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Abstract: Cytokines are proteins secreted by immune cells. They promote cell signal transduction
and are involved in cell replication, death, and recovery. Cytokines are immune modulators, but
their excessive secretion causes uncontrolled inflammation that attacks normal cells. Considering the
properties of cytokines, monitoring the secretion of cytokines in vivo is of great value for medical and
biological research. In this review, we offer a report on recent studies for cytokine detection, especially
studies on aptasensors using aptamers. Aptamers are single strand nucleic acids that form a stable
three-dimensional structure and have been receiving attention due to various characteristics such
as simple production methods, low molecular weight, and ease of modification while performing a
physiological role similar to antibodies.

Keywords: cytokine; aptamer; aptasensor; electrochemical biosensor; electrical biosensor

1. Introduction

When external pathogens invade the body, immune cells release low-molecular-weight
proteins, such as cytokines, to regulate the inflammatory response and homeostasis [1].
Cytokines are protein immune regulators secreted by immune cells, and their molecular
weights range from approximately 6 to 70 kDa [2]. They facilitate cell-to-cell communication
and act on cytokine-secreting hair cells underlying neighboring cells. Cytokines also play
important roles in cell replication and apoptosis [3], cancer [4], damaged tissue repair, and
other physiological functions [1]. Some cytokines have been developed and reported as
therapeutic agents and immune regulators [5,6]. Considering that cytokines are important
indicators of physical health, monitoring them is of tremendous value in medicine and
biological research [7].

Cytokines are immune regulators against external pathogens, but excessive cytokine
secretion causes uncontrolled inflammatory reactions, resulting in attacks on normal
cells [8,9]. Moreover, secondary infection symptoms occur as the DNA of attacked normal
cells is altered. This phenomenon is called a “cytokine storm”. The cytokine storm can even
kill healthy individuals without underlying diseases [8,9]. It has been identified as a major
cause of high mortality in patients with avian flu [10], Spanish flu [11], and severe acute
respiratory syndrome (SARS) [12]. In addition, those infected with Middle East respiratory
syndrome (MERS) [13], an acute respiratory infectious disease prevalent in the Middle
East in 2012, deteriorated without an underlying disease [14]. The medical community
has recognized a cytokine storm as the cause of this phenomenon [10–14]. In December
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2019, the first case of coronavirus disease 2019 (COVID-19) caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China, causing a
global pandemic [15]. SARS-CoV-2 shares many genomic and structural similarities with
SARS- and MERS-associated coronaviruses [16]. It has been reported that a cytokine storm
is instrumental in the pathogenesis of COVID-19 [17]. Early diagnosis of cytokine storms
through monitoring of cytokine levels can prevent progression to serious diseases and
achieve better outcomes. Therefore, rapid and accurate detection of cytokines is essential.

An aptamer is a single-stranded nucleic acid with a nucleotide sequence of approx-
imately 15–40 mer; it has a stable tertiary structure and can bind to a target molecule
with high affinity and specificity [18,19]. Aptamers are discovered using the systemic
evolution of ligands by exponential enrichment (SELEX) published by the Lary Gold group
in 1990 [20]. SELEX selectively acquires target-bound nucleic acid sequences after mixing
a random nucleic acid library with target molecules. The sequences in the nucleic acid
library are composed of a primer-binding platform with two identical sequences at both
ends and a random sequence in the middle. SELEX selectively amplifies oligonucleotide
sequences bound to a target molecule by incubating a nucleic acid library with a target
molecule via polymerase chain reaction (PCR) or reverse transcription-polymerase chain
reaction (RT-PCR). Aptamers with high affinity and specificity for the target molecule are
developed by repeated incubation of the target molecule with the amplified oligonucleotide
sequence [21].

The high specificity and affinity of aptamers for binding to target molecules are being
compared to those of antibodies. Thus, aptamers are expected to replace antibodies owing
to the following advantages. Aptamers have smaller molecular weights than antibodies,
rendering them easier to modify. Moreover, because aptamers are chemically manufactured
in mass production, their production cost is lower than that of antibodies [22]. Furthermore,
aptamers are not recognized as antigens by the immune system [23]. Thus, in view of these
unique properties of aptamers, research on their application in diagnosis, therapeutics, and
drug delivery is actively being conducted [24,25].

A biosensor is a device that detects a target molecule using a probe derived from
a biomolecule and then identifies physical changes due to the interaction between the
bio-probe and the target molecule [26]. This target molecule recognition process is a key
factor in sensor performance. An immunosensor that incorporates an antibody as a bio-
probe is currently the most commonly used biosensor because of the high specificity and
affinity between the antibody and the target molecule. However, it is sensitive to pH
and temperature, has a short shelf-life, and is dependent on the time-consuming process
of new antibody development [27,28]. An aptasensor is a biosensor that detects a target
molecule using an aptamer as a bio-probe. It is expected to be an alternative to solve
the problems associated with antibody-based biosensors by exploiting the advantages of
aptamers described above. However, there are still many challenges to overcome in the
commercialization of aptasensors owing to their low specificity and affinity compared
to antibodies. This review summarizes the current research on methods to improve the
performance of aptasensors and biosensors for detecting cytokines.

2. Electrochemical-Based Detection
2.1. Electrochemical Biosensor

Electrochemical biosensors have been used in various fields to detect analytes via im-
munoassays [29–31]. Electrochemical biosensors are gaining attention because of their low
cost, sensitivity, device miniaturization, portability, and relatively fast response time [32,33].
The main advantage of electrochemical technology is its high sensitivity and inexpensive,
electrical signal-based equipment [34–37]. Therefore, the development of electrochemical
biosensors has increased dramatically in recent years. In addition, platforms combining
an aptasensor [36,37] and electrochemical technology can be widely applied to health
monitoring [38], clinical [39] and medical diagnoses [40], and point-of-care diagnostic tests.
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Electrochemistry is the study of electricity generated by the movement of electrons
between redox species. An electrochemical biosensor detects an analyte through the
electrical signal generated when a redox reaction occurs on the electrode surface [41,42].
Cyclic voltammetry (CV) [43], normal pulse voltammetry (NPV) [44], differential pulse
voltammetry (DPV) [45], and square wave voltammetry (SWV) [46] are divided according
to the pulse waveform to which the voltage is applied. In addition, electrochemical
impedance spectroscopy (EIS) is an effective electrochemical analysis method for measuring
the impedance of an electrode surface according to frequency changes. Figure 1 shows a
simple schematic of the electrochemical measurements. In this section, an electrochemical-
based aptasensor is introduced.
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Figure 1. Schematic diagram of an electrochemical sensor.

2.2. Voltametry

CV is the most commonly used electrochemical technique for investigating the charac-
teristics of redox reactions. This technique measures the current generated by applying a
triangular waveform voltage to the working electrode over time [45]. A recent study by
Lee group proposed an electrochemical biosensor composed of a multifunctional DNA
four-way junction for the detection of tumor necrosis factor (TNF)-α [47]. Figure 2a shows
a schematic of the fabricated biosensor. The DNA four-way junction consists of an aptamer
sequence that recognizes TNF-α and a region with a mismatched sequence into which Ag
ions can be intercalated. Ag ions were subjected to CV for evaluating the performance of
the biosensor fabricated as a redox-active species. Redox peaks of Ag ions were found in
the CV curve, and the concentration of TNF-α was quantified based on the intensity of
this signal. The proposed electrochemical biosensor was able to detect effectively in the
concentration range of 0.15 pg/mL to 150 ng/mL (Figure 2b,c). The limit of detection (LOD)
was calculated to be 0.07 pg/mL in HEPES and 0.14 pg/mL in 10% diluted human serum.

DPV is a method used to express the measured current difference as a function of
voltage by recording twice before the start of the pulse and immediately after the end of
the pulse. This method can minimize the charging current and allow for a more accurate
analysis of the Faraday current. Zhao group developed an electrochemical aptasensor
based on a hybridization chain reaction and enzyme-signal amplification for interferon
gamma (IFN-γ) measurement [48]. Figure 2d shows the schematic of an aptasensor. The
recognition probe contained the sequence of an interferon gamma aptamer bound to
the target substance. The unbound recognition probe binds to the capture probe on the
electrode as an initiator to induce hybridization chain reaction. Using the recognition probe,
the hairpin structures bio-H1 and bio-H2 were opened and bonded to the electrode. Next,
streptavidin–alkaline phosphatase (SA–ALP) binds to biotin as a reporter molecule. SA–
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ALP converts 1-naphthyl phosphate, an electrically inactive material, into an electrically
active derivative, 1-naphthol, to generate an electrochemical signal amplified by DPV. 1-
Naphthol showed an oxidation peak near 230 mV in Tris-HCl buffer. The proposed sensor
had an inverse relationship with IFN-γ concentration, which was quantified using DPV
(Figure 2e,f) The sensor showed high sensitivity in the concentration range of 0.5–300 nM,
with an LOD of 0.3 nM.
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Figure 2. (a) Schematic illustration of TNF-α electrochemical biosensor. (b) CV at different concen-
tration of TNF-α diluted with PBS buffer in 10 mM HEPES and 5 mM [Fe(CN)6]3−/4−. (c) CV at
different concentration of TNF-α diluted with 10% human serum buffer in 10 mM HEPES and 5 mM
[Fe(CN)6]3−/4−. Reprinted with permission from [47]. Copyright 2021 Elsevier. (d) Schematic illus-
tration of IFN-γ electrochemical aptasensor. (e) DPV at different concentration of IFN-γ. (f) Linear
regression curve of different IFN-γ concentrations. Reprinted with permission from [48]. Copyright
2012 Elsevier.

SWV applies a square wave voltage according to time and has the advantage of faster
measurement speed than other voltammetry methods. The SWV pulse is composed of
forward and reverse pulses, also called reduction and oxidation pulses, respectively. The
current is plotted as the difference between the current values obtained from the oxidation
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and reduction pulses to obtain the voltammogram. Therefore, this method can minimize the
current caused by capacitance. Recently, Lee group reported the fabrication of an aptasensor
consisting of a multifunctional DNA three-way junction of an Au microgap electrode for
IFN-γ detection [49]. The multifunctional DNA three-way junction was used as a bio-probe
to detect IFN-γ with high sensitivity. The multifunctional DNA three-way junction was
designed with a constant region (thiol group), an IFN-γ aptamer sequence, and a 4C-C
(cytosine-cytosine) mismatch sequence (signal generation). Binding was achieved between
the immobilized region of the multifunctional DNA three-way junction and the microgap
electrode. An electrochemical signal was generated by intercalating four Ag ions into a
mismatched sequence. The redox peak of the Ag ions was confirmed by CV. The signal
intensity of the aptamer and the binding event according to the IFN-γ concentration was
confirmed using SWV. A linear region was observed in the concentration range of 1 pg/mL
to 10 ng/mL. The LOD was 0.67 pg/mL in a sample diluted in PBS (phosphate-buffered
saline) and 0.42 pg/mL in a sample diluted in 10% human serum. This finding showed
that this biosensor can be applied to both clinical and artificial samples.

2.3. Electrochemical Impedance Spectroscopy

EIS is a method for measuring the impedance of a measurement target for each
frequency. The diameter of the semicircle observed at the high frequency of Nyquist
in EIS represents the electron transfer resistance (Rct). Through measurement of Rct, it
was possible to determine changes in the conductive properties of the working electrode.
Mihaela group developed an impedimetric aptasensor for the label-free selective detection
of interleukin-6 (IL-6) for colorectal cancer screening [50]. An aptasensor for high-sensitivity
quantitative detection of IL-6 was fabricated using a glass-carbon electrode modified with
p-aminobenzoic acid, p-aminothiolphenol, and gold nanoparticles. Figure 3a shows a
schematic protocol and scheme of the aptasensor. A thiol-aptamer specific for IL-6 was
immobilized on the modified electrode via a sulfur-gold bond. Next, using the aptamer
as a bio-probe, label-free detection of the electrical properties that change according to
the capture of the analyte was performed via EIS. In the Nyquist plot of EIS, the diameter
of the semicircle represents the charge-transfer resistance (Rct). IL-6 concentration was
quantified by changing the Rct value during the binding of the bio-probe and the analyte.
IL-6 was thus measured in a physiological concentration range of 5 pg/mL to 100 ng/mL,
and the LOD was calculated to be 1.6 pg/mL (Figure 3b).

Li group developed a label-free electrochemical impedance aptasensor based on
target-induced exonuclease (Exo) inhibition to detect IFN-γ [51] (Figure 3c). IFN-γ was
detected using a DNA hairpin with a loop of IFN-γ aptamer and a stem consisting of
5′-thiol modified as a probe. In the absence of IFN-γ, Exo digested single-stranded and
double-stranded DNA hairpins, causing smaller impedance values on the electrode surface.
In the presence of IFN-γ, the target and aptamer formed a complex, blocking the function of
Exo, thereby preventing the DNA hairpin from being digested. In other words, impedance
was larger on the electrode surface. The proposed aptasensor achieved a low detection
limit of 0.7 pM over a wide range of 1 pM to 50 nM (Figure 3d) [51].

The Cristea group reported a label-free electrochemical aptasensor based on gold
and polypyrrole nanoparticles for the detection of IL-6 [52]. To detect IL-6 in human
serum, a highly sensitive electrochemical aptasensor was developed based on a carbon
electrode modified with a nanocomposite composed of polypyrrole and gold nanoparticles.
A favorable environment was provided for the immobilization of IL-6 aptamers through
sulfur-gold bonds; that is, an environment simultaneously containing a conductive polymer
and gold. Each manufacturing process of the aptasensor was monitored using CV and EIS.
After completion of the optimization, IL-6 concentration was quantified using EIS. IL-6
content showed linearity in a wide concentration range of 1 pg/mL to 15 µg/mL, with an
LOD of 0.33 pg/mL.
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3. Optical-Based Detection
3.1. Optical Biosensor

Optical biosensors are analytical devices composed of an optical transducer system
and bioreceptors, such as antigens, antibodies, nucleic acids, enzymes, cells, and tissues.
They are characterized by high specificity, sensitivity, multi-sensing ability, and efficient
cost. With these advantages, their use has grown exponentially over the past decade and has
been widely used in various fields, such as biotechnology, environmental applications, and
pharmaceuticals but there are limitations to the practical application of optical biosensors
in academic and pharmaceutical environments. The main purpose of an optical biosensor is
to generate a signal proportional to the concentration of the analyte to be measured [53,54].
Among various optical transducer systems, fluorescence, surface plasmon resonance (SPR),
localized surface plasmon resonance (LSPR), and surface-enhanced Raman spectroscopy
(SERS) are commonly used to detect cytokines (Figure 4).

3.2. Fluorescence

Fluorescence-based detection of cytokines is widely used owing to its high sensitivity.
A fluorescent dye, such as a quantum dot, can visualize a corresponding fluorescent
signal. The presence of an analyte can be confirmed by the change in the intensity of
the fluorescent signal [55]. The advantages of this method include fast analysis time and
high stability [56]. Tuleuova group detected IFN-γ using the quencher of fluorescence as
a molecular marker that can measure fluorescence resonance energy transfer (FRET) by
binding to the DNA strand that binds the aptamer. The detection limit is 5 nM, and the
advantage is that the signal can be observed without the multiple washing steps required
in standard immunoassays [57]. Zhang et al. designed two molecular beacons (MBs) and
detected IFN-γ by amplifying the fluorescence signal using an MB track-mediated DNA
walker and nicking enzyme. The detection limit was 7.65 fM, providing a sensitive platform
for amplification analysis of various target molecules [58] (Figure 5a).
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IFN-γ using reduced graphene oxide nanosheets and had a detection limit of 0.1 ng/mL, 
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Figure 5. (a) Fluorescence emission spectra at different IFN-γ concentration and relationship between
the fluorescence intensity and the concentration of IFN-γ. Reprinted with permission from [58].
Copyright 2018 Elsevier. (b) Schematic illustration of ssAptamers and dsAptamers anchored on a rGO
nanosheet. Reprinted with permission from [59]. Copyright 2014 Elsevier. (c) fluorescence sensing
mechanism of IFN-γ. Reprinted with permission from [60]. Copyright 2018 Elsevier. (d) Schematic
representation of IFN-γ optical aptasensor. Reprinted with permission from [61]. Copyright 2012
Elsevier. (e) Transmission spectra of the LSPR chip before (black solid line) and after (red dashed
line) the AuNRs were immobilized on the chip surface in the way shown in the insets. Reprinted
with permission from [62]. Copyright 2016 Elsevier. (f) SERS spectra using aptamer-modified Au
NPs array substrate and Corresponding SERS intensity ratios (I660/I736) versus IL-6 concentrations
for obtaining the standard curve. Reprinted with permission from [63]. Copyright 2021 Elsevier.
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Liu et al. manufactured aptamers made of graphene quantum dots (GQDs) (Ap-
GQDs) and epitope-modified GQDs (Ep-GQDs) for the detection of IFN-γ. The conjugate
of Ap-GQD and Ep-GQD showed high sensitivity (2 pg mL−1), which showed its po-
tential application for the detection of cell-secreted molecules [55]. Pan group inserted
thiazole orange into a secondary G-quadruplex structure for IFN-γ detection and devel-
oped a strategy of reducing fluorescence by destroying the G-quadruplex structure and
releasing thiazole orange when the target binds to the aptamer. The detection limit was
2 nM, and there were no complex modifications or chemical labeling, which provided
simplicity and cost-effectiveness [64]. Wen group detected IFN-γ by making the first
aptamer/protein/aptamer-polymer fluorescent sensor through DNA-based click poly-
merization. It had a detection limit of 1.63 fM and proved to be a convenient and highly
selective sensor [56]. Kim et al. developed a fluorescent sensor that can detect IFN-γ using
reduced graphene oxide nanosheets and had a detection limit of 0.1 ng/mL, providing
a new rapid and specific detection method [59] (Figure 5b). Qin group amplified the
fluorescence signal via microchip electrophoresis. The target material was IFN-γ, and the
detection limit was 6.5 pM, which showed high sensitivity and specificity [65]. Wang et al.
induced a fluorescence signal using a hairpin aptamer probe to detect IFN-γ. The detection
limit was 0.6 pM, and this fluorescence signal amplification method provided efficient
selectivity for the target [66]. Qin group formed a netlike hybridization chain reaction DNA
nanostructure that provided effective signal enhancement for high-sensitivity fluorescence
detection of IFN-γ. It had a detection limit of 1.2 pM, showing excellent selectivity and
high sensitivity [67]. Qiu group manufactured a cell membrane-anchored sensor capable of
detecting IFN-γ by combining aptamers and droplet microfluidics. The detection limit was
10 nM, and the sensor allowed for IFN-γ detection at the single-cell level [68]. Dhenadhay-
alan group detected IFN-γ using ReS2 and TiS2 nanosheet platforms. The detection limit
was determined to be 57.6 pM for ReS2 and 82.7 pM for TiS2, revealing promising potential
for future design of biosensors [60] (Figure 5c). Tuleuova et al. employed micropatterned
poly(ethylene glycol) hydrogel microwells for IFN-γ detection, and then measured the
fluorescence signal with avidin followed by biotin-aptamer fluorophore. The detection
limit was 5 nM, indicating potential as a new strategy for IFN-γ detection [69]. Ma group
designed an aptasensor for IFN-γ detection based on aggregation-induced emission, with
a detection limit of 2 pg mL−1; this aptasensor provided a platform for monitoring IFN-γ
secreted by cells [70]. Ghosh group developed an aptasensor for TNF-α detection based on
FRET in an intracellular environment. The sensor was designed to enable cell-penetrating
peptide-induced endocytosis, representing a novel measurement method [71].

3.3. SPR and LSPR

An SPR biosensor measures changes in refractive index using the resonance phe-
nomenon of surface plasmon waves. Surface plasmon is a collective charge density oscil-
lation of electrons occurring on the surface of a thin metal film, during which a surface
plasmon wave is generated. Therefore, it is possible to observe the interaction between
the bioprobe immobilized on the metal surface and the target material without using a
label [72,73]. LSPR biosensor measurements are conducted based on metallic nanostruc-
tures with unique optical properties. Therefore, LSPR is different from SPR in that it
vibrates locally in the nanostructure [74,75]. Chang group designed an aptamer hairpin
structure to detect IFN-γ and produced an aptamer probe capable of binding to IFN-γ.
The detection limit was 33 pM, providing the advantages of high sensitivity, reusability,
and no additional labeling or sample preparation [61] (Figure 5d). Chuang et al. used a
hairpin-shaped aptamer as a detection probe to specifically detect IFN-γ, and the aptamer
was bound to streptavidin to amplify the signal; this aptamer had a detection limit of 10 pM
and the experiment can be performed simply [76]. Berto group reported an electrolyte-
gated organic field-effect transistor peptide aptasensor for TNF-α detection, which had
a detection limit of 1 × 10–12 M. This is one of the first examples of organic electronic
biosensors using a peptide aptamer as a key device for a gate electrode [77]. Bhalla group
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fabricated a nano-metal-insulator semiconductor sensor to detect IL-6 with a detection limit
of 400 fM, which can be readily adopted for multiplexed and high-throughput label-free
immunoassay systems, further driving innovations in biomedical and medical research [78].
Chuang group detected IFN-γ using aptamers and gold nanorods; they proposed a sensing
method using an LSPR biosensing system and low-cost spectrometer [79]. Lin et al. utilized
DNA-functionalized gold nanorods to increase the spectral shift of LSPR biosensing. The
method can be used to detect IFN-γ (detection limit, 10 pM) and many other molecules [62]
(Figure 5e).

3.4. SERS

Raman scattering is the process of scattering while losing or gaining energy. SERS is a
biosensing technology based on the phenomenon in which Raman scattering intensity is
rapidly increased when target materials are positioned between metal nanoparticles, and
this sensing technology can detect various substances with a small number of samples,
with high sensitivity [80,81]. Muhammad et al. fabricated a SERS biosensor composed of
an aptamer and a gold nanoparticle array for IL-6 detection. Upon recognition of IL-6 in
serum, the aptamer altered its structure, resulting in a corresponding change in the output
Raman intensity ratio, thus allowing for quantitative evaluation. The detection limit was
0.8 pM, suggesting that the aptamer-based SERS biosensor is a promising tool for fast and
convenient medical diagnostic applications [63] (Figure 5f).

4. Electrical Detection
4.1. Electrical Biosensor

Electrical biosensors can provide label-free detection of biomolecules, thus reducing
the cost and time required for labeling processes, which are usually necessary in the
application of optical biosensors. As the main components of electrical biosensors, field-
effect transistors (FETs) and capacitors are integrated in modern microprocessors that
process and store data. Because these electrical devices are massively fabricated with
conventional semiconductor processes, electrical biosensors also have the potential for
low-cost, massive fabrication with high reliability. The electrical biosensor detects a change
in the electrical signal upon biomolecule interaction near the sensor surface (Figure 6). The
dielectric medium of biomolecules filling the gap between the sensing electrode changes
the capacitance as a sensing signal of a capacitive biosensor (Figure 6a). The electrical field
or surface potential generated by the biomolecule modulates the FET current (Figure 6b).
The use of aptamers as receptors is beneficial for electrical detection because the small
size or conformation of aptamers near the sensor surface suppresses the effect of charge
screening, which reduces the sensitivity of the electrical biosensors.
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4.2. Capacitive Biosensor

A capacitive biosensor converts the binding event of a receptor and biomolecule
between electrodes into a capacitance signal without a labeling process (Figure 6a). The ca-
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pacitance can be described by the following equation [82]: C = εrε0
A
d , where A is the surface

area of the electrode, d is the distance between the electrodes, εr is the dielectric constant of
the medium between the electrodes, and ε0 is the permittivity of air (8.85 × 10−12 F/m). Ca-
pacitance can change owing to the specific binding of biomolecules between the electrodes,
resulting in a change in the dielectric constant εr. Liao group reported a capacitive biosensor
that can detect platelet-derived growth factor BB (PDGF-BB), an important cytokine in-
volved in neural inflammation [83]. They fabricated a biosensor based on a simple structure:
an anti-PDGF-BB aptamer-modified silica wafer, where the 5′-phosphated aptamer was
immobilized on an APTES-treated silicon wafer by EDC (Figure 7a).

The biosensor could detect a specific target (i.e., PDGF-BB) in the range of 50–1 µg/mL
by monitoring the change in the capacitance, with a detection limit of approximately
40 nM (Figure 7b). Although the sensor surface was not passivated except the aptamer-
modified area, the biosensor exhibited high specificity over control targets, such as bovine
serum albumin, thrombin, and lysozyme. This result is attributed to a specific binding
characteristic between aptamer and target molecule. Additional passivation process will
further suppress a noise signal arising from non-specific binding between interfering
molecules and sensor surface.

Several methods have been developed to improve the sensitivity of capacitive biosen-
sors for cytokine detection. Kim group used an anodized aluminum oxide-based capacitive
biosensor to detect IFN-γ, which is a biomarker of latent tuberculosis infection [84]. The
nanoporous structure of the anodized aluminum oxide (AAO) membrane not only in-
creased the surface area, leading to high sensitivity, but also inhibited nonspecific binding
(Figure 7c). The biosensor could detect IFN-γ in human serum in the range of ~0.1 pg/mL
to ~10 ng/mL, with an LOD of 0.2 pg/mL (Figure 7d). The characteristics of the biosensor
were comparable with those of the commercial QuantiFERON-TB Gold ELISA kit, reveal-
ing the applicability of the biosensor as a diagnostic tool for latent tuberculosis infection.
Although this sensor showed superior characteristics in the LOD compared to the ELISA
counterpart, high variation in capacitance signal at higher concentration (>10−10 g/mL)
makes it difficult to extract an accurate concentration (Figure 7d). Uniform immobilization
of receptors on the nanostructure of the AAO membrane is needed for more reliable mea-
surement of capacitance signals upon target binding. Qureshi group proposed a capacitive
aptamer-based sandwich assay to detect vascular endothelial growth factor (VEGF)-165
in human serum [85]. Gold interdigitated microelectrodes were functionalized with anti-
VEGF aptamers that first captured target VEGF proteins and then formed an aptamer-VEGF
protein complex, followed by sandwiching with anti-VEGF antibody-conjugated magnetic
beads (insets in Figure 7e,f). The capacitance signal was enhanced 3–8 times through this
sandwiching method (Figure 7e,f). The capacitive aptamer–antibody-based sandwich assay
detected VEGF protein in human serum in a dynamic range from 5 pg/mL to 1 ng/mL.
The capacitance signal is proportional to the number of the magnetic beads. Aggregation
of magnetic beads irrelevant to target binding can produce an error signal; thus, synthesis
and storage of magnetic beads should be specially controlled and monitored to achieve
uniform dispersion of magnetic beads. Chen group used a nanocomposite to improve
the sensitivity of a capacitive biosensor to detect the inflammatory factor IL-3, a predictor
of sepsis [86]. A complex longitudinal zeolite and iron oxide nanocomposite, which was
modified on interdigitated microelectrodes, increased the immobilization of receptors on
the surface to enhance the detection sensitivity, resulting in an LOD of 3 pg/mL in human
serum. Although the sol–gel method in this work is a simple method for synthesis of the
zeolite-iron nanomaterial, it is difficult to control size of grown nanomaterials, resulting
in high size distribution. Optimal conditions in synthesis and deposition of the zeolite-
iron nanomaterial may increase the sensor performance in terms of standard deviation of
capacitance and LOD.



Sensors 2021, 21, 8491 11 of 24Sensors 2021, 21, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 7. (a) Schematic of aptamer immobilization and protein association: (left) ap-
tamer-immobilized surface through phosphate-amino covalent linkage and (right) surface after 
incubation with PDGF-BB. (b) Concentration profile for impedance sensing of protein–aptamer 
interactions. The anti-PDGF-BB aptamer-modified silica wafers were incubated with increasing 
concentrations of PDGF-BB: 1 μg/mL, 2 μg/mL, 5 μg/mL, 10 μg/mL and 50 μg/mL. The calibration 
plots in both the linear and logarithmic scale (inset) are presented. Reprinted with permission from 
[83]. Copyright 2007 Elsevier. (c) Schematic diagram of the AAO-based capacitive sensor. Each 
biomolecule is assembled from bottom to top. (d) Calibration curve measured with the AAO-based 
capacitive sensor. The red dashed line indicates the cut-off concentration at 15 pg/mL of IFN-γ for 
LTBI and LOD is the limit of detection estimated by assuming 3.3 × SD ≈ 0.46%. Reprinted with 
permission from [84]. Copyright 2014 Elsevier. Relative percent changes in capacitance responses 
occurred at different frequencies (65, 95, 120 and 212 MHz) with; (e) primary complex (aptasensor, 
before sandwiching) and (f) secondary complex (apta-immunosensor, after sandwiching with 
MB-Abs) formed on the sensor surfaces. The insets in figures (e,f) represents illustrations before 
and after sandwiching of aptamer–VEGF protein complex with MB-Abs. Reprinted with permis-
sion from [85]. Copyright 2015 Elsevier. 

The biosensor could detect a specific target (i.e., PDGF-BB) in the range of 50–1 
μg/mL by monitoring the change in the capacitance, with a detection limit of approxi-
mately 40 nM (Figure 7b). Although the sensor surface was not passivated except the 
aptamer-modified area, the biosensor exhibited high specificity over control targets, such 
as bovine serum albumin, thrombin, and lysozyme. This result is attributed to a specific 
binding characteristic between aptamer and target molecule. Additional passivation 

Figure 7. (a) Schematic of aptamer immobilization and protein association: (left) aptamer-
immobilized surface through phosphate-amino covalent linkage and (right) surface after incubation
with PDGF-BB. (b) Concentration profile for impedance sensing of protein–aptamer interactions.
The anti-PDGF-BB aptamer-modified silica wafers were incubated with increasing concentrations of
PDGF-BB: 1 µg/mL, 2 µg/mL, 5 µg/mL, 10 µg/mL and 50 µg/mL. The calibration plots in both the
linear and logarithmic scale (inset) are presented. Reprinted with permission from [83]. Copyright
2007 Elsevier. (c) Schematic diagram of the AAO-based capacitive sensor. Each biomolecule is
assembled from bottom to top. (d) Calibration curve measured with the AAO-based capacitive
sensor. The red dashed line indicates the cut-off concentration at 15 pg/mL of IFN-γ for LTBI and
LOD is the limit of detection estimated by assuming 3.3 × SD ≈ 0.46%. Reprinted with permission
from [84]. Copyright 2014 Elsevier. Relative percent changes in capacitance responses occurred
at different frequencies (65, 95, 120 and 212 MHz) with; (e) primary complex (aptasensor, before
sandwiching) and (f) secondary complex (apta-immunosensor, after sandwiching with MB-Abs)
formed on the sensor surfaces. The insets in figures (e,f) represents illustrations before and after
sandwiching of aptamer–VEGF protein complex with MB-Abs. Reprinted with permission from [85].
Copyright 2015 Elsevier.

Capacitive biosensors have the advantages of high sensitivity, label-free detection,
small size, and low cost, which enable point-of-care applications. Ceylan group reported
a fast, low-cost, hand-held point-of-care diagnostic device based on interdigitated capac-
itive biosensors to detect multiple biomarkers, including TNF-α and IL-6 [87]. A 2 × 6
interdigitated capacitive array was fabricated on a disposable cartridge in a circular shape,
providing sample droplet impingement and better contact. A change in the capacitance
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upon target binding was identified by a capacitance-to-digital converter integrated circuit.
The shelf-life of the reactivated ready-to-use cartridges was 3 months under optimal condi-
tions. The biosensor could analyze six different biomarkers in real-patient blood samples
within less than 30 min. Despite of multiplexed detection of biomarkers and long self-life,
selectivity of the sensor between different biomarkers should be confirmed to improve the
diagnostic accuracy by compensating the noise signal arising from non-specific binding.

4.3. Field-Effect Transistor Biosensor

An FET is a switching or amplifying device in which electrical current flowing through
a semiconductor channel between two metal electrodes (i.e., the source and the drain) is
controlled by the voltage applied to an additional electrode (i.e., the gate) [88]. In an FET
biosensor (Figure 6b), a solid-state gate is replaced with receptors, such as an aptamer,
antibody, and enzyme, to capture target biomolecules that act as a “bio-gate” to modulate
the electrical current according to the concentration of analytes [89]. The advantages of
aptamer-functionalized FET biosensors include high sensitivity, fast analysis, and high
portability, which can be realized through the label-free electrical detection, the small size
of FETs, and their high compatibility with electrical readout circuits. The conformational
change of the negatively charged aptamer upon target binding can modulate the surface
potential near the semiconducting channel, resulting in a change in the channel current [90].

Wang group showed an aptamer-functionalized monolayer graphene as a conducting
channel of FET to detect TNF-α, an inflammatory cytokine biomarker (Figure 8a) [91].
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acteristic curves measured when the biosensor was exposed to TNF-α solution with different con-
centrations. (c) The normalized Dirac point shift ∆VDirac/∆VDirac,max showing the response of the
biosensor to different concentrations (0.1, 5, and 500 × 10−9 M) of TNF-α and the control proteins
(IFN-γ, IL-002, and BSA). Reprinted with permission from [91]. Copyright 2019 WILEY-VCH GmbH.
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(d) Schematic of proteins capturing with specific antibodies on the crumpled graphene channel.
(e) Dirac voltage shift of the FET sensor with detection of IL-6 protein. Reprinted with permission
from [92]. Copyright 2021 WILEY-VCH GmbH. (f) Diagram of PASE immobilization with applying
negative electric field. With applying negative electric field through the inserted Ag/AgCl electrode,
PASE molecules would be arranged regularly with directivity with pyrenyl groups forced toward
the graphene surface due to the electrostatic repulsion, making further quantities of PASE molecules
anchored on the graphene through π–π stacking and hence increasing the PASE immobilization
density. (g) Dirac point shift ∆VDirac/∆VDirac-0 is plotted as a function of the applying electric field
voltage. Here, ∆VDirac-0 and ∆VDirac are measured after graphene immersion in 5 mM PASE at
~25 ◦C for 3 h without and with applying negative electric field at a given voltage value. (h) EDS
characterization results of graphene surfaces without (top) and with (bottom) applying electric field
during the PASE and aptamer immobilization process. White dots represent the parts covered with
phosphorus, which is a main constituent element of aptamer and not contained in PASE. Scale bar:
1 µm. Reprinted with permission from [93]. Copyright 2020 American Chemical Society.

In the first step of graphene functionalization, 1-pyrenebutanoic acid succinimidyl
ester (PASE), was immobilized on a monolayer graphene through π–π stacking as a linker
for aptamer functionalization [94]. Next, the 5′-phosphated aptamer was covalently bonded
to the PASE molecule, resulting in aptamer immobilization on the graphene surface. Finally,
the graphene was treated with Tween 20 and ethanolamine to passivate the uncoated area
of graphene and quench the unreacted PASE molecules. As the TNF-α concentration
increased, the Dirac point voltage (VDirac) decreased, indicating n-type doping caused by
the specific binding between the aptamer and TNF-α (Figure 8b). The LOD for TNF-α
was 5 pM. The biosensor showed high selectivity for two other inflammatory cytokines,
namely IFN-γ and IL-002, as well as bovine serum albumin (Figure 8c). Based on good
characteristics of low LOD and high selectivity, this sensor has the potential to be applied
in a serum sample. Further analysis is needed to examine the sensing mechanism such as
induced charge from TNF-α to graphene or binding-induced conformational change of
aptamer. The latter is suitable for overcoming double-layer screening, which is dominant
in physiological fluids (i.e., a serum sample).

Several efforts have been made to enhance the sensitivity and selectivity of aptamer-
functionalized FET biosensors for the detection of cytokine biomarkers. Hwang group
reported a grumbled graphene FET biosensor for the detection of IL-6 protein with aM-
level sensitivity (Figure 8d,e) [92]. The extremely low LOD is caused by the two effects
of the bending of graphene: (1) increased Debye screening length, which reduced the
charge screening of the biomolecules, and (2) bandgap opening, which allowed for an
exponential response in current from a small number of charges [95]. Because the sensitivity
is controlled by the crumpling ratio, a wide range of target concentrations can be covered
by preparing several sensors with different crumpling ratios. The uniform control of
the crumpling ratio can improve the reliability in biosensing. Hao group showed the
modulation of the density of PASE molecules that immobilize an aptamer by tuning the
electric field to improve the detection sensitivity (Figure 8f) [93]. Application of −0.3 V
electric field for 3 h during the PASE immobilization process increased the PASE and
aptamer immobilization densities, as confirmed by electrical characterization to measure a
shift in the Dirac point voltage (VDirac) (Figure 8g) and EDS characterization to quantify
the phosphorus observed in the aptamer (Figure 8h). With the electric field method, the
LOD for IL-6 biomarker was reduced from 1.66 pM to 618 fM. This work sheds light
on the importance of linker density on sensing performance. Despite the novel method
to improve the LOD, the Ag/AgCl electrode inserted in the PASE solution has a bulk
size to prevent miniaturization. A further approach is required to achieve a portable
system by minimizing the sensor component (i.e., Ag/AgCl electrode) for the electric
field generation. Wang group proposed a novel method to measure cytokine levels in
undiluted sweat, where high background interference (e.g., lactic acid and amino acids)
exists [95]. They fabricated a graphene-Nafion composite film by drop-casting a Nafion
solution on a graphene surface. A porous and negatively charged Nafion film screened
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out interfering molecules. In addition, the graphene-Nafion composite film provided
regenerative capability to the biosensor up to 80 cycles by removing the Nafion film. The
biosensor was capable of detecting IFN-γ in undiluted human sweat, with a range from
0.015 to 250 nM and an LOD as low as 740 fM. The specificity of the biosensor in targeting
a target biomarker (i.e., IFN-γ) was confirmed using control biomarkers, such as TNF-α,
IL-2, and IL-6, which are inflammatory cytokines closely related to IFN-γ. The thickness of
the Nafion film was ~50 nm, indicating that the distance between target biomolecule and
graphene is larger than 50 nm. Because the high signal occurs when the target biomolecule
is close to the channel, the effect of the Nafion thickness on the sensitivity could be the
subject of future research.

5. Strategies for Improving Sensor Performance
5.1. Nanomaterials

Despite the advantages of aptamers such as low cost, ease of fabrication, and high
stability, avatar sensors have limited application due to low specificity and sensitivity [27].
Several methodologies are presented in this section to overcome these shortcomings and
gain a competitive edge, for example, by directly improving the sensitivity of a sensor,
enabling reuse for cost advantage, or adding other features.

Nanotechnology is a technology for synthesizing and controlling the assembly of
nanometer-sized materials, and it has advanced considerably over the past few decades [96–98].
Because of their unique properties, nanomaterials are applied in various fields [99–101].
In particular, with respect to biosensors, various nanoparticles can be used to improve
the efficiency and sensitivity of both transducers and receptors [102]. This is because of
the high area-to-volume ratio [49], optical properties (such as luminescence, fluorescence,
refractive index, light scattering [103]), and high electrical activity [104] of nanoparticles.

Ghalehno group improved the performance of a sensor by introducing gold nanopar-
ticles to a traditional sandwich ELISA sensor [105]. A TNF aptamer was immobilized
on a graphite electrode modified with cobalt hexacyanoferrate and gold nanoparticles,
and an antibody conjugated to horseradish peroxidase was used as a secondary antibody.
The fabricated sensor had a detection range of 1–100 pg/mL and a detection limit of
0.52 pg/mL.

In addition, in the study by Cristea et al., gold nanoparticles were used to improve
the active surface area of an electrode, thereby suppressing fouling, which can occur in
hard and flat electrodes, and improving the analytical performance [52] (Figure 9a). The
number of aptamer molecules immobilized on the electrode surface was increased by
immobilizing gold nanoparticles on the electrode surface and fixing the aptamer onto the
gold nanoparticles. The above method can effectively increase the amount of aptamer
immobilized on the surface and substantially enhance the electrical activity; thus, it can be
widely used in electrochemical sensors.

Another study also reported label-free detection of IL-6 using the refractive index
change in nanomaterials [106] (Figure 9b). LSPR is attractive because it enables fast, label-
free, real-time monitoring of biomolecular binding events [107]. According to Tamiya
group, the nanoimprint method was used to fabricate nanopillar structures and to detect
IL-6 release from cells using microwell arrays. In another study, Chen and colleagues
simultaneously measured the cytokines IL-6, TNF-α, IL-10, and IL-4 without labeling in
adipose tissue chips by fixing antibodies to gold nanorods [108], with a short detection
time of less than 30 min and an excellent detection limit of 20 pg/mL.
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5.2. Microfluidic System

Biosensors are useful for quantifying analytes in samples; however, measuring dy-
namic changes in analyte concentrations is highly difficult. To address this problem,
microfluidic devices have been utilized in studies on biosensors [109–111]. A microfluidic
device processes and screens fluids of varying volume ranging from nanoliters to micro-
liters. The combination of a microfluidic device and a detection system enables real-time
analysis of a small sample size. In addition, because the fluid flow can be controlled by a
laminar flow, highly reproducible analysis is possible [112]. Moreover, an understanding
of cytokine secretion by single cells is essential for developing novel therapies for multiple
diseases [113].

A study by Altug group provided an excellent example of a combination of microflu-
idic devices and sensing systems [114]. In this study, the authors used a microfluidic device
that can accurately monitor cytokine secretion in single cells in real time, coupled with a
label-free nanoplasmonic biosensor (Figure 10). A uniform nanohole array was fabricated
on the entire sensor surface through photolithography. Cytokines were detected by the fab-
ricated nanohole structure through extraordinary optical transmission, as this phenomenon
responds sensitively to changes in the refractive index of the nanohole surface; thus, when
molecular bonding occurred on the sensor surface, the spectrum of the peak wavelength
shifted. This enabled real-time monitoring of molecular binding events (Figure 10d). More-
over, the authors designed a novel microfluidic device because existing continuous-flow
microfluidic devices inhibit the accumulation of cytostatics, making them impractical for
single-cell analysis. A pneumatically actuated microvalve was used to separate the incuba-
tion chamber and the fluid (Figure 10b). The lower layer contained the cell culture, and
the upper layer contained the pneumatic lines and actuation chambers required to operate
the microvalve. A tortuous hydraulic channel was designed to control the humidity and
temperature in the chamber. IL-2 was detected using the manufactured device, with a high
detection limit of 39 pg/mL. This method allowed for continuous monitoring of cytokines
in EL4 lymphoma cells for hours without interrupting the cell culture.
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Another example is a study measuring the release level and release time of IL-6 and
TNF-α using a 3D MuscleChip [115]. In this study, a 3D MuscleChip was fabricated on
an interdigitated electrode using an in vitro biomimetic tissue model, and it was able to
confirm the release of IL-6 and TNF-α from skeletal muscle tissues induced by electrical
and LPS (Lipopolysaccharide) stimulations. This 3D MuscleChip was intended to be
used for understanding and treating muscle metabolic disorders. The author succeeded
in culturing highly aligned muscle tissues on the chip using GelMA-CMCMA (Gelatin
methacryloyl- Carboxymethyl cellulose methacrylate) hydrogel, and a microfluidic network
was applied to promote cytokine secretion by the muscle tissue fixed on the chip. During the
relaxation time, IL-6 and TNF-αwere detected at 1 µg/mL and 10 ng/mL, respectively. The
maximum detection peak was reached at 1 h after LPS stimulation, and IL-6 was detected at
2.5 µg/mL. The concentration of released TNF-α increased slowly and continuously. This
study revealed the release of various cytokines induced by electrical and biological stimuli,
providing a better understanding of muscle growth processes and inflammatory responses.

5.3. Reusable Biosensor

Biosensors can rapidly detect biomarkers, such as pathogens or proteins, in vitro. In
addition, as they can be developed into portable diagnostic devices, efforts are being made
to advance their point-of-care applications [116]. However, one of the biggest barriers to the
commercialization of biosensors is the manufacturing cost. To reduce this cost, research on
the application of aptamers [117], the development of inexpensive electrode materials [118],
and the utilization of multiple analytical systems [119] is in progress. Here, we present a
reusable biosensor as a new approach for reducing the manufacturing cost of biosensors.

Liu group fabricated a molecularly imprinted polymer (MIP)-based biosensor for
IL-1β detection that can be reused more than three times with a coefficient of variation of
2.08% [120] (Figure 11a).
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The stainless-steel surface was first transformed into a polydopamine layer, and then a
polyethyleneimine layer was attached by electro-adsorption. The target molecule was then
adsorbed onto the polyethyleneimine-terminated stainless-steel surface. Finally, the MIP
biosensing device was manufactured by removing the target molecule and leaving a hole
of a specific shape. IL-1β was detected based on fluorescence intensity by incubating IL-1β
with a fluorescently tagged IL-1β detection antibody. The manufactured sensor had a low
detection limit of 10.2 pg/mL and a detection range of 25–400 pg/mL. To reuse it, the MIP
sensing interface was washed with a mixture of methanol and hydrochloric acid and then
washed with a mixture of PBS (phosphate-buffered saline) and Tween-20. The fluorescence
intensity of the MIP biosensing device changed slightly after the three regeneration cycles.
The coefficients of variation after three and five uses were 2.08% and 7.48%, respectively,
allowing reuse.

In another study, a biosensor was generated for SWV-based IFN-γ detection using the
aptamer developed by Revzin et al. [121] (Figure 11b). The IFN-γ aptamers were modified
with thiol groups, immobilized on gold electrodes, and bound to methylene blue redox
labels. When the binding event of IFN-γ and IFN-γ occurred, the hairpin structure of the
aptamer was modified, causing methylene blue to move away from the electrode, and thus
reducing the efficiency of electron transfer. IFN-γ in the sample was detected through the
change in current according to the change in electron transfer efficiency.

The change in redox current was confirmed by SWV, and the detection limit of the
manufactured biosensor was 0.06 nM. Aptamer reuse in the manufactured sensor was
possible owing to the high chemical stability of the aptamer. The IFN-γ aptamer and IFN-γ
complex was reused after the complex was destroyed by treatment with urea buffer. The
experiment confirmed that the aptasensorcould be reused up to 10 times.

5.4. Wearable Biosensor

Wearable biosensors are gaining attention with the advancement of point-of-care
diagnostics because they can receive biosignals from the wearer in real time [122,123].
Human biofluids that can be obtained noninvasively, such as saliva, tears, and sweat, are
preferable over fluids that must be collected invasively, as they are associated with less
pain and no risk of infection [124]. Additionally, these human biofluids contain many
cytokines, making them attractive samples [125]. Moreover, because a wearable sensor
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must be attached to the surface of the human body, the substrate of the sensor must be
flexible, and the signal must be constant despite deformation [126].

Zhao have constructed such a wearable sensor [124] (Figure 12a). A GFET using
graphene as a channel was fabricated on a 2.5-µm ultra-thin polymer substrate, and Tween
80 was used to suppress nonspecific adsorption to the graphene surface. Aptamers of
TNF-α and IFN-γ, which are representative cytokines, were used in the manufactured
sensor for high-sensitivity detection, resulting in detection limits of 2.75 pM and 2.89 pM,
respectively. The study also showed that real-time monitoring of cytokines in artificial tear
samples is possible even with sensor modification such as stretching or banding, resulting
in a consistent sensing response.
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In another example, Pan et al. fabricated a reusable wearable sensor using a graphene-
Nafion film [127] (Figure 12b). Channels composed of graphene-Nafion composite films
enhanced biosensor regeneration while minimizing nonspecific adsorption. The fabricated
biosensor can sensitively detect cytokines in undiluted human sweat with a detection range
of 0.015–250 nM and a detection limit of 740 fM. It was also capable of up to 80 replays,
and showed a consistent detection response in as many as 100 crumpling tests.

6. Conclusions

There is a demand for sensors capable of detecting cytokines. In particular, cytokine
detection using aptamers is expected to be commercialized owing to the favorable char-
acteristics of aptamers. In this review, we have summarized the latest advances on the
application of aptasensors in various methods for cytokine detection (Table 1). Various
methods for improving the effectiveness of aptasensors are also discussed. For example,
nanomaterials can be used to substantially improve the sensitivity of sensors. Moreover,
microfluidic systems enable the real-time detection of cytokines. Despite the develop-
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ment of various cytokine detection sensors, ELISA is still the most widely used cytokine
detection tool because of its multiple detection capabilities. Considering that cytokines
influence each other, simultaneous monitoring of multiple cytokines is necessary [2]. For
this purpose, nanoarrays and multiple sensing technologies have been devised, but they
are still in their infancy. Studies on the detection of cytokines using aptamers are few
despite the advantages of aptamers as biosensors (such as low production and transporta-
tion costs). Nevertheless, aptamers show that cytokine detection is possible with high
sensitivity (Table 1). Therefore, research on cytokine detection using aptamers has high
growth potential. In addition, investment and research on cytokine detection will continue
to increase. Interest in cytokines is further increasing due to the impact of COVID-19 [128].

Table 1. Summary of studies cited in this review.

Target
Molecule

Detection
Method

Detection
Range Limit of Detection Reference

TNF-α a CV 0.15 pg/mL–150 g/mL 0.14 pg/mL [47]
IFN-γ b DPV 0.5–300 nM 0.3 nM [48]
IFN-γ SWV 1 pg/mL–10 ng/mL 0.42 pg/mL [49]
IL-6 c EIS 5 pg/mL–100 ng/mL 1.6 pg/mL [50]
IFN-γ EIS 1 pM–50 nM 0.7 pM [51]
IL-6 EIS 1 pg/mL–15 µg/mL 0.33 pg/mL [52]

IFN-γ Fluorescence 5–100 pg/mL 2 pg/mL [55]
IFN-γ Fluorescence 0.01 pM–10 nM 1.63 fM [56]
IFN-γ Fluorescence 5–100 nM 5 nM [57]
IFN-γ Fluorescence 0–20 fM 7.65 fM [58]
IFN-γ Fluorescence 0.1 ng/mL–10 µg/mL 0.1 ng/mL [59]
IFN-γ Fluorescence 0–400 pM (ReS2) 57.6 pM (ReS2) [60]
IFN-γ Fluorescence 0–300 pM (TiS2) 82.7 pM (TiS2) [60]
IFN-γ SPR 0.3–333 nM 33 pM [61]
IFN-γ LSPR 0.01–1 nM 10 pM [62]
IL-6 SERS 10−12–10−7 M 0.8 pM [63]

IFN-γ Fluorescence 3–120 nM 2 nM [64]
IFN-γ Fluorescence 15 pM–2.5 nM 6.5 pM [65]
IFN-γ Fluorescence 0.001–50 nM 0.6 pM [66]
IFN-γ Fluorescence 5–1000 pM 1.2 pM [67]
IFN-γ Fluorescence 17.2 nM–550 nM 10 nM [68]
IFN-γ Fluorescence 5–100 nM 5 nM [69]
IFN-γ Fluorescence 0–100 pg/mL 2 pg/mL [70]
TNF-α Fluorescence 0.34–17 nM 0.34 nM [71]
IFN-γ SPR 0.01–100 nM 10 pM [76]
TNF-α SPR 1–10 pg/mL 1 × 10−12 M [77]

IL-6 LSPR 1 pM–100 nM 400 fM [78]
IFN-γ LSPR 0.1–10 nM 0.1 nM [79]

PDGF-BB d Capacitance 1–50 µg/mL ~1 µg/mL [83]
IFN-γ Capacitance 0.1 pg/mL–10 ng/mL 0.2 pg/mL [84]

VEGF e Capacitance 5 pg/mL–1 ng/mL 401 pg/mL [85]
IL-6 Capacitance 2.5–20 ng/mL 2.5 ng/mL [87]

TNF-α Capacitance 0.3–50 ng/mL 0.3 ng/mL [87]
TNF-α FET 100 nM–50 pM 5 pM [91]

IL-6 FET 50 nM–1 pM 618 fM [93]
IFN-γ FET 250 nM–15 pM 740 fM [127]

a Tumor necrosis factor-alpha: b Interferon-gamma; c Interlukin-6; d Platelet-derived growth factor BB; e Vascular endothelial growth factor.
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