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Liver hepatocellular carcinoma (LIHC) is a primary malignancy, and there is a lack of 
effective treatment for advanced patients. Although numerous studies exist to reveal the 
carcinogenic mechanism of LIHC, few studies have integrated multi-omics data to 
systematically analyze pathogenesis and reveal potential therapeutic targets. Here, 
we integrated genomic variation data and RNA-seq profiles obtained by high-throughput 
sequencing to define high- and low-genomic instability samples. The mutational landscape 
was reported, and the advanced patients of LIHC were characterized by high-genomic 
instability. We found that the tumor microenvironment underwent metabolic reprograming 
driven by mutations accumulate to satisfy tumor proliferation and invasion. Further, the 
co-expression network identifies three mutant long non-coding RNAs as potential 
therapeutic targets, which can promote tumor progression by participating in specific 
carcinogenic mechanisms. Then, five potential prognostic markers (RP11-502I4.3, 
SPINK5, CHRM3, SLC5A12, and RP11-467L13.7) were identified by examining the 
association of genes and patient survival. By characterizing the immune landscape of 
LIHC, loss of immunogenicity was revealed as a key factor of immune checkpoint 
suppression. Macrophages were found to be significantly associated with patient risk 
scores, and high levels of macrophages accelerated patient mortality. In summary, the 
mutation-driven mechanism and immune landscape of LIHC revealed by this study will 
serve precision medicine.

Keywords: liver hepatocellular carcinoma, somatic mutation, RNA-sequencing, genome variation, precision 
medicine

INTRODUCTION

Liver hepatocellular carcinoma (LIHC) is the most common primary malignancy of the 
liver and the third leading cause of cancer-related death worldwide (Bosch et  al., 1999; 
Bray et  al., 2018). Of these, liver cancer is the second leading cause of cancer-related 
death in LIHC, accounting for approximately 90% of all primary liver cancer cases  
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(Llovet et al., 2016). Studies have found that fat accumulation 
of liver can lead to non-alcoholic steatohepatitis, cirrhosis, 
liver failure, and LIHC (Kim et  al., 2021). Treatments for 
LIHC include hepatectomy, liver transplant, chemotherapy, 
and molecular targeted therapy. However, clinical treatment 
results show that these treatments are not effective for LIHC 
patients (Heimbach et  al., 2018). Therefore, there is an 
urgent need for the identification of new therapeutic targets 
for the development of new drugs.

Somatic variations, including copy number variations 
(CNVs) and point mutations, are considered to be the driving 
event for the occurrence and development of cancer. In 
recent years, researchers mainly focused on key mutated 
genes and their mutational characteristics (Zhang et  al., 
2021). However, the integration of mutagenomics with other 
omics data is more powerful in revealing the pathogenesis 
of patients and potential therapeutic targets (Fujimoto et al., 
2016). With the development of next-generation sequencing, 
multiple somatic variations have been discovered. Especially, 
accumulated studies have demonstrated that somatic variations, 
such as single-nucleotide variations and CNVs, could 
contribute to tumorigenesis (Wang et  al., 2020) and used 
to infer individual medications based on the RNA interaction 
network (Zhang et  al., 2018). Based on the notion that the 
instability of the genome is related to age (Chatsirisupachai 
et  al., 2021), it is crucial to investigate the relationship 
between the stability of the genome and the physiological 
mechanism of the patient. More recently, large-scale biomedical 
data, including multidimensional molecular profiles of tumor 
samples of LIHC generated by The Cancer Genome Atlas 
(TCGA; Tomczak et al., 2015) project, provide opportunities 
to uncover mutation-driven potential therapeutic targets and 
potential prognostic markers for liver cancer.

Over the past decade, the immune microenvironment has 
been a popular area of cancer biology research in relation to 
therapeutic targets. The immune microenvironment is composed 
of a variety of lymphocytes, such as T cells, B cells, and 
macrophages. Previous studies have shown that the composition 
of immune cells is closely related to tumor proliferation and 
metastasis. For example, CD8+ T cells show strong cytotoxic 
activity on tumor cells and have a strong inhibitory effect on 
tumor progression (Seo et  al., 2018). Macrophage polarization 
plays a key role in subverting adaptive immunity and promoting 
tumor progression (Mantovani et  al., 2002). The development 
of the immune cell fraction algorithm (Newman et  al., 2015) 
for bulk RNA-seq data provides convenience for investigating 
the relationship between specific immune cell content and 
tumor progression.

In the current study, we  integrated and analyzed the 
somatic mutations, CNVs data, and RNA-seq of LIHC 
collected from the TCGA database. The mutation landscape 
of LIHC and the metabolic features driven by mutations 
were revealed. Our work highlights potential therapeutic 
targets, potential prognostic markers, and the role of 
macrophages in tumor progression. These results promote 
the understanding of pathogenesis and provide a basis for 
the treatment of LIHC.

MATERIALS AND METHODS

Data Collection
The CNV data, somatic mutation data, clinical information, 
and RNA-seq profiles of LIHC collected by TCGA (Tomczak 
et  al., 2015) were downloaded from UCSC Xena browser.1 
Metabolic pathway and hallmark gene sets that will be  used 
for metabolic feature analysis and enrichment analysis of 
carcinogenic functions for LIHC were collected from the 
Molecular Signatures Database (Liberzon et al., 2015).2 Moreover, 
the annotation data of GRCh38 v29 for long-noncoding RNA 
(lncRNA) were collected from GENCODE (Frankish et  al., 
2019).3 The signature matrix of 22 immune cell types was 
collected from the previous studies (Newman et  al., 2015) for 
the analysis of immune cell invasion of tumor samples.

Processing of Mutation Data
We first counted the distribution of mutation sites on the 
human genome, including mRNA, lncRNA, and transcription 
start site, as well as the distribution of various types of mutation, 
including missense and nonsense mutation on the chromosome. 
Further, the R package maftools (version 2.8.0; Mayakonda 
et  al., 2018) was used for the statistical and visualization of 
mutation form, mutation frequency, and mutational correlation 
between genes, which provides great convenience for the research 
of mutation data and the reveal of characteristics. The number 
of mutations in each tumor sample was calculated and used 
to link the CNV data. We  downloaded the GDC GISTIC copy 
number dataset from the UCSC Xena browser, which is derived 
from focal copy number estimates, and the positions of the 
variant sequence corresponding to the genes. Both gene 
amplification and deletion events are thought to increase genome 
instability. By integrating the mutation information and gene 
copy number information of patient cohort, we  defined the 
top 20% of patients with copy number amplitude and mutation 
load as high-genomic instability group, the bottom 20% of 
patients with copy number amplitude and mutation load as 
low-genomic instability group, and the remaining patients as 
median/unknown-genomic instability group.

Gene Set Enrichment Analysis
Considering that there were multiple zero values in the gene 
expression matrix, we control the number of genes by requiring 
effective genes to be expressed in at least 10% of tumor samples. 
Based on the previously defined high/low-genomic instability 
samples, the rank sum test was used to identify genes that 
are significantly differentially expressed in the high/low-genomic 
instability samples. The cutoff of value of p is set to 0.01. For 
these significantly differentially expressed genes (DEGs), the 
genes were sorted using the logarithmic fold change as the 
weight and combined with the hallmark gene set to be  used 
for gene set enrichment analysis (GSEA; Subramanian et al., 2005) 

1 https://xenabrowser.net/
2 http://software.broadinstitute.org/gsea/msigdb
3 https://www.gencodegenes.org/
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by R package fgsea (version 1.1.0). We  set the value of p to 
<0.05 to screen out carcinogenic functions that are significantly 
enriched on DEGs.

Calculation of Metabolic Pathway Activity
Gene set variation analysis (GSVA; Hanzelmann et  al., 2013), 
which is an unsupervised manner to estimate changes in 
pathway activity over a sample population, was used to calculate 
the metabolic activity of each tumor sample by R package 
GSVA (version 1.32.0). We  set the number of genes in the 
gene set used for functional enrichment to be  at least 10 
and not more than 500. The rank sum test and fold change 
algorithm were also used to calculate the variation of metabolic 
pathway activity between high and low-genomic instability 
samples. Metabolic pathways with a value of p < 0.01 were 
considered to be  affected by mutations, and reprogramming 
has occurred.

Construction of Co-expression Network 
Mediated by Mutant lncRNA
We extracted lncRNA from DEGs which differentially expressed 
between high- and low-genomic instability samples based on 
lncRNA annotation data obtained from GENCODE. By combining 
somatic mutation and CNV data, we identified lncRNAs that 
were mutated in tumor samples and differentially expressed in 
the high-genomic instability group, defined as mutation-driven 
lncRNA (Md-lncRNA). Next, the Pearson correlation algorithm 
(Bishara and Hittner, 2012) is used to calculate the correlation 
between Md-lncRNAs and other DEGs, which was performed 
by cor.test function of R. We  have defined that gene pairs with 
value of p < 0.01 and | R | > 0.3 have significant correlation in 
expression and are co-expressed with each other (van Dam 
et  al., 2018). For these co-expressed genes, cytoscape (Shannon 
et  al., 2003) was used to plot the co-expression network, and 
Network Analyzer tool was used to calculate the topological 
properties of the network.

Identification of Potential Prognostic 
Markers
The genes in the co-expression network mediated by 
Md-lncRNAs were used as candidate markers. We  first used 
univariate COX regression and lasso regression (Alhamzawi 
and Ali, 2018) to screen genes that significantly associated 
with overall survival (OS) of LIHC patients (the cutoff of 
value of p was 0.05). Next, we  randomly selected 60% of all 
samples as the training set and the remaining as the test 
set. The training set was used to construct a multivariate 
COX regression model (Fisher and Lin, 1999). We  retained 
the genes passing the test of multivariate COX regression as 
potential prognostic markers and establish nomogram to 
predict the OS of LIHC. The reliability of the prediction 
model was validated by the receiver operating working 
characteristic curve (ROC), and the area under curve (AUC) 
also was calculated. The calibration curve was used to evaluate 
the predictive power of nomograph for survival risk.

Survival Analysis
The risk score for each patient was calculated according to 
the linear combination of expression values weighted by the 
coefficient from the multivariate Cox regression analysis:

Risk score i e
k
n

k ki ( )= ∗
=∑ 1
b

where n denotes the number of prognosis markers (n = 5), b  
was the coefficient of multivariate Cox regression analysis, and 
eki  was the expression level of kth prognosis-related gene 
expression of patient i. Further, the samples of train set and 
test set were, respectively, divided into high- and low-risk 
categories based on the median risk score calculated by risk 
score model, and Kaplan–Meier algorithm (Ranstam and Cook, 
2017) was used to compare whether the survival data of the 
two categories are different and bilateral log-rank test was 
used to validate the significance of the difference.

Calculation of Immune Cell Fraction
Based on the feature matrix of 22 immune cells obtained from 
previous studies, the CIBERSORTx tool4 (Newman et al., 2015, 
2019) was used to analyze tumor-infiltrating immune cells. 
CIBERSORTx is a method to characterize the cell composition 
of complex tissues from the gene expression profile. The 
parameter perms that the number of permutations when 
calculating the value of p was set to 1,000, and QN was set 
to TRUE to perform quantile normalization. In order to see 
more group differences in other cell types other than plasma 
cells, we  further transformed the original cell components into 
a log ratio of log (the fraction of plasma-cell +1e-3)/log (the 
fraction of immune-cell +1e-3) (He et  al., 2021).

Statistical Analysis
All statistical analyses and graph generation were performed 
in R (version 4.0.2) and GEPIA (version 2.0).5

RESULT

A Global View of Mutations for Liver 
Hepatocellular Carcinoma
Malignant mutations in the genome are the underlying cause 
of tumor development and progression. The identification of 
mutation characteristics is essential for the exploration of 
pathogenesis. We have first used maftool to evaluate mutation 
profiles of LIHC in the TCGA database collection for which 
somatic mutation data were available. A total of 44,847 somatic 
mutation sites in 375 samples were included in this study. 
We  counted the distribution of somatic mutations on the 
genome and found that somatic mutations are significantly 
enriched in specific regions of chromosomes 1, 11, 17, and 
19 (Figure  1A), indicating that the global mutations of LIHC 
have preference for location. Compared with transcripts 

4 https://cibersortx.stanford.edu/
5 http://gepia2.cancer-pku.cn/#index
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(mRNA) of protein-coding genes, fewer somatic mutations 
occurred in lncRNAs; Figure  1A), indicating that somatic 
mutations were more likely to directly affect the expression 
of protein-coding genes and the structure of proteins. However, 
few mutations in non-coding genes were still the main 
determinants of human diseases (Maurano et  al., 2012). 
Mutations in the transcription start site will regulate gene 

expression levels before transcription, which rarely occur on 
autosomes 4 and 13  in LIHC. Point mutations, including 
missense and nonsense mutations, are an important part of 
somatic variations, and LIHC shows the dominant position 
of missense mutations (Figure  1A and 
Supplementary Figures S1A,B). Further, we  counted the 
frequency of mutations in each gene, and the top  10 mutated 

A B

D
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G
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FIGURE 1 | The landscape of liver hepatocellular carcinoma (LIHC) somatic variations. (A) The density distribution of somatic mutations on chromosomes. The 
four-layer circle plot shows the density distribution of nonsense mutations, mutations of transcription start site, missense mutations, mutations of long-noncoding 
RNA (lncRNA), and mutations of mRNA on chromosomes from inside to outside. (B) The waterfall plot shows the top 10 genes in terms of mutation frequency by 
sample. The mutation type of each gene in each sample is marked. (C) Mutation correlation heatmap of the top 10 high-frequency mutated genes. Locations with 
significant correlations are marked by stars. (D) Boxplot shows the frequency of base substitutions including transversion and transition. (E,F) The relationship 
between the number of mutated and copy number variation (CNV) genes in each sample and the stage are displayed with boxplot. The number of mutated and 
CNV genes is logarithmized, and the rank sum test is used to assess differences between groups. (G) The copy number amplitudes of tumor samples are presented 
in heat map. Column labels show sample types, including high/low-genomic instability and median.
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genes were identified (Figure  1B). TTN, the gene considered 
to be  most frequently mutated in the pan-cancer cohort (Oh 
et  al., 2020), tended to have missense mutations in LIHC. 
The content of albumin encoded by ALB has been confirmed 
to be  closely related to tumor development and patient 
prognosis (Li et al., 2018). We found that there was a significant 
mutational correlation between the genes TNN and ALB 
(Figure  1C), which indicates that TNN and ALB may play 
a synergistic role in LIHC. We  found that almost a quarter 
of point mutations in LIHC patients were C > T substitutions 
(Figure  1D; Supplementary Figure S1C). Transitions and 
transversions, as the two types of DNA base transformations, 
account for similar proportions in the entire LIHC point 
mutation (Figure  1D). Mutations of transversions, which 
account for a relatively high proportion, may be  a key factor 
in liver tissue degradation. By combining the mutation with 
the patient’s clinical information, we  found that patients of 
stage II have a higher number of mutated genes compared 
to stage I  (Figure  1E), which indicates that the accumulation 
of mutations appears as the stage increases. We  introduced 
copy number data of LIHC patients, further confirming that 
advanced patients have a higher accumulation of variation 
and genomic instability (Figure  1F). Next, we  defined high 
and low-genomic instability samples by integrating somatic 
mutation and copy number data. We  found that the high-
genomic instability samples in LIHC have overall gene 
amplification (Figure  1G). Taken together, all these revealed 
the mutational features of LIHC.

Metabolic Reprogramming Affected by 
Accumulation of Mutations
Genome variation can indirectly affect the metabolic efficiency 
of organisms by regulating gene expression. The rank sum 
test was used to identify genes that are significantly DEGs 
between high and low-genomic instability samples. 
We  identified 6,438 DEGs (value of p < 0.01), including 2,981 
upregulated genes and 3,457 downregulated genes (Figure 2A). 
After GSEA, we identified four carcinogenic functional pathways 
that are significantly enriched in DEGs (value of p < 0.05). 
We  found that the E2F pathway, which forms with CDK-RB 
driving cell cycle progression (Kent and Leone, 2019), is 
significantly enriched in upregulated DEGs (Figure  2B), 
indicating that the cell cycle is severely affected by the 
accumulation of mutations. The G2/M checkpoint can effectively 
detect the genome and prevent cells from entering mitosis 
(Anand et  al., 2020), which dysfunction may be  a key factor 
in the accumulation of mutations in high-genomic instability 
samples. We  found that the inflammatory response was 
significantly enriched in the downregulated DEGs (Figure 2B), 
which may be  due to the accumulation of mutations that 
caused the weakening or loss of tumor tissue immunogenicity 
(Capietto et  al., 2020). All these indicate that the resistance 
of some patients with advanced liver cancer to immune 
targeted therapy (Zongyi and Xiaowu, 2020) may be  due to 
the loss of immunogenicity caused by the excessive accumulation 
of mutations.

Metabolic reprograming affected by mutations was the basis 
for satisfying tumor proliferation and invasion. Gene set variation 
analysis (GSVA) was used to evaluate the metabolic activity 
of each tumor sample. By clustering the metabolic pathway 
activity score matrix, we found that there are obvious differences 
in metabolic function between the high and low-genomic 
instability samples (Figure  2C). Compared with low-genomic 
instability samples, high-genomic instability samples had higher 
pyrimidine synthesis activity (Figures  2D,E). Previous studies 
have shown that inhibiting the metabolic activity of pyrimidine 
synthesis can effectively reduce the carcinogenic ability of 
tumors (Wang et  al., 2019), which indicates that pyrimidine 
driver mutations that trigger pyrimidine anabolic remodeling 
can be  used as therapeutic targets for patients with advanced 
liver cancer. We  found that the activity of 
glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway 
is also upregulated in high-genomic instability samples 
(Figure  2F). The enhancement of GPI-anchor biosynthesis 
pathway activity could recruit macrophages to tumor tissues 
to generate TAM polarization (Dangaj et  al., 2011), suggesting 
that the high tumor invasion and metastasis ability shown by 
high-genomic instability samples may be  caused by the 
upregulation of GPI-anchored protein. All these indicate that 
the reprogramming of metabolic pathways provides the necessary 
preparations for tumor proliferation and invasion and is also 
the basis for tumor heterogeneity.

Mutated LncRNA Stimulates Tumor 
Progression
LncRNA has become an important participant in almost every 
level of gene function and regulation (Qian et  al., 2019; Wang 
et  al., 2021). It is intriguing to identify the driver mutation 
lncRNA between high- and low-genomic instability samples. 
We  extracted lncRNAs that were significantly differentially 
expressed between high- and low-genomic instability samples 
based on lncRNA annotation data, and combined CNV and 
somatic mutation data to identify three Md-lncRNAs 
(Figure 3A). We found that samples with Md-lncRNA AL589743.1 
copy number amplification clustered in highly mutant samples. 
Next, the Pearson correlation algorithm was used to identify 
DEGs that are significantly related to these three Md-lncRNAs 
at the gene expression level. We  found that 412 DEGs (value 
of p < 0.01 and correlation coefficient |R| >0.3) are involved 
in the regulatory network co-expressed with these three 
Md-lncRNAs (Figure  3B). To identify the role of these three 
mutation-driven lncRNAs in the carcinogenic mechanism of 
LIHC, gene ontology (GO) was used to perform functional 
enrichment analysis on DEGs that are significantly related to 
these three mutation-driven lncRNAs. We  found that DEGs 
co-expressed with Md-lncRNA AC037459.4 are mainly involved 
in the fat metabolism process of liver tissue (Figure  3C). The 
abnormal fat metabolism was the key cause of fatty liver, liver 
cirrhosis, and even liver cancer (Alves-Bezerra and Cohen, 
2017). DEGs significantly related to lncRNA AL589743.1 were 
enriched in protein processing and modification functional 
nodes (Figure  3D), suggesting that AL589743.1 is involved in 
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A B
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FIGURE 2 | Metabolic remodeling based on genome instability. (A) The results of the differential gene expression analysis between high-genomic instability and 
low-genomic instability samples are shown by the volcano graph. Grey dots represent non-differentially expressed genes, yellow dots indicate genes upregulated in 
high-genomic instability samples, and the green dots mean the opposite. (B) gene set enrichment analysis results of differentially expressed genes. Normalized 
enrichment score and corrected value of p are calculated. (C) The enrichment scores of tumor samples in each metabolic pathway calculated by GSVA are 
displayed by heat map. Column labels show sample types, including high-/low-genomic instability and median. (D) Analysis of the difference of metabolic pathway 
activity scores between high-genomic instability and low-genomic instability samples. (E,F) Comparison of pyrimidine synthesis and glycosylphosphatidylinositol-
anchor biosynthesis pathway activity among high-/low-genomic instability samples. The rank sum test is used to calculate the significance.
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carcinogenic mechanisms by regulating the structure and function 
of proteins. We also found that the high expression of AL589743.1 
was significantly associated with poor patient’s prognosis 
(Figure  3E), indicating that AL589743.1 can be  used as an 

important target for the treatment of patients with advanced 
liver cancer. Further, DEGs co-expressed with Md-lncRNA 
DSCR8 are mainly involved in protein processing and muscle 
cell apoptosis (Figure  3F). In previous studies, it has been 

A

B C

D

E F

FIGURE 3 | Functional identification of mutation-driven lncRNA. (A) Waterfall plot illustrates variation types of copy number (amplification, deletion, and none/un-
detected) for each sample on lncRNA, including AC037459.4, AL589743.1, and DSCR8. The up-panel shows the number of mutated genes in each sample. 
(B) The relationship between mutation-driven lncRNA and co-expressed genes is shown by network. Circles represent co-expressed genes with lncRNAs; squares 
represented mutation-driven lncRNAs. Upregulated genes are marked with yellow; downregulated genes are marked with blue. (C,D) The bar graphs show the GO 
function enrichment results for genes co-expressed with lncRNA AC037459.4 and AL589743.1. (E,F) Survival difference between the two groups of samples with 
high and low expression of AL589743.1 and DSCR8. Univariate cox regression algorithm and log-rank test are used to evaluate the relationship between the 
expression of Md-lncRNA and patient survival.
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confirmed that DSCR8 can act as a miRNA sponge to activate 
the Wnt/β-catenin signaling pathway and promote the progress 
of LIHC (Wang et  al., 2018). Taken together, all these results 
reveal that three Md-lncRNAs to promote tumor progression 
by participating in specific carcinogenic mechanisms.

Prognostic Markers Correlated to LIHC
LncRNA and transcripts co-expressed with it play an important 
role in the carcinogenic mechanism, which can be  used as 
candidate prognostic markers. To identify prognostic markers 
of LICH, we  first performed univariate cox regression and 
lasso regression algorithm to identify genes associated with 
OS in LIHC patients (see method). Then, 20 genes were 
identified and significantly correlated with the patient’s OS of 
LIHC (Figure  4A). Through the multivariate Cox regression 
constructed by the 20 genes and training set, five of which, 
RP11-502I4.3, SPINK5, CHRM3, SLC5A12, and RP11-467L13.7, 
were identified as prognostic markers for LIHC (Figure  4B; 
Supplementary Figure S2). To evaluate the predictive 
performance of the model, we  showed the prediction results 
using ROC for five time points. We found that the risk prediction 
result reached the maximum AUC value of 0.72 (Figure  4C). 
Further, the nomograms algorithm was used to build a survival 
risk prediction model for LIHC (Supplementary Figure S3). 
The calibration curve was also used to validate the stability 
of the risk prediction model (Figure  4D). Moreover, the risk 
scoring model was constructed as follows: risk score =  
−0.37*RP11-502I4.3–0.11*SPINK5–0.16*CHRM3 + 0.06*SLC5A12 +  
0.42*RP11-467L13.7. The samples of train set and test set were, 
respectively, divided into high- and low-risk groups based on 
the median risk score. We  found that high-risk samples in 
train set are associated with poor prognosis of LIHC patients 
(Figure  4E). The test set also showed the same prediction 
results as the train set (Figure  4F), indicating the reliability 
of the risk score model in predicting the prognostic risk of 
patients. Taken together, we  have identified five potential 
prognostic markers in LIHC, which can be  used for 
clinical diagnosis.

Tumor Progression Regulated by the 
Immune Microenvironment
The tumor immune microenvironment plays an important 
role in the occurrence and development of tumors (Lei 
et al., 2020). The remodeling of the immune microenvironment 
is conducive to the progress of the tumor (Hinshaw and 
Shevde, 2019). Therefore, we  used the CIBERSORTx tool 
to calculate the immune cell abundance of each LIHC sample 
and paracancerous tissue sample through the deconvolution 
algorithm that is a special kind of forward convolution, 
where the size of the input image is first enlarged by 
complementing the 0 at a certain scale, followed by rotating 
the convolution kernel and then forward convolution. For 
the 22 immune cell fraction matrices obtained, the consensus 
clustering algorithm was used to identify the immune subtypes 
of LIHC. We  have defined four reliable tumor immune 
subtypes (Figure  5A and Supplementary Figure S4), which 

have specific immune cell composition. We  found that the 
normal samples are mainly clustered in the third cluster, 
which has a relatively low content of CD8+ T cell and 
CD4+ T cell (Figure  5B). Multiple tumor samples have 
similar immune cell composition to normal samples in the 
third cluster, indicating that these samples are in 
immunosuppressed state. Different from other clusters, the 
fourth cluster of tumor samples has a higher content of 
CD8+ T cells (Figure 5B), suggesting that this type of LIHC 
patients is more suitable for immuno-targeted therapy. In 
order to explore the formation mechanism of tumor 
immunosuppressive microenvironment, we  calculated the 
content of major histocompatibility complex (MHC). 
We  found that genes involved in the synthesis of MHC-I 
have lower expression levels in the third cluster and 
significantly higher expression in the fourth cluster 
(Figure  5C), indicating that the immunosuppression of the 
third cluster may be  caused by the loss of tumor 
immunogenicity. The MHC-II molecule, which is the CD4+ 
T-cell binding partner (Marty Pyke et  al., 2018), also had 
lower expression level in the third cluster (Figure 5D). Next, 
by linking the immune cell fraction and risk score of each 
sample, we  found that the fraction of Macrophages M0 is 
significantly related to the patient’s prognostic risk 
(Figure 5E). Tumor samples were divided into two categories 
(high/low fraction) based on the median of macrophages 
M0 fraction; we found that high-fraction samples are associated 
with poor patient’s prognosis (Figure  5F), suggesting that 
macrophages cells can promote tumor progression in the 
tumor microenvironment. Taken together, all these indicate 
that the loss of immunogenicity is a key factor for the 
formation of immunosuppressive microenvironment in 
multiple patients of LIHC.

DISCUSSION

In this study, we  have integrated multi-omics data to reveal 
mutation-driven pathogenesis and immune landscape of LIHC. 
Through the statistics of the mutation location and type, 
we  found the mutation characteristics of LIHC and defined 
two types of samples (high/low-genomic instability). We found 
that the inflammatory response was significantly enriched in 
the downregulated genes of the high-genomic instability samples 
by GSEA. Metabolic pathway activity analysis has shown that 
pyrimidine synthesis and GPI-anchor biosynthesis pathway 
are closely related to tumor progression and have low activity 
scores in high-genomic instability samples. We identified three 
mutations driving lncRNA and defined the molecular functions 
of these three mutations driving lncRNA in LIHC by 
constructing a co-expression network. Further, based on the 
genes involved in the co-expression network, we  identified 
four prognostic markers, including RP11-502I4.3, SPINK5, 
CHRM3, SLC5A12, and RP11-467L13.7, through univariate 
cox regression and lasso algorithm screening. We  also built 
risk score model to assess the prognostic risk of LIHC patients. 
Through the analysis of the immune cell fraction of tumor 
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and paracancerous tissue samples, we  defined four immune 
subtypes and found that the samples of immunosuppressive 
subtypes have low immunogenicity.

LIHC is a primary malignancy of the liver (Huang et al., 2016). 
Numerous of studies have tried to reveal the pathogenesis of 
LIHC and find effective treatments. For example, studies have 

A B

C D

E F

FIGURE 4 | Identification of potential prognostic markers of LIHC. (A) Lasso regression model screen genes related to overall survival (OS) of LIHC patients. 
Variation curve of regression coefficient and λ value is shown. (B) COX risk regression to assess the association between the expression level of genes and patient 
survival. Genes that are significantly related to patient survival are added value of p. (C) The ROC curve reflects the predictive power of the risk regression model at 
five time points from 1 to 5 years. The different colored curves represent specific time points. (D) Calibration curve of nomogram. (E,F) Kaplan–Meier (KM) curves for 
survival of train set and test set in high- and low-risk groups. Log-rank test was used to calculate statistical significance.
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shown that fibrosis of liver cells plays a vital role in the pathogenesis 
of liver cirrhosis and hepatocellular carcinoma (Liu et  al., 2020). 
TXNIP activates the expression of oncogenes to inhibit the 
proliferation of hepatocellular carcinoma cells and induces apoptosis 
(Liu et al., 2017). In the last decade, the immune microenvironment 
of tumor has been a popular area of cancer biology research in 
relation to therapeutic targets for drug discovery. Although 
checkpoint inhibitors have been successfully used in cancer 

treatment, they are only effective in 10–40% of cases (Hamid 
et  al., 2013; Callahan et  al., 2014). Previous study has shown 
that checkpoint inhibitors do not trigger cancer-specific T-cell 
responses in some patients (Sharma and Allison, 2015). Therefore, 
it is necessary to reveal the relationship between the immune 
microenvironment of LIHC and tumor progression and the 
relationship between immune cells, which can be  used to guide 
the combination medication of liver cancer patients.

A B

C

D

E

F

FIGURE 5 | Immune cell components of LIHC patients. (A) The samples are divided into several clusters based on the immune cell components of each sample. 
The consistency matrix is drawn as a heat map, and the column labels show the clusters. (B) The 22 immune cell fractions of each sample were displayed by heat 
map. Column labels, including clusters, tissue origin, and type of variation of samples, are displayed. (C,D) The relationship between genes encoding MHC I and 
MHC II molecules and clusters defined by immune cell components is shown by boxplot. ANOVA is used to calculate statistical significance. (E) The correlation 
between the fraction of macrophages M0 and the risk score is shown. (F) KM curves for survival in high and low fraction groups of macrophages M0. Log-rank test 
is used to calculate statistical significance.
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Recent reports from developed countries indicate that 
metabolic disorders caused by diabetes, obesity, and fatty liver 
are risk factors for LIHC (Makarova-Rusher et  al., 2016). 
Besides, the experimentally confirmed carcinogenic and 
regulatory mechanisms of lncRNA have been widely revealed 
(Wang et  al., 2019). Genes related to lncRNA AC037459.4 
were identified involved in the fat metabolism process of liver 
tissue, suggesting that AC037459.4 may mediate dysregulation 
of fat metabolism pathways in patients. Based on previous 
research on the identification of cancer prognostic markers 
(Yu et al., 2019), we identified five potential prognostic markers 
by multivariate Cox regression analysis, which can be  used in 
the clinical diagnosis of patients and guiding their treatment. 
The  subtype of LIHC with strong immunogenicity suggests 
that immune checkpoint inhibitor may have a better effect on 
these patients. The fraction of macrophages in tumor tissue 
was found to be  significantly associated with the risk of death 
in patients, consistent with previous studies demonstrating the 
involvement of macrophages in tumor invasion and metastasis 
(Chen et  al., 2020).

In conclusion, this study provided a mutation-driven metabolic 
landscape and immune landscape of LIHC. Three mutated lncRNAs 
were identified to drive transcriptional perturbed oncogenic pathways 
and affect patient prognosis. Five gene signatures associated with 
patient prognosis were identified through Cox regression and lasso 
regression. We  also identified four immune subtypes for LIHC. 
In conclusion, all these findings provide theoretical guidance for 
the optimization of LIHC treatment strategies.
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