNYV, Con-
tra, and Excavator adopted the same Wessim data set as the
control.

In general, selecting the optimal parameter matching the
characteristics of the data is crucial in increasing an algo-
rithm’s performance. However, finding the optimal parame-
ters of each algorithm requires the exact understanding of the
mathematical model derived from the interaction between
multiple parameters, which is classified as an extremely
difficult and cautious operation.

Therefore, we referred to the part of the evaluation of
performances using HapMap samples in the original paper
of each algorithm and used the values of the parameters as
the optimal parameters of each algorithm for our real data
experiments using HapMap samples. In paper [15] covering
Excavator, parameters (w = 0.1, 8 = 10~*, dNorm = 10°, and
¢ = 1) were used for the analysis of 20 HapMap samples, and
in paper [12] covering Contra, parameter (pval = 0.01) was
used for the analysis of 5 HapMap samples for their evaluation
of performance test results. Only in the case of ExomeCNYV,
the parameters used for the analysis of HapMap samples were
not specified [11]. As a result, in the cases of Excavator and
Contra the parameter values given in the original paper were
used as the optimal parameters for our own experiment, and
in the case of ExomeCNYV the default parameters used in the
performance test in previous papers were used as the optimal
parameters for our own experiment.

Table 2 shows the results of the performance evaluation of
each algorithm using real data with the optimal parameters.
In Table 2, the first column for each method represents the
total number of correctly detected instances and the fraction
of gain/loss regions is given in parentheses. The second
column represents false negative and false positive rates,
respectively.

In the 10 HapMap samples, ExXCNVSS obtained the
best results for FNR, followed by ExomeCNV, Excavator,
ExCNVSS_noRatio, and Contra. Contra was the best for
EPR, followed by Excavator, ExXCNVSS, ExXCNVSS_noRatio,
and ExomeCNV. Among these five methods, both ExXCNVSS
and Excavator showed the best performances. The overall
FNRs for EXCNVSS and Excavator were between 25.64% and
45.54% and between 33.68% and 54.81%, respectively. The
FPRs for ExXCNVSS and Excavator were between 10.45% and
13.21% and between 4.43% and 6.10%, respectively. However,
Excavator produced poor results in identifying CNV loss
regions due to only a small number of CNV events being
detected. ExomeCNV obtained a relatively good perfor-
mance in FNR since it returned a large number of instances
of CNVs. In contrast, Contra showed poor performance in
FNR, since it returned only a small number of instances of
CNVs. Collectively, EXCNVSS showed a reasonable trade-off
between FNR and FPR, which efficiently detected CNVs of
various types and sizes.

In the second experiment, we used the exome read
data from an individual sample of NA19152 (a member of

the YRI population) as a control data set, which was also
used as a control for the analysis of HapMap samples in
paper [15]. Table 3 describes the experimental results on
HapMap samples, each of which is a member of the CEU
population with the optimal parameters. In the 10 HapMap
samples, all methods gave poor results, with the exception of
ExCNVSS_noRatio. Even ExXCNVSS and Excavator gave poor
performance in FNR while preserving similar performance in
FPR compared with the first experiment. However, although
no control data were used, ExCNVSS_noRatio showed a
better performance than the other methods.

From the results, we can see that, even through the
efforts to select a proper pseudo-control sample from the
other individual samples, we could not remove the biases
introduced by capture and sequencing at all. The adoption
of the control data standards is a crucial process in variants
calling, as it may help to manage the inherent noise of the
test data, affecting the overall performances of the methods.
These results show that a well-made simulated data set can be
used as a good alternative control to reduce coverage biases
of the test data, compared to using real data. Furthermore,
ExCNVSS_noRatio can be an alternative to EXCNVSS in the
absence of proper matched control data.

4. Conclusions

As advanced NGS technologies produce a large number
of short reads at lower costs and increased speeds that
accumulate exome sequencing data, the need to detect even
small disease-related genetic variations directly from exome
sequencing is expected to drastically increase. We have
developed an exon-based CNV detection method using read
coverage depth evaluation and scale-space filtering. Our
method corrects coverage biases and considers the sparse,
small size, and noncontinuous nature of target regions. We
tested the method on both simulated and real data, and the
results show that the method can be applied to relatively low-
level coverage data with practical specificity and sensitivity.
We have also developed a method that can be applied to
cases of input data only, and the results show that the method
can detect all-sized CNV gains and losses for concatenated
arbitrary-sized exonic regions, even when a matched control
is not available.

The performances of our methods show excellent FNRs
and relatively fair FPRs compared to conventional methods.
Furthermore, the performance of our methods show the
superiority of detecting CNVs of various sizes, with good
values of FNRs and acceptable values of FPRs. pecially
in the assessment using 10 real HapMap samples’ data,
one of our methods showed the best performance in
FNRs and a fairly good performance in FPRs compared
to conventional methods including ExomeCNYV, Excavator,
and Contra. This suggests that our method can reliably
detect all-sized CNVs from sensitive exome sequencing data
without considering the availability of a matched control.
ExCNVSS and ExCNVSS_noRaio are freely accessible at
http://dblab.hallym.ac.kr/ExCNVSS/.
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