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Abstract: In the past decades, as an emerging omic, metabolomics has been widely used in meat
science research, showing promise in meat quality analysis and meat authentication. This review
first provides a brief overview of the concept, analytical techniques, and analysis workflow of
metabolomics. Additionally, the metabolomics research in quality analysis and authentication
of meat is comprehensively described. Finally, the limitations, challenges, and future trends of
metabolomics application in meat quality analysis and meat authentication are critically discussed.
We hope to provide valuable insights for further research in meat quality.

Keywords: meat quality; meat authentication; metabolomics; nuclear magnetic resonance; mass
spectrometry

1. Introduction

Animal meat is an essential part of food that is the primary protein source for the
human population [1,2]. In recent years, there has been an increased global demand for
meat products. Global meat production has rapidly increased by 25% in the past ten years
to 323 Mt in 2017, and it is expected to grow by more than 48 Mt in 2027 [3]. Meat quality
can be defined as the set of parameters, attributes, and characteristics that determine
the suitability for consumption of fresh or stored meat without any deterioration over a
certain time interval [4]. With the opening of the food markets worldwide, meat quality
now includes several other aspects such as geographical origin, sophisticated frauds, and
adulteration practices [5]. As living standards improve globally, meat quality becomes
the critical factor governing consumers’ buying decisions [6]. Recent developments in
the meat industry and an increase in public demand for high-quality meat have brought
about new challenges, including the efficient assessment of meat quality [4,7]. Therefore,
many researchers have devoted themselves to the study of meat quality evaluation and
meat authentication. More sensitive, robust, efficient, and cost-effective analytical methods
aiming to guarantee the quality of meats are required [8].

Meat quality evaluation is a challenging topic for different analytical techniques [5]. Re-
cently, omics technologies such as genomics, transcriptomics, proteomics, and metabolomics
have shown their potential in food compound profiling, food authenticity, and biomarkers
analysis related to food quality [9,10]. As an emerging field of omics, metabolomics focuses
on comprehensive and simultaneous profiling of the total metabolites in a given organism
or biological sample [11]. Currently, metabolomics has been widely used in biomarker
discovery, toxicology evaluation, drug research, nutrition research, and crop and farm
animal research [12–15]. Metabolomics has also been successfully applied in various fields
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of food science [16], showing promise in analysing meat quality and controlling meat
safety [17,18]. Here, we provide a brief overview of metabolomics technology, followed
by a critical review of the recent advances of metabolomics in the quality assessment and
authentication of meat and meat products. Moreover, the challenges, limitations, and future
development of metabolomics in meat quality are also discussed. We hope to provide
valuable insights for further research in meat quality.

2. Metabolomics
2.1. Concept of Metabolomics

Horning et al. first reported a metabolic profiles study in 1970 [19]. However, the
concepts of metabolomics and metabonomics were defined by Fiehn and Nicholson et al.
in 1999 and 2002, respectively [20,21]. Metabolomics is highly related to metabolome. The
metabolome is defined as the complete set of small molecules found within biological sam-
ples, tissues, and cells [22]. Metabolomics, also called metabonomics, aims at identifying
the metabolome, i.e., the complete set of small metabolites (molecular weight < 1500 Da)
present in a biological system [23,24]. It is to be noted that two terms, metabolomics and
metabonomics, are used synonymously in metabolomic studies. The focus of metabo-
nomics is on understanding systemic change through time in complex multicellular sys-
tems. Metabolomics seeks an analytical description of complex biological samples and
aims to characterise and quantify all the small molecules in such a sample. In practice, the
terms metabonomics and metabolomics are often used interchangeably, and the analyt-
ical and modelling procedures are the same [25]. In food science, metabolomics can be
described as the application of high-throughput analytic chemistry technologies directed
at characterising the food metabolome [26].

Metabolomics can be divided into the categories of untargeted and targeted metabolomics.
The untargeted metabolomics approach focuses on the simultaneous detection of many
unknown metabolites, while the targeted approach focuses on identifying and quantifying
selected metabolites, such as those involved in a particular metabolic pathway [27]. Untar-
geted metabolomics has the best metabolites coverage; however, it has poor reproducibility
and limited sensitivity for low-abundance metabolites. Targeted metabolomics has the
advantages of high sensitivity, broad dynamic range, and reliable quantification accuracy,
although it covers limited metabolites [28].

2.2. Analytical Techniques for Metabonomics

The analytical techniques developed for metabolomics can be defined as particular
analytical platforms detecting the set of all metabolites (identified or unknown) in a
sample, together with an estimate of the quantity [29]. Nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS) are two predominant analytical techniques
used in metabolomics research [30]. NMR has been commonly used in profiling the total
complement of metabolites (“fingerprint”) in a sample and is quantitative and does not
require extra steps for sample preparation, such as separation or derivatisation. Compared
with NMR spectroscopy, MS is superior in allowing analysis of secondary metabolites
where the detection level is of picomole to femtomole [31,32]. MS-based metabolomics
provides better sensitivity for metabolomics research and wide detection coverage of
metabolites [33]. Although NMR and MS are two powerful analytical techniques for
metabolomics, detection alone does not always lead to the unambiguous identification
of metabolites [21]. The integration of NMR and MS is widely used in metabolomic
analysis and achieved greatly improved coverage of metabolites and enhanced accuracy of
metabolite identification [34–36]. Therefore, the application of the combined NMR and MS
approach might become one of the hot topics of metabolomics analysis in the future.

2.3. Metabolomic Analysis Workflow of Meat

Commonly used analytical techniques for meat metabolomics include NMR spec-
troscopy and mass spectroscopy. MS is often used in combination with gas chromatogra-
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phy (GC-MS) or liquid chromatography (LC-MS). The workflow of metabolomics analysis
generally consists of three steps: sample preparation, metabolomic analysis, and data inter-
pretation [37] (Figure 1). In the present review, we will focus on the sample preparation
and data interpretation steps.

Figure 1. Metabolomic analysis workflow of meat sample.

2.3.1. Sample Preparation

It is essential to choose a suitable sample preparation method in metabolomics research
because it affects both the metabolite identification and interpretation of the data [38].
An ideal sample preparation protocol should: (i) be as simple as possible to ensure its
reproducibility; (ii) be fast to prevent metabolite degradation during the preparation
procedure; and (iii) be low cost [39]. In general, meat samples are prepared in a two-step
process of sample collection and metabolite extraction. There is no significant difference
in the sample collection of NMR spectroscopy, GC-MS-, and LC-MS-based metabolomics
analysis. Collecting samples requires special care because rapid metabolite changes caused
by enzymatic degradation or microbial activity could occur during the process and may
affect the results considerably [40]. For this reason, the collecting of the samples should
be conducted rapidly at low temperatures. Moreover, the collected samples should be
quenched by liquid nitrogen immediately to guarantee true metabolome composition at the
sampling time. For quenched samples, metabolite extraction should be performed rapidly.
Otherwise, samples must be stored at a low temperature (−80 ◦C or lower temperatures
are recommended).

The metabolite extraction step follows sample collection. Meat samples should be
homogenised before the extraction process. Yield, reproducibility, ease, and speed are
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the standards for evaluating the quality of an extraction method for metabolomics [41].
For NMR, samples are prepared using destructive and non-destructive methods. The
non-destructive method does not require metabolite extraction and is commonly used for
NMR-based metabolomics that detects metabolites of intact tissue in situ by using the
magic angle spinning (MAS) technique. However, the destructive sample preparation
method is recommended in meat NMR-based metabolomics studies. The destructive
method needs to have an extraction procedure performed before NMR detection. The
principles of metabolite extraction should be as follows: (i) before detection by NMR,
the enzyme activity should be terminated (which can be achieved by utilising acid or
organic solvents such as methanol, ethanol, or acetonitrile) and (ii) the maximum amount
of metabolites in meat samples should be extracted with appropriate methods [41,42].
Usually, the metabolite extraction of meat samples is performed with the use of solvents
such as deuterium oxide [43], methanol [44], perchloric acid [45], phosphate buffer [46],
chloroform [47], and their combinations. Although methanol is the most commonly used
solvent for metabolite extraction of meat samples, recent studies have indicated that the
methanol-chloroform combination seems to be an optimal solvent considering both yield
and reproducibility [41,48].

The strength of GC-MS is the measurement of non-polar and volatile organic com-
pounds [49]. Therefore, extraction that maximises the number and amounts of metabolites
combined with derivatisation that transforms polar compounds into volatile compounds
is necessary before GC-MS analysis [32]. Methanol, chloroform, and combination are the
most applied solvents in metabolite extraction of meat samples [50,51]. The derivatisation
can be achieved by the trimethylsilylation derivatisation reaction on thoroughly dried
samples at room temperature with pyridine as the catalyst [52]. Recently, solid-phase
microextraction (SPME) has been widely used in food science and has been proven to be an
ideal method to extract metabolites from meat matrices due to its simple and solvent-free
characteristics [53–55].

For the metabolome to be analysed by LC-MS, it must be placed in solution. Thus, a
homogenisation and extraction step is essential for meat samples to solubilise metabolites.
Ceramic or metal beads and orbital shaking are primarily used for homogenisation. The
most widely used metabolite extraction methods for LC-MS analysis include (i) organic
solvent extraction; (ii) liquid-liquid extraction; and (iii) molecular cut-off weight filters. The
choice of these methods depends on the presence of macromolecules that can damage the
LC-MS system, polarity, and concentration of the metabolites found in meat samples. The
organic solvent extraction method is the most general procedure for all biospecimens for
its versatility and simplicity. In this approach, methanol, acetonitrile, isopropanol, or their
mixtures are commonly used organic solvents [56,57]. Acetonitrile or methanol, plus water
solutions, is suitable for extracting polar metabolites [58,59], while isopropanol or LLE is
suitable for lipids [60,61].

2.3.2. Data Interpretation

Measuring metabolites and interpreting their biological relevance within the con-
texts of different experimental conditions are the primary objectives in metabolomics
research [62]. Data interpretation of metabolomics data relies on two steps: data prepro-
cessing and pretreatment and biological interpretation.

Data Preprocessing and Pretreatment

Efficient and reliable data preprocessing is the first step towards successful data analy-
sis and biologically important findings. In general, preprocessing of NMR metabolomics
data involves apodisation, Fourier transform, phasing, baseline correction, and chem-
ical shift calibration [63]. After preprocessing, NMR data are transferred to an NMR
spectrum data matrix consisting of chemical shift and peak intensity information [64].
Unlike NMR spectroscopy, LC/GC-MS analysis generates data files consisting of a complex
three-dimensional (3D) data format comprising retention time, m/z values, and density
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or abundance on each axis [65]. The preprocessing aims to transform the 3D data table
into a 2D format with the rows corresponding to samples and the columns to m/z-RT
pairs through peak picking/detection and deconvolution, alignment and gap filling, and
quality control. Several tools are available to perform the initial preprocessing steps, such
as Mzmine [66], OpenMS [67], XCMS [68], and apLCMS [69]. Quality control is conducted
by adding quality control samples (QCs) after every couple of (between 5 and 10) study
samples in the entire sample run [70].

A normalisation step following the preprocessing is needed to remove unwanted
variation between the samples and allow quantitative comparison of the samples [63]. The
normalisation can be performed in several ways, including the addition of internal/external
standards, total area normalisation, probabilistic quotient normalisation, and quantile
normalisation [71–74]. The preprocessing and normalisation generate clean and normalised
metabolomics data that are ready for subsequent analysis. However, an appropriate
data pretreatment step is necessary to reduce the effects of technical and measurement
errors before starting [75]. It is to be noted that data pretreatment is generally needed
when multivariate analysis methods are considered. There are mainly two methods for
data pretreatment: centring and scaling and data transformation. Centring adjusts for
differences in the offset between high and low abundant metabolites, and scaling adjusts
for the fold differences between the different metabolites [75]. Centring and scaling of
metabolomics data can be accomplished by auto-scaling, Pareto scaling, range scaling,
and vast (variable stability) scaling operations [76,77]. Transformations are nonlinear data
conversions by log transformation, glog transformation, or power transformation, generally
aiming to correct heteroscedasticity [78].

Biological Interpretation

Biological interpretation is one of the critical steps in metabolomics study. However, it
is becoming increasingly challenging to efficiently interpret changes in metabolite levels
and determine their biological significance due to the growing metabolomics datasets. A
large group of statistical methods and software has been developed to address this issue.
Herein, we focus on describing multivariate techniques for the subsequent analysis of
metabolomics data, including principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis
(OPLS-DA). Machine learning (ML) methods and functional analysis of metabolites are
also outlined.

The oldest and most widely used multivariate technique in metabolomics is PCA [79].
PCA is a powerful means of analysing metabolomic data and is usually used as the first
step in the analysis of metabolomics data [80]. Conversion of the original dataset by PCA
results in two matrices known as scores and loadings. PCA provides an overview of all
samples in the data table by inspecting the relationship between scores and loadings. In
addition, groupings, trends, and outliers in the sample can also be detected [81].

In many metabolomics research studies, the interest lies in discriminating two or more
groups to select variables (i.e., metabolites) that are important to the studied biological
problem. This is primarily conducted in a multivariate context using discriminating
techniques, such as partial least squares discriminant analysis (PLS-DA) [82]. Unlike
PCA, PLS-DA is a supervised method extending from PLS [83]. This approach aims to
maximise the covariance between the independent variables X (metabolomics data) and
the corresponding dependent variable Y (classes, groups) of highly multidimensional
data by finding a linear subspace of the explanatory variables [84]. PLS-DA holds many
advantages over PCA. However, PLS-DA tends to construct overly complex models when
processing metabolomics data [85]. For this reason, OPLS-DA is usually used instead of
PLS-DA to construct more parsimonious and easily interpretable models by disentangling
group-predictive and group-unrelated variation in the measured data [86]. OPLS-DA
is a modification of the PLS-DA method and provides better performance in separating
predictive from non-predictive (orthogonal) variation [85]. Numerous studies have shown
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the potentialities and applications of PCA, PLS-DA, and OPLS-DA in handling meat
metabolomics data [43,55,87–90].

Many online tools and software packages are available for multivariate analysis of
metabolomics data: MetaboAnalyst [91], MVAPACK [92], SAS (SAS Institute Inc., Cary, NC,
USA), the PLS toolbox for Matlab (Eigenvector Research Inc., Wenatchee, WA, USA), and
SIMCA (Umetrics, Umeå, Sweden). In comparison to the other software packages, SIMCA
is much more widely used in the metabolomics field. The detailed introduction of SIMCA
was described by Triba et al. [93]. Notably, the performance of PLS-DA/OPLS-DA models
should be estimated by cross-validation or permutation test because PLS-DA/OPLS-DA
models can easily be overfitted and their predictability overestimated. For PLS-DA and
OPLS-DA models, variable importance in projection (VIP) value is used to estimate the
importance of each variable and select biomarkers.

Metabolomics data analysis includes two main types: regression and classification.
PLS-DA and OPLS-DA are commonly used to construct classification models. Regression
analysis is needed when the responses attached to each sample are continuous. For
regression analysis, multiple linear regression (MLR) is one of the basic models [94]. OPLS
regression (OPLS-R) is another model used frequently in metabolomics research. Both
MLR and OPLS-R models have shown their potentiality and ability in identifying meat-
quality-related biomarkers [56,95].

Recently, the increasing big data set generated by large-scale studies on the metabolome
poses a new challenge for metabolomics research. Machine learning (ML) methods have
become immensely popular for statistical analysis of metabolomics data due to their ability
to rapidly process large and heterogeneous data [96]. Machine learning can be described
as a set of algorithms that improve prediction accuracy through experience, given a certain
processable input from which they can learn and generalise [97]. Support vector machines
(SVM) and random forests (RF) are the two most used and powerful ML algorithms applied
to metabolomics study. SVM is an effective non-parametric machine learning algorithm
suitable for both classification and regression problems. This algorithm is based on map-
ping data into a high-dimensional space that allows for separating two groups of samples
into distinctive regions. Compared to PLS-DA and OPLS-DA, SVM is not affected by the
distribution of the different sample classes [98]. The main advantage of the SVM algorithm
is its flexibility in choosing the kernel function that allows the separation of two groups of
samples, and this kernel can be chosen for either linear or nonlinear problems [99]. A sig-
nificant drawback of SVM is its restrictions on binary classification problems. For example,
it can only discriminate between two classes where the data points are categorised by two
classes in n-dimensional space, where n corresponds to the number of metabolites [100].
RF belongs to the family of classification trees and is found to be the best classifier [101,102].
RF has the strength to deal with large datasets without variable deletion, to provide a
feature importance measure of the metabolite (mean decrease in accuracy) and a measure
of the internal structure of the data (mean decrease in Gini index), and to handle missing
values [84].

Functional Analysis

Metabolomics aims at characterising the profiles of metabolites in a biological sam-
ple. As more massive and larger sets of metabolites are detected, a functional analysis is
required to convert these raw lists of metabolites into biological knowledge [103]. Perhaps
the most considerable challenge that metabolomic researchers face in any study is relating
the identified metabolites to their biological roles [13]. The most common method of
performing such an analysis is “functional enrichment analysis”. The functional analy-
sis requires a knowledge database defining functionally related molecule groups and a
statistical algorithm to perform enrichment tests [63]. In metabolomics, except the public
metabolic pathway databases KEGG [104], metabolite set enrichment analysis (MSEA) and
ConceptMetab database provide the comprehensive metabolite annotation based on GO,
KEGG pathway, and human disease [105,106]. Recently, an easy-to-use web-based tool,
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MetaboAnalyst, was developed to perform comprehensive metabolomic data analysis,
interpretation, and integration. This tool integrated various functions such as PCA, PLS-
DA, clustering analysis and visualisation, MSEA, metabolic pathway analysis (MetPA),
biomarker identification, and time series and power analysis [91]. MetaboAnalyst has re-
cently been updated to the current version 5.0 and numerous studies have shown its ability
to analyse metabolomics data. The above database and tools are powerful when dealing
with metabolomics data obtained from human or rodent. However, their applications in
handling metabolomics data of meat are relatively scarce due to the limited annotation
information of metabolite in meat samples.

3. Metabolomics in Meat Quality and Authentication

Meat and meat products are highly appreciated due to their sensory properties and
nutritional composition [107]. As a global issue, food safety and quality receive increasing
attention from both businesses and customers. People currently pay more attention to the
quality and authenticity of meat [108]. Thus, efficient methods are needed to assess the
quality and authenticity of meat. As an emerging analytical platform, metabolomics has
been widely applied to evaluate meat’s freshness, composition, authenticity, and originality
(Figure 2, Table 1).

Figure 2. The application of metabolomics in the research into meat quality analysis and authentication.
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Table 1. Summary of recent applications of metabolomics in meat quality analysis and authentication.

Purpose of Study Meat Type/Species Analytical Techniques References Authors

Meat freshness

Chicken UHPLC-MS [56] Zhang et al.
Chicken UHPLC-MS [57] Wen et al.

Beef NMR [87] Castejón et al.
Beef GC-MS [109] Argyri et al.
Pork NMR [110] García-García et al.

Sheep GC-MS [111] You et al.
Yellowtail GC-MS [51] Mabuchi et al.

Tuna UPLC-HRMS [112] Chang et al.
Gilthead sea bream GC-MS [113] Mallouchos et al.

Tilapia NMR [114] Zhao et al.
Komatsuna NMR [115] Li et al.

Colour and pH

Beef GC-MS [116] Ramanathan et al.
Beef GC-MS [117] Kiyimba et al.
Beef GC-MS [118] Mitacek et al.
Beef HPLC-ESI-MS [119] Ma et al.

Mutton LC-MS [120] Subbaraj et al.
Chicken NMR [121] Beauclercq et al.
Mutton GC-MS [111] You et al.

Tenderness and flavour

Beef LC–ESI–CID/ETD–MS [122] D’Alessandro et al.
Beef LC–ESI–CID/ETD–MS [123] D’Alessandro et al.
Beef GC-MS [124] Ueda et al.

Chicken LC-MS [125] Zhou et al.
Chicken NMR [126] Xiao et al.

Yellowtail GC-MS [127] Mabuchi et al.
T. modestus, I. japonicus,

S. marmoratus and P. major GC-MS [128] Mabuchi et al.

Beef GC-TOF/MS [129] Lee et al.
Ham NMR [130] Zhang et al.
Ham CE-MS [131] Sugimoto et al.
Ham GC-MS [132] Shi et al.
Ham NMR [133] Zhang et al.
Ham NMR [134] Zhou et al.
Ham CE-TOFMS [135] Sugimoto et al.

Intramuscular fat
Pig LC-MS [136] Liu et al.
Pig CE-TOF/MS [137] Taniguchi et al.

Cattle NMR [137] Connolly et al.

Geographical origin

Beef NMR [90] Jung et al.
Beef GC-MS [138] Man et al.

Lamb meat NMR [139] Sacco et al.
Mytilus NMR [140] Aru et al.
Shrimp LC-HRMS [141] Chatterjee et al.

Species origin

Beef and pork GC-MS [55] Pavlidis et al.
Beef and pork GC-MS/UHPLC-MS [142] Trivedi et al.

Chevon, beef, and donkey NMR [143] Akhtar et al.
Mutton and lamb meat UHPLC-QTOF [144] Wang et al.

Breed origin

Pork NMR [145] Straadt et al.
Chicken NMR [45] Kim et al.
Chicken NMR [146] Kim et al.

Duck NMR [43] Wang et al.

3.1. Metabolomics in Meat Quality

Meat quality has always been important to the consumer, and it is an especially critical
issue for the meat industry in the 21st century. Generally, meat quality can be divided
into appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits
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(RQT) [109]. Here, we mainly focus on reviewing the metabolomics research in colour, pH,
and meat texture of AQT, tenderness and flavour of EQT, and freshness of RQT.

3.1.1. Appearance Quality Traits (AQT)

Meat colour is the most important AQT because it is the first factor seen by the
consumer. The colour of meat, especially beef and mutton, is an important deciding
factor in consumers’ assessment of meat quality. The bright red colour is usually seen
as an indicator of freshness and overall wholesomeness of meat [110]. However, a loss
in meat colour usually occurs during storage, accompanied by changes in pH, creating a
constant demand by retailers for assurance on the colour and colour stability of the meat
supplied [111]. Therefore, understanding the chemical basis of discolouration in meat is
required to develop methods to maintain meat’s acceptable colour stability. Dark-cutting
beef is an example of a colour discolouration in which beef fails to have a characteristic
bright red colour. Dark cutting is produced worldwide, leading to significant economic
losses to the food industry [112]. Recent studies sought to investigate the biochemical
basis for the development of dark-cutting beef using GC-MS- and LC-MS/MS-based
nontargeted metabolomics approaches. The authors found that changes in pH and colour
of dark-cutting beef were probably caused by the upregulated tricarboxylic metabolites and
increased mitochondrial content, and downregulated glycolytic metabolites and glycogen
degradation enzymes [113,114]. Beef colour is affected by the interrelationship between
mitochondria and myoglobin function. Other researchers have come to similar conclusions
that increased mitochondrial damage, depletion of metabolites that can regenerate NADH,
and increased oxidative stress decrease colour stability in aged beef [115]. Many metabolite
responses to the ageing of beef were also identified, such as acyl carnitines, free amino acids,
nucleotides, nucleosides, and glucuronides [147]. For ovine meat, the colour stability might
be associated with myoglobin chemistry and antioxidant-activity-related metabolites [111].

Meat pH influences the paleness of the raw meat, toughness after cooking, and water-
holding capacity during storage and processing [120]. The processing ability and sensorial
quality of poultry meat are determined by meat’s ultimate pH (pHu). Beauclercq et al.
attempted to identify biomarkers to predict ultimate pH by detecting discriminating
metabolites in the muscle and serum between the pHu− and the pHu+ chicken lines
using an NMR-based metabolomics method. It was found that chickens in the pHu− line
used carbohydrates as the primary energy source, whereas those in the pHu+ line used
energy produced from amino acid catabolism and lipid oxidation. Several discriminating
metabolic markers that could be used to predict pHu were highlighted, including glucose,
betaine, taurine–betaine, dimethylglycine, arginine–lysine, and mannose 6-phosphate for
muscle, 3-methylhistidine, xanthine, 1-methylhistidine, glucose, arginine, glutamine, and
maltose for serum [148]. Furthermore, the slow pHu drop in pork was proven to be related
to higher levels of glycolytic enzymes and lactate accumulation [116]. In sheep meat, a
significant correlation was found between 1, 5-anhydroglucitol and meat pH [117].

Meat texture is another AQT that is partially affected by the quantity of intramuscular
fat (IMF) [109]. In animal production, intramuscular fat (IMF) is positively related to meat
quality, including tenderness, flavour, and juiciness. Thus, understanding the cell origin
and regulation mechanism of IMF infiltration is important for improving meat quality [118].
Metabolomics can be used as a complementary tool of proteomics and transcriptomics to
address this issue. Liu et al. performed a combined metabolomics and transcriptomics ap-
proach to explore the effect and regulation mechanism of CRTC3 on porcine intramuscular
adipocyte differentiation [119]. This study revealed that CRTC3 regulates glycerophos-
pholipid metabolism-related genes and promotes increased phospholipid formation to
enlarge adipocytes for more lipid storage. In addition, CRTC3 promotes IMF deposi-
tion by upregulating the Ca2+-cAMP signalling pathway and downregulating fatty acid
metabolism capacity in intramuscular adipocytes. The IMF’s phenotypic and genetic selec-
tion is difficult for the breeders, as it can only be accurately measured after slaughter [149].
An alternative way to address this challenge is identifying plasma biomarkers related to
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IMF content in meat. With the applications of metabolomics, numerous blood or plasma
biomarkers correlated with IMF content in bovine and porcine meat have been identified,
including branched-chain amino acids, 3-hydroxybutyrate, propionate, acetate, creatine,
histidine, valine, and isoleucine [121,150]. These biomarkers could help understand IMF
deposition better and predict the IMF trait in situ instead of post slaughter.

3.1.2. Eating Quality Traits (EQT)

Tenderness is the most important EQT because it strongly influences consumers’ per-
ceptions of acceptability. In the past decades, standard investigations of meat tenderness
have mainly relied on physical and mechanical measurements through tests for cut re-
sistance, meat colour, and pH value [151]. More recently, the technical advancements in
NMR- and MS-based metabolomics provided powerful new strategies to delve into the
tenderness issue. D’Alessandro et al. assessed whether metabolites could be predictors of
beef tenderness using LC-MS-based metabolomics. The authors indicated that higher levels
of glycolytic enzymes characterised tender meat, and the metabolite oxidised glutathione
(GSSG) could be considered a biomarker for predicting meat tenderness [122,123].

In addition to the tenderness, the flavour is another main attribute determining
consumers’ decisions to purchase meat [152]. Meat flavour is a combination of taste and
odour. Non-volatile constituents of fresh meat (sugars, peptides, amino acids, inorganic
salts, and organic acids) and flavour enhancers (inosine 5′-monophosphate, guanosine
5′-monophosphate, and monosodium glutamate) have been confirmed to be the flavour
precursors contributing to the basic tastes of cooked meat [153,154]. However, there are
still a large number of flavour precursors contributing to meat sensory characteristics
that need to be identified because meat contains potentially hundreds of components
that influence its flavour and taste characteristics [129]. Metabolomics has emerged as a
powerful tool to estimate flavour precursors in meat. For example, researchers clarified
the key metabolites contributing to the rich and sweet aroma of Wagyu beef using a
GC-MS-based metabolomics approach and confirmed that the amounts of odorants were
highly correlated with glutamine, decanoic acid, lactic acid, and phosphoric acid [124].
Similarly, NMR- and LC-MS-based metabolomics methods were applied to evaluate the
chemical composition of precursor flavour in chicken meat. Aroma compounds such as
thiazole, 2-methyl-3-furanthiol, 2-furfurylthiol, dihydro-2-methyl-3(2H)-thiophenone, 2-
acetylthiazole, and pyrazine were identified as potential contributors to the overall sensory
quality of cooked meat [125]. Alanine, aspartate, and glutamate metabolism, purine
metabolism, glycine, serine, and threonine metabolism, and taurine and hypotaurine
metabolism were demonstrated to be the primary metabolic pathways for the chicken meat
flavour [126]. Metabolomics was also used to evaluate the taste attributes of fish meat.
Strong associations were found between “sourness” and lysine, “irritant” and alanine and
phenylalanine, “saltiness” and pantothenic acid, and “umami” and creatinine and histidine
in fish meat [127]. Phosphoric acid was identified as a candidate marker for evaluating
differences in the taste of four fish species: T. modestus, I. japonicus, S. marmoratus, and
P. major [128].

Maillard’s reaction produces volatile flavour components responsible for the character-
istic cooked meat aroma [153]. With gas chromatography coupled with time-of-flight mass
spectrometry (GC–TOF/MS), the relationship between volatile compounds and the sensory
attributes of glutathione-Maillard reaction products (GSH-MRPs) in beef was investigated,
in which volatile compounds such as 2-methylfuran-3-thiol, 3-sulfanylpentan-2-one, furan-
2-ylmethanethiol, 2-propylpyrazine, and 1-furan-2-ylpropan-2-one could be identified as
possible critical contributors to the beef-related attributes of GSH-MRPs [129].

Dry-cured ham is a popular cured meat product with high storage stability and typical
sensory characteristics [155]. Metabolomics has been used to examine the chemical changes
in dry-cured ham during the ripening process, aiming to identify key chemical components
for characterising the taste and flavour of ham. For example, metabolomic profiles of
dry-cured ham during the ripening process were characterised by NMR-, CE-MS-, and
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GC-MS-based metabolomics approaches. Amino acids, organic acids, and nucleotide
derivatives were major contributors to the taste of boneless and Japanese Prosciutto dry-
cured hams. The taste of dry-cured ham was significantly affected by the processing
time [130,131]. Another research study used a nontargeted metabolomics approach to
characterise volatile flavour compounds in the Dahe black pig ham. Hexanal, 3-methyl-
butanal, nonanal, and octanal were identified as characteristic flavour components [132].
Moreover, recent studies also showed excellent performance of metabolomics in analysing
the metabolic differences in different dry-cured hams, characterising taste substances of
ham with different processing procedures and conditions [133–135].

3.1.3. Reliance Quality Traits (RQT)

Freshness is identified as one of the most critical RQTs in evaluating the quality
and safety of meat [7]. The freshness of the meat is negatively correlated to spoilage
caused by a variety of microbial activities. The spoilage process caused by microbial
activity produces a large number of low-molecular-weight metabolites. The analysis
and characterisation of these metabolites can provide crucial information for meat control,
classification, and quality assessment [56]. Metabolomics has been applied in characterising
these metabolites and measuring the freshness of meat. For example, Zhang et al. and Wen
et al. developed UHPLC-MS-based untargeted metabolomics to measure the freshness
of chicken, and multiple freshness-related metabolic biomarkers were identified, such as
L-anserine, tyramine, and indole-3-carboxaldehyde [56,57]. Beef is one of the meat products
with increased demand and commercial value [90]. Recent studies implied that NMR-
or GC-MS-based metabolomics could classify beef samples according to their freshness
and predict the storage time of beef samples. Additionally, numerous potential metabolic
biomarkers related to the freshness of beef were identified, including 2-pentanone, 2-
nonanone, 2-methyl-1-butanol, 3-methyl-1-butanol, ethyl hexanoate, ethyl propanoate,
ethyl lactate, ethyl acetate, ethanol, 2-heptanone, 3-octanone, diacetyl, and acetoin [87,156].
For pork, a study was carried out to monitor the metabolic changes during storage, which
laid a foundation for developing a new method for non-destructive analysis and for
the control of pork quality [136]. In another study, GC-MS-based metabolomics was
applied to metabolic changes of Tan sheep meat during storage. Gluconic acid, citric acid,
trans-4-hydroxy-L-proline, and 1, 5-anhydroglucitol were identified as potential spoilage
biomarkers of sheep meat [117]. Compared with livestock and poultry meat, metabolomics
is more widely used in evaluating freshness and identifying freshness-related biomarkers
of fish meat such as yellowtail [51], tuna [157], gilthead sea bream [137], tilapia [158],
and komatsuna [159]. The above studies demonstrate the feasibility of metabolomics in
estimating meat freshness, especially identifying freshness-related biomarkers.

3.2. Metabolomics in Meat Authentication

Adulteration of foods is a severe economic problem concerning most foodstuffs,
particularly meat and meat products [160]. Since adulteration can have severe consequences
on human health, it affects market growth by destroying consumer confidence [161].
Therefore, authentication of meat is essential to ensure fair competition, consumer benefit,
and food safety. Adulteration of meats can be divided into four categories, including meat
origin, the replacement of higher quality meats with lower quality ones, the substitution of
meat muscle proteins with vegetable proteins such as soybean, and the addition of unsaid
meat species and unsaid ingredients in meat-based food products [162]. Recently, there is a
growing need for new analytical methods to guarantee that all the ingredients included in a
foodstuff match the qualities claimed by the manufacturer [163]. Nevertheless, it is usually
challenging to differentiate between adulterated and pure meat using conventional sensory
techniques and quality indicators [16]. With the development of food omics, metabolomics
has emerged as a powerful approach in assessing meat’s authenticity by characterising its
chemical composition and metabolite contents.
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3.2.1. Geographical Origin

Meat products, particularly protected geographical indication (PGI) products of se-
lected breeds produced in a particular area, have a higher value in the market [90,164]. With
improved living standards, consumers are becoming increasingly aware of the importance
of meat origin, such as geographical origin and species origin [138]. Consequently, there is a
growing need to develop appropriate analytical methods to determine meat’s geographical
origin and species origin. The discrimination of geographical and species origins to guard
the protected designation of origin (PDO) and avoid fraudulent labelling of meat products
has been intensively studied using NMR- and MS-based metabolomics techniques.

The geographical origin of beef is of increasing interest to consumers and producers
due to “mad cow” disease and the implementation of the Free Trade Agreement (FTA). An
NMR-based metabolomics method was used to discriminate beef originating from four
countries: Australia, Korea, New Zealand, and the United States [90]. Primary metabo-
lites responsible for discrimination of the geographical origin of raw beef were identified,
including succinate and various amino acids. In another study carried out by MS-based
metabolomics, Man et al. characterised the metabolite profiles of beef samples from dif-
ferent geographical origins [139]. Twenty-four metabolites were identified as metabolic
biomarkers for beef from different countries, including amino acids, several sugar metabo-
lites, and many PCs and PEs. Regarding lamb meat, the metabolomics approach based on
stable isotope ratios and NMR achieved 100% of classification ability and 96% of prediction
ability in classifying lamb types according to their geographical origins [140]. Likewise,
the metabolomics approach has been applied to discriminate the geographical origin of
aquatic products such as Mytilus [141] and shrimp [165]. These studies demonstrate that
metabolomics is an efficient method to discriminate the geographical origin of meat.

3.2.2. Species Origin

The high value of meat opens it up to fraudulent replacement/substitution of some or
all of the premium meat content with lower-grade meat or meat from other species [142].
Thus, there is a need to develop efficient and high-throughput analytical approaches to
detect meat adulteration. Beef is more expensive compared with other conventional types
of meat such as chicken, pork, or horse meat. Substitution of the more expensive beef
with cheaper pork or chicken is an attractive proposition for those inclined to adulterate
the food supply for economic gain. Several recent studies have exploited NMR- and
MS-based metabolomics as methods to detect the adulteration of beef with pork [55,143].
Both studies confirmed metabolomics’ potential as an alternative method for robust and
reliable discrimination of adulterated and pure beef samples by constructing the OPLS-
DA or PLS-DA model. Many metabolites that correlated with beef, pork, and their mix
were identified, respectively. Akhtar et al. performed a 1H-NMR-based metabolomics
study to investigate the metabolic difference between chicken, chevon, beef, and donkey
meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine,
glutamate, 3-hydroxybutyrate, and α-mannose were found as the significant discriminating
metabolites between white (chicken) and red meat (chevon, beef, and donkey). While
inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine, and acetate were
found responsible for differentiating chevon, beef, and donkey meat [166]. Moreover,
Jakers et al. developed a 60 MHz 1H-NMR-based targeted metabolomics to differentiate
between beef and horse meat and concluded that 60 MHz 1H NMR represents a feasible
high-throughput approach for screening raw meat [167]. Lamb meat is derived from sheep
at the age of no more than 12 months or without permanent incisor teeth, and mutton is
defined as meat from sheep of 1–3 years old. Compared with mutton, lamb meat always
has a higher demand and retail price in the market [144]. In order to pursue economic
interests, illegal producers often use mutton to replace lamb meat. The high-throughput
metabolomics approach combined with multivariate data analysis has been proven to
distinguish lamb from mutton effectively [145].
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The breed is one of the important factors that affect meat quality. Generally, most
native livestock and poultry possess high-quality meat characterised by unique flavours
and tastes and high economic value compared to commercial lines. Therefore, it is nec-
essary to develop efficient methods to distinguish meat with different breed origins. For
this purpose, metabolomics-based approaches were developed and have been applied
to discriminate pork [146], chicken [45,168], and duck [43] meat of different breeds. By
the NMR-based metabolomics method, the amino acid carnosine was identified as the
metabolite most strongly correlated to the sensory attributes of the pork meat from different
breeds [146]. Kim et al. developed a combined 1D 1H NMR and 2D HSQC NMR approach
to quantify metabolites present in chicken breast meat extracts from Korean native chickens
and commercial broilers [45]. Compared with commercial broilers, Korean native chicken
meat possesses higher amounts of IMP, α-glucose, lactate, and anserine and lower amounts
of free amino acids. A further study reported by Kim et al. developed a metabolomics
approach based on 2D HSQC analysis to differentiate between Korean native chickens
and white-semi broiler, demonstrating superior performance to the conventional quality
assessment tools [168].

4. Challenge and Future Trends

Thanks to its high sensitivity, high throughput, and reliability features, metabolomics
has emerged as a powerful tool for analysing meat quality. However, NMR- and MS-
based metabolomics applications for meat quality and authentication are still far from
reaching their maximum potential. Several technical challenges regarding the application
of metabolomics remain, including (1) the complexity of meat samples, (2) the difference
in metabolites caused by using different sample preparation methods and instrument
platforms, (3) the absence of a specialised database for meat metabolome, (4) the lack
of uniform criteria for metabolite identification, (5) the limited information available for
functional annotation of metabolites, and (6) the growing dataset generated from large
samples [169]. Therefore, to obtain a deeper comprehension of meat metabolome and
identify metabolites used for meat quality analysis and authentication, it is necessary
to develop harmonised and normalised sampling methods, establish a food metabolome
database with functional annotations, develop uniform criteria for metabolite identification,
and develop novel powerful exploiting tools [16,169,170].

For decades, remarkable progress has been achieved in meat science, benefiting
from improved NMR- and MS-based metabolomics. However, meat is a complex matrix
consisting of enormous organic compounds, and its quality is affected by many factors. Still,
there exists a large portion of metabolites related to meat quality waiting to be identified.
It is necessary to develop methods with higher resolution, higher sensitivity, and better
quantitative capability for investigating meat metabolome and identifying biomarkers
related to meat quality and authentication. In this context, selected reaction monitoring
(SRM) will find more applications in monitoring concentration changes of endogenous
metabolites in the targeted analysis of meat. At the same time, full-scan high-resolution
mass spectrometers (HRMS) with high mass resolution and high mass accuracy hold
the promise of untargeted metabolomics analysis of meat in the future [171]. Notably,
although the improvement of analytical techniques of metabolomics makes it possible
to analyse hundreds of metabolites in a single run, identifying and characterising the
detected metabolites is a challenge posed to the researchers. Thus, developing methods for
more efficient identification of unknown compounds and establishing databases for meat
metabolome are other issues to be addressed in the meat metabolomics community.

Due to innovative developments in informatics and analytical technologies, metabolomics’
power has extended from biomarker discovery to understanding the mechanisms underly-
ing phenotypes [13]. Nevertheless, most of the metabolomics studies in meat science focus
on characterising metabolic profiles, identifying biomarkers, and discriminative analyses.
The functions of metabolites in the formation of meat quality and the mechanisms behind
them remain largely unknown. How to correlate metabolites to meat quality, investigate the
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functions of metabolites, and elucidate the mechanisms underlying the function is another
challenge. Recently, metabolomics coupled with genomics, transcriptomics, and proteomics
has been applied to investigate food and nutrition domains, providing fast, accurate, and
reliable tools to address problems inherent to food quality control. Metabolomics’ asso-
ciation with other analytical techniques such as transcriptomics and genomics could be
powerful strategies for meat quality analysis because metabolomics can complement other
omics methods to provide correlations between metabolic changes and phenotype of meat,
offering a more holistic molecular perspective to study meat science comprehensively.
Nevertheless, the effective integration of multi-omics data remains challenging, requiring
co-progress of systems biology and computer technology.

Meat metabolomics is expected to become a potent tool in quality analysis and au-
thentication to comprehensively characterise the complex meat matrices. Although many
successful research projects have already demonstrated the feasibility of metabolomics ap-
proaches in characterising metabolomics profiles and identifying biomarkers, their uptake
and implementation into routine analysis and meat surveillance are still limited [172]. This
is mainly because many studies were performed within a limited period of time using one
instrument within one laboratory, limiting the applicability of the developed metabolomics
approaches in the meat industry and meat processing. Moreover, there is a lack of valida-
tion strategies that guarantee the metabolomics data’s reliability and allow conclusions on
the applicability of the metabolomics approaches in meat quality analysis and authenti-
cation. Therefore, future works should focus on developing generic schemes to validate
the metabolomics-based analytical method in meat quality control and authentication.
Furthermore, up-to-date, extensive metabolomics research studies have identified a consid-
erable number of biomarkers related to meat quality and authentication. Another issue
that needs to be addressed is the development of targeted metabolomics approaches and
other analytical methods such as sensory evaluation based on the identified biomarkers.

Author Contributions: Conceptualisation, T.Z., C.C., K.X., J.W. and Z.P.; data curation, T.Z., C.C.
and K.X.; writing—original draft preparation, T.Z.; writing—review and editing, K.X., J.W. and Z.P.;
supervision, K.X.; funding acquisition, J.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC),
grant number 32102532, the China Agriculture Research System of MOF and MARA, grant number
CARS-41; the Open Project Program of Joint International Research Laboratory of Agriculture
and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, grant number
JILAR-KF202016; the Yangzhou University Science and Technique Innovation Foundation, grant
number 2019CXJ168 and the Priority Academic Program Development of Jiangsu Higher Education
Institutions.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, P.W.; Byun, Y.-C.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 Using Advanced

Deep Learning. Sensors 2020, 20, 2990. [CrossRef]
2. Hoffman, J.R.; Falvo, M.J. Protein—Which is Best? J. Sports Sci. Med. 2004, 3, 118–130.
3. Esua, O.J.; Cheng, J.H.; Sun, D.W. Functionalization of water as a nonthermal approach for ensuring safety and quality of meat

and seafood products. Crit. Rev. Food Sci. Nutr. 2021, 61, 431–449. [CrossRef]
4. Elmasry, G.; Barbin, D.F.; Sun, D.W.; Allen, P. Meat quality evaluation by hyperspectral imaging technique: An overview. Crit.

Rev. Food Sci. Nutr. 2012, 52, 689–711. [CrossRef]
5. Consonni, R.; Cagliani, L.R. The potentiality of NMR-based metabolomics in food science and food authentication assessment.

Magn. Reson. Chem. 2019, 57, 558–578. [CrossRef] [PubMed]
6. Bai, M.; Liu, H.; Xu, K.; Yu, R.; Oso, A.O.; Deng, J.; Yin, Y. Effects of coated cysteamine hydrochloride on muscle fiber characteristics

and amino acid composition of finishing pigs. Asian-Australas. J. Anim. Sci. 2018, 32, 1430–1438. [CrossRef]

http://doi.org/10.3390/s20102990
http://doi.org/10.1080/10408398.2020.1735297
http://doi.org/10.1080/10408398.2010.507908
http://doi.org/10.1002/mrc.4807
http://www.ncbi.nlm.nih.gov/pubmed/30447115
http://doi.org/10.5713/ajas.18.0414


Foods 2021, 10, 2388 15 of 21

7. Taheri-Garavand, A.; Fatahi, S.; Omid, M.; Makino, Y. Meat quality evaluation based on computer vision technique: A review.
Meat Sci. 2019, 156, 183–195. [CrossRef] [PubMed]

8. Liu, S.J.; Wu, Y.N.; Chan, L. Application of Metabonomics Approach in Food Safety Research-A Review. Food Rev. Int. 2020,
36, 547–558. [CrossRef]

9. Herrero, M.; Simó, C.; García-Cañas, V.; Ibáñez, E.; Cifuentes, A. Foodomics: MS-based strategies in modern food science and
nutrition. Mass Spectrom. Rev. 2012, 31, 49–69. [CrossRef]

10. Creydt, M.; Fischer, M. Omics approaches for food authentication. Electrophoresis 2018, 39, 1569–1581. [CrossRef] [PubMed]
11. Ma, S.; Kim, A.; Lee, W.; Kim, S.; Lee, S.; Yoon, D.; Bae, J.-S.; Park, C.-I.; Kim, S. Vibrio harveyi Infection Significantly Alters

Amino Acid and Carbohydrate Metabolism in Whiteleg Shrimp, Litopenaeus vannamei. Metabolites 2020, 10, 265. [CrossRef]
12. Tian, J.; Wang, Y.Z.; Yan, S.X.; Sun, S.; Jia, J.J.; Hu, X.X. Metabolomics technology and its applications in agricultural animal and

plant research. Yi Chuan 2020, 42, 452–465. [CrossRef]
13. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell. Biol.

2016, 17, 451–459. [CrossRef] [PubMed]
14. Robertson, D.G.; Watkins, P.B.; Reily, M.D. Metabolomics in toxicology: Preclinical and clinical applications. Toxicol. Sci. 2011,

120 (Suppl. 1), S146–S170. [CrossRef] [PubMed]
15. De Castro, F.; Benedetti, M.; Del Coco, L.; Fanizzi, F.P. NMR-Based Metabolomics in Metal-Based Drug Research. Molecules 2019,

24, 2240. [CrossRef] [PubMed]
16. Li, S.; Tian, Y.; Jiang, P.; Lin, Y.; Liu, X.; Yang, H. Recent advances in the application of metabolomics for food safety control and

food quality analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 1448–1469. [CrossRef] [PubMed]
17. Zhu, C.; Petracci, M.; Li, C.; Fiore, E.; Laghi, L. An Untargeted Metabolomics Investigation of Jiulong Yak (Bos grunniens) Meat

by (1)H-NMR. Foods 2020, 9, 481. [CrossRef]
18. Jadhav, S.R.; Shah, R.M.; Karpe, A.V.; Morrison, P.D.; Kouremenos, K.; Beale, D.J.; Palombo, E.A. Detection of Foodborne

Pathogens Using Proteomics and Metabolomics-Based Approaches. Front. Microbiol. 2018, 9, 3132. [CrossRef] [PubMed]
19. Horning, E.C.; Horning, M.G. Metabolic profiles: Chromatographic methods for isolation and characterization of a variety of

metabolites in man. Methods Med. Res. 1970, 12, 369–371. [PubMed]
20. Nicholson, J.K.; Lindon, J.C.; Holmes, E. ‘Metabonomics’: Understanding the metabolic responses of living systems to patho-

physiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999, 29, 1181–1189.
[CrossRef] [PubMed]

21. Fiehn, O. Metabolomics—The link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [CrossRef]
22. Christodoulou, C.C.; Zachariou, M.; Tomazou, M.; Karatzas, E.; Demetriou, C.A.; Zamba-Papanicolaou, E.; Spyrou, G.M.

Investigating the Transition of Pre-Symptomatic to Symptomatic Huntington’s Disease Status Based on Omics Data. Int. J. Mol.
Sci. 2020, 21, 7414. [CrossRef]

23. Hao, L.; Wang, J.; Page, D.; Asthana, S.; Zetterberg, H.; Carlsson, C.; Okonkwo, O.C.; Li, L. Comparative Evaluation of MS-based
Metabolomics Software and Its Application to Preclinical Alzheimer’s Disease. Sci. Rep. 2018, 8, 9291. [CrossRef] [PubMed]

24. Fiehn, O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp.
Funct. Genom. 2001, 2, 155–168. [CrossRef]

25. Nicholson, J.K.; Lindon, J.C. Metabonomics. Nature 2008, 455, 1054–1056. [CrossRef] [PubMed]
26. Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; van der Hooft, J.J.; Wishart,

D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [CrossRef]
27. Chen, L.; Zhong, F.; Zhu, J. Bridging Targeted and Untargeted Mass Spectrometry-Based Metabolomics via Hybrid Approaches.

Metabolites 2020, 10, 348. [CrossRef]
28. Shao, Y.; Le, W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol. Neurodegener.

2019, 14, 3. [CrossRef]
29. Villas-Boas, S.G. Analytical techniques & applications of metabolomics in systems medicine and systems biotechnology. Comput.

Struct. Biotechnol. J. 2013, 4, e201301001. [CrossRef]
30. Yoon, D.; Kim, Y.J.; Lee, W.K.; Choi, B.R.; Oh, S.M.; Lee, Y.S.; Kim, J.K.; Lee, D.Y. Metabolic Changes in Serum Metabolome of

Beagle Dogs Fed Black Ginseng. Metabolites 2020, 10, 517. [CrossRef] [PubMed]
31. Emwas, A.H. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics

research. Methods Mol. Biol. 2015, 1277, 161–193. [CrossRef]
32. Amberg, A.; Riefke, B.; Schlotterbeck, G.; Ross, A.; Senn, H.; Dieterle, F.; Keck, M. NMR and MS Methods for Metabolomics.

Methods Mol. Biol. 2017, 1641, 229–258. [CrossRef] [PubMed]
33. Dutta, M.; Singh, B.; Joshi, M.; Das, D.; Subramani, E.; Maan, M.; Jana, S.K.; Sharma, U.; Das, S.; Dasgupta, S.; et al. Metabolomics

reveals perturbations in endometrium and serum of minimal and mild endometriosis. Sci. Rep. 2018, 8, 6466. [CrossRef]
34. Fellenberg, M.; Behnken, H.N.; Nagel, T.; Wiegandt, A.; Baerenfaenger, M.; Meyer, B. Glycan analysis: Scope and limitations of

different techniques–a case for integrated use of LC-MS(/MS) and NMR techniques. Anal. Bioanal. Chem. 2013, 405, 7291–7305.
[CrossRef]

35. Swain, D.; Samanthula, G. Study on the forced degradation behaviour of ledipasvir: Identification of major degradation products
using LC-QTOF-MS/MS and NMR. J. Pharm. Biomed. Anal. 2017, 138, 29–42. [CrossRef]

http://doi.org/10.1016/j.meatsci.2019.06.002
http://www.ncbi.nlm.nih.gov/pubmed/31202093
http://doi.org/10.1080/87559129.2019.1655571
http://doi.org/10.1002/mas.20335
http://doi.org/10.1002/elps.201800004
http://www.ncbi.nlm.nih.gov/pubmed/29572870
http://doi.org/10.3390/metabo10060265
http://doi.org/10.16288/j.yczz.19-287
http://doi.org/10.1038/nrm.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/26979502
http://doi.org/10.1093/toxsci/kfq358
http://www.ncbi.nlm.nih.gov/pubmed/21127352
http://doi.org/10.3390/molecules24122240
http://www.ncbi.nlm.nih.gov/pubmed/31208065
http://doi.org/10.1080/10408398.2020.1761287
http://www.ncbi.nlm.nih.gov/pubmed/32441547
http://doi.org/10.3390/foods9040481
http://doi.org/10.3389/fmicb.2018.03132
http://www.ncbi.nlm.nih.gov/pubmed/30619201
http://www.ncbi.nlm.nih.gov/pubmed/5432495
http://doi.org/10.1080/004982599238047
http://www.ncbi.nlm.nih.gov/pubmed/10598751
http://doi.org/10.1023/A:1013713905833
http://doi.org/10.3390/ijms21197414
http://doi.org/10.1038/s41598-018-27031-x
http://www.ncbi.nlm.nih.gov/pubmed/29915347
http://doi.org/10.1002/cfg.82
http://doi.org/10.1038/4551054a
http://www.ncbi.nlm.nih.gov/pubmed/18948945
http://doi.org/10.3945/ajcn.113.076133
http://doi.org/10.3390/metabo10090348
http://doi.org/10.1186/s13024-018-0304-2
http://doi.org/10.5936/csbj.201301001
http://doi.org/10.3390/metabo10120517
http://www.ncbi.nlm.nih.gov/pubmed/33352805
http://doi.org/10.1007/978-1-4939-2377-9_13
http://doi.org/10.1007/978-1-4939-7172-5_13
http://www.ncbi.nlm.nih.gov/pubmed/28748468
http://doi.org/10.1038/s41598-018-23954-7
http://doi.org/10.1007/s00216-013-7164-y
http://doi.org/10.1016/j.jpba.2017.01.033


Foods 2021, 10, 2388 16 of 21

36. Marshall, D.D.; Lei, S.; Worley, B.; Huang, Y.; Garcia-Garcia, A.; Franco, R.; Dodds, E.D.; Powers, R. Combining DI-ESI-MS and
NMR datasets for metabolic profiling. Metabolomics 2015, 11, 391–402. [CrossRef]

37. Jang, C.; Chen, L.; Rabinowitz, J.D. Metabolomics and Isotope Tracing. Cell 2018, 173, 822–837. [CrossRef] [PubMed]
38. Vuckovic, D. Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass

spectrometry. Anal. Bioanal. Chem. 2012, 403, 1523–1548. [CrossRef]
39. Ivanisevic, J.; Want, E.J. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS

Metabolomics Data. Metabolites 2019, 9, 308. [CrossRef] [PubMed]
40. Kim, H.K.; Verpoorte, R. Sample preparation for plant metabolomics. Phytochem. Anal. 2010, 21, 4–13. [CrossRef]
41. Lin, C.Y.; Wu, H.; Tjeerdema, R.S.; Viant, M.R. Evaluation of metabolite extraction strategies from tissue samples using NMR

metabolomics. Metabolomics 2007, 3, 55–67. [CrossRef]
42. Li, N.; Song, Y.p.; Tang, H.; Wang, Y. Recent developments in sample preparation and data pre-treatment in metabonomics

research. Arch. Biochem. Biophys. 2016, 589, 4–9. [CrossRef] [PubMed]
43. Wang, X.; Jiang, G.; Kebreab, E.; Li, J.; Feng, X.; Li, C.; Zhang, X.; Huang, X.; Fang, C.; Fang, R.; et al. 1H NMR-based metabolomics

study of breast meat from Pekin and Linwu duck of different ages and relation to meat quality. Food Res. Int. 2020, 133, 109126.
[CrossRef]

44. Yang, Y.; Pan, D.; Sun, Y.; Wang, Y.; Xu, F.; Cao, J. 1H NMR-based metabolomics profiling and taste of stewed pork-hock in soy
sauce. Food Res. Int. 2019, 121, 658–665. [CrossRef]

45. Kim, H.C.; Ko, Y.-J.; Jo, C. Potential of 2D qNMR spectroscopy for distinguishing chicken breeds based on the metabolic
differences. Food Chem. 2021, 342, 128316. [CrossRef]

46. Kim, H.C.; Ko, Y.J.; Kim, M.; Choe, J.; Yong, H.I.; Jo, C. Optimization of 1D (1)H Quantitative NMR (Nuclear Magnetic Resonance)
Conditions for Polar Metabolites in Meat. Food Sci. Anim. Resour. 2019, 39, 1–12. [CrossRef] [PubMed]

47. Kodani, Y.; Miyakawa, T.; Komatsu, T.; Tanokura, M. NMR-based metabolomics for simultaneously evaluating multiple
determinants of primary beef quality in Japanese Black cattle. Sci. Rep. 2017, 7, 1297. [CrossRef] [PubMed]

48. Snytnikova, O.A.; Khlichkina, A.A.; Sagdeev, R.Z.; Tsentalovich, Y.P. Evaluation of sample preparation protocols for quantitative
NMR-based metabolomics. Metabolomics 2019, 15, 84. [CrossRef] [PubMed]

49. Sardans, J.; Gargallo-Garriga, A.; Urban, O.; Klem, K.; Walker, T.W.N.; Holub, P.; Janssens, I.A.; Peñuelas, J. Ecometabolomics for
a Better Understanding of Plant Responses and Acclimation to Abiotic Factors Linked to Global Change. Metabolites 2020, 10, 239.
[CrossRef] [PubMed]

50. Wagner, L.; Peukert, M.; Kranz, B.; Gerhardt, N.; Andrée, S.; Busch, U.; Brüggemann, D.A. Comparison of Targeted (HPLC) and
Nontargeted (GC-MS and NMR) Approaches for the Detection of Undeclared Addition of Protein Hydrolysates in Turkey Breast
Muscle. Foods 2020, 9, 1084. [CrossRef]

51. Mabuchi, R.; Adachi, M.; Ishimaru, A.; Zhao, H.; Kikutani, H.; Tanimoto, S. Changes in Metabolic Profiles of Yellowtail (Seriola
quinqueradiata) Muscle during Cold Storage as a Freshness Evaluation Tool Based on GC-MS Metabolomics. Foods 2019, 8, 511.
[CrossRef]

52. Grundy, S.M.; Ahrens, E.H., Jr.; Miettinen, T.A. Quantitative isolation and gas–liquid chromatographic analysis of total fecal bile
acids. J. Lipid Res. 1965, 6, 397–410. [CrossRef]

53. Roasa, J.; Liu, H.; Shao, S. An optimised HS-SPME-GC-MS method for the detection of volatile nitrosamines in meat samples.
Food Addit. Contam. A 2019, 36, 396–404. [CrossRef] [PubMed]

54. Sun, C.; Wang, R.; Wang, T.; Li, Q. Primary evaluation of nine volatile N-nitrosamines in raw red meat from Tianjin, China, by
HS-SPME-GC-MS. Food Chem. 2020, 310, 125945. [CrossRef]

55. Pavlidis, D.E.; Mallouchos, A.; Ercolini, D.; Panagou, E.Z.; Nychas, G.E. A volatilomics approach for off-line discrimination of
minced beef and pork meat and their admixture using HS-SPME GC/MS in tandem with multivariate data analysis. Meat Sci.
2019, 151, 43–53. [CrossRef] [PubMed]

56. Zhang, T.; Zhang, S.; Chen, L.; Ding, H.; Wu, P.; Zhang, G.; Xie, K.; Dai, G.; Wang, J. UHPLC-MS/MS-Based Nontargeted
Metabolomics Analysis Reveals Biomarkers Related to the Freshness of Chilled Chicken. Foods 2020, 9, 1326. [CrossRef]

57. Wen, D.; Liu, Y.; Yu, Q. Metabolomic approach to measuring quality of chilled chicken meat during storage. Poult. Sci. 2020,
99, 2543–2554. [CrossRef]

58. Lísa, M.; Cífková, E.; Khalikova, M.; Ovčačíková, M.; Holčapek, M. Lipidomic analysis of biological samples: Comparison of
liquid chromatography, supercritical fluid chromatography and direct infusion mass spectrometry methods. J. Chromatogr. A
2017, 1525, 96–108. [CrossRef]

59. Michopoulos, F.; Whalley, N.; Theodoridis, G.; Wilson, I.D.; Dunkley, T.P.J.; Critchlow, S.E. Targeted profiling of polar intracellular
metabolites using ion-pair-high performance liquid chromatography and -ultra high performance liquid chromatography coupled
to tandem mass spectrometry: Applications to serum, urine and tissue extracts. J. Chromatogr. A 2014, 1349, 60–68. [CrossRef]

60. Li, M.; Li, H.; Jiang, P.; Liu, X.; Xu, D.; Wang, F. Investigating the pathological processes of rhegmatogenous retinal detachment
and proliferative vitreoretinopathy with metabolomics analysis. Mol. Biosyst. 2014, 10, 1055–1062. [CrossRef]

http://doi.org/10.1007/s11306-014-0704-4
http://doi.org/10.1016/j.cell.2018.03.055
http://www.ncbi.nlm.nih.gov/pubmed/29727671
http://doi.org/10.1007/s00216-012-6039-y
http://doi.org/10.3390/metabo9120308
http://www.ncbi.nlm.nih.gov/pubmed/31861212
http://doi.org/10.1002/pca.1188
http://doi.org/10.1007/s11306-006-0043-1
http://doi.org/10.1016/j.abb.2015.08.024
http://www.ncbi.nlm.nih.gov/pubmed/26342458
http://doi.org/10.1016/j.foodres.2020.109126
http://doi.org/10.1016/j.foodres.2018.12.035
http://doi.org/10.1016/j.foodchem.2020.128316
http://doi.org/10.5851/kosfa.2018.e54
http://www.ncbi.nlm.nih.gov/pubmed/30882069
http://doi.org/10.1038/s41598-017-01272-8
http://www.ncbi.nlm.nih.gov/pubmed/28465593
http://doi.org/10.1007/s11306-019-1545-y
http://www.ncbi.nlm.nih.gov/pubmed/31127446
http://doi.org/10.3390/metabo10060239
http://www.ncbi.nlm.nih.gov/pubmed/32527044
http://doi.org/10.3390/foods9081084
http://doi.org/10.3390/foods8100511
http://doi.org/10.1016/S0022-2275(20)39310-X
http://doi.org/10.1080/19440049.2019.1571287
http://www.ncbi.nlm.nih.gov/pubmed/30730253
http://doi.org/10.1016/j.foodchem.2019.125945
http://doi.org/10.1016/j.meatsci.2019.01.003
http://www.ncbi.nlm.nih.gov/pubmed/30685510
http://doi.org/10.3390/foods9091326
http://doi.org/10.1016/j.psj.2019.11.070
http://doi.org/10.1016/j.chroma.2017.10.022
http://doi.org/10.1016/j.chroma.2014.05.019
http://doi.org/10.1039/c3mb70386j


Foods 2021, 10, 2388 17 of 21

61. Chen, S.; Hoene, M.; Li, J.; Li, Y.; Zhao, X.; Häring, H.-U.; Schleicher, E.D.; Weigert, C.; Xu, G.; Lehmann, R. Simultaneous
extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance
liquid chromatography/mass spectrometry. J. Chromatogr. A 2013, 1298, 9–16. [CrossRef]

62. Xia, J. Computational Strategies for Biological Interpretation of Metabolomics Data. In Metabolomics: From Fundamentals to Clinical
Applications; Sussulini, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 191–206.

63. Karaman, I. Preprocessing and Pretreatment of Metabolomics Data for Statistical Analysis. In Metabolomics: From Fundamentals to
Clinical Applications; Sussulini, A., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 145–161.

64. Pathmasiri, W.; Kay, K.; McRitchie, S.; Sumner, S. Analysis of NMR Metabolomics Data. In Computational Methods and Data
Analysis for Metabolomics; Li, S., Ed.; Springer: New York, NY, USA, 2020; pp. 61–97.

65. Mastrangelo, A.; Ferrarini, A.; Rey-Stolle, F.; García, A.; Barbas, C. From sample treatment to biomarker discovery: A tutorial for
untargeted metabolomics based on GC-(EI)-Q-MS. Anal. Chim. Acta 2015, 900, 21–35. [CrossRef]

66. Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. MZmine 2: Modular framework for processing, visualizing, and analyzing
mass spectrometry-based molecular profile data. BMC Bioinf. 2010, 11, 395. [CrossRef]

67. Sturm, M.; Bertsch, A.; Gröpl, C.; Hildebrandt, A.; Hussong, R.; Lange, E.; Pfeifer, N.; Schulz-Trieglaff, O.; Zerck, A.;
Reinert, K.; et al. OpenMS—An open-source software framework for mass spectrometry. BMC Bioinf. 2008, 9, 163. [Cross-
Ref]

68. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling
using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779–787. [CrossRef] [PubMed]

69. Yu, T.; Park, Y.; Johnson, J.M.; Jones, D.P. apLCMS–adaptive processing of high-resolution LC/MS data. Bioinformatics 2009,
25, 1930–1936. [CrossRef]

70. Kamleh, M.A.; Ebbels, T.M.; Spagou, K.; Masson, P.; Want, E.J. Optimizing the use of quality control samples for signal drift
correction in large-scale urine metabolic profiling studies. Anal. Chem. 2012, 84, 2670–2677. [CrossRef]

71. Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution
of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [CrossRef] [PubMed]

72. Bolstad, B.M.; Irizarry, R.A.; Astrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide
array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [CrossRef] [PubMed]

73. Veselkov, K.A.; Vingara, L.K.; Masson, P.; Robinette, S.L.; Want, E.; Li, J.V.; Barton, R.H.; Boursier-Neyret, C.; Walther, B.; Ebbels,
T.M.; et al. Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles
for improved information recovery. Anal. Chem. 2011, 83, 5864–5872. [CrossRef]
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