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Autism spectrum disorder (ASD) is a highly genetic heterogeneous neurodevelopmental
disorder, which is usually considered a heritable and heterogeneous
neurodevelopmental disorder and has caused a great burden to society and families.
Emerging roles of ferroptosis have been observed in neurological disorders. This
study aimed to construct a diagnostic model based on ferroptosis-related genes
(FRGs) to contribute to the early and precise diagnosis of childhood ASD. In the
candidate FRGs, we identified 27 differentially expressed genes (DEGs) between ASD
patients and typically developing (TD) controls. Four key FRGs were identified using the
random forest analysis for further analysis. Utilization of the four gene expression, we
constructed a diagnostic model and the AUC value in the training dataset (GSE18123)
is 0.7002. We deem that a patient with a score less than 0.9904 is likely to have ASD.
Three validation datasets (GSE111176, GSE113834, and GSE28521) were collected
and the AUC value is 0.7442, 0.7444, and 0.6474, respectively. A multi-factor regulatory
network based on four FRGs indicated that RORA, EAF1, NFYB, miR-4703-3p, and
miR-6073 may play a role in the development of ASD. In addition, we found piperaquine
may have the potential to be a promising drug for the treatment of ASD. Overall,
we constructed a diagnostic model of childhood ASD, which could contribute to the
precision diagnosis and timely treatment of childhood ASD.

Keywords: autism spectrum disorder, diagnosis, ferroptosis, random forest, piperaquine

INTRODUCTION

Autism spectrum disorder (ASD) is a set of heterogeneous genetically complex
neurodevelopmental disorders, characterized by a deficit in social communication and interaction,
and lasting impairments in restricted, stereotyped, and repetitive patterns of behavior or interests
(1). The prevalence of ASD continues to increase worldwide since the first epidemiological study,
latest study reported an incidence of 1 in 54 children worldwide (2). Males are four times more
likely to develop autism than girls (3). Several complex underlying mechanisms were involved in
the development of ASD, such as genetic and epigenetic effects, inflammation, oxidative stress,
neurotrophic factors, and hypoxic damage (4–6).
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Early diagnosis and appropriate intervention for childhood
ASD can improve ASD outcomes. However, diagnosis of autism
was often delayed until mid-childhood because of complex
symptoms, insufficient screening practices, the lack of clinical
access, low sensitivity of autism screening instruments, and
ignorance of early warning signs (7, 8). In addition, all
present medications that have evidence to be beneficial to
autism are aimed at related symptoms, rather than directly
at autism symptoms (including repetitive behaviors or social
communication) (9). With the development of sequencing
technologies, abundant transcriptomic analyses improve our
understanding of ASD and allow us to develop a novel model
contributing to the early precise diagnosis of childhood ASD.

In recent years, ferroptosis is a newly identified iron-
dependent form of programmed cell death, primarily caused
by the imbalance of oxidation and anti-oxidation in the
body (10). Ferroptosis is typified by lipid peroxidation and
depends upon the severe lipid peroxidation of intracellular iron
accumulation and generation of reactive oxygen species (ROS)
(11). A growing body of evidence shows that ferroptosis is
strongly implicated in a variety of diseases, including cancers,
cardiovascular diseases, kidney damage, and nervous system
diseases (12). Ferroptosis is closely linked to the occurrence and
development of neurodegenerative diseases, strokes, and brain
tumors. It is also involved in the development, maturation, and
aging of the nervous system (13, 14). Many studies have found
a link between ASD and elevated oxidative stress and ASD is
contributed to by oxidative stress in several ways, including
protein post-translational changes, abnormal metabolism (e.g.,
lipid peroxidation), and toxic buildup (e.g., ROS) (15). However,
the definite role of ferroptosis in ASD is still unclear. In this
study, we aimed to explore the potential association between
ferroptosis-related genes (FRGs) and ASD and hope to develop
a novel diagnostic model to contribute to the early and precise
diagnosis of childhood ASD.

MATERIALS AND METHODS

Data Acquisition
The transcriptome data and clinical information of ASD and
typically developing (TD) samples were downloaded from
GSE18123 and GSE111176 datasets. The external validation
data were downloaded from GSE113834 and GSE28521. The
characteristics of the four datasets are detailed in Supplementary
Table 1. Briefly, the sample size of normal control is 82,
126, 12, and 40, respectively (from left to right, GSE18123,
GSE111176, GSE113834, and GSE28521); the sample size of
ASD is 41, 119, 15, and 39, respectively (from left to right,
GSE18123, GSE111176, GSE113834, and GSE28521). Tissues are
sourced from blood (GSE18123 and GSE111176) or the brain
(GSE113834, and GSE28521). The information on age, gender,
time of collection of blood samples, and postmortem parameters
was incomplete. The downloaded data were normalized by log2-
transformed [log2(x + 1)]. All samples included in this study
were accorded with the inclusive criteria: (1) Homo sapiens;
(2) ASD and TD samples; (3) Availability of transcriptome

data; and (4) Validation data including the expression of key
genes included in the model. Three hundred thirty-five FRGs
were obtained from the FerrDb database1. The rest FRGs were
acquired from three published articles (16–18). After integrating
these genes, we at last acquired 376 FRGs for further analysis.

Identification of Differentially Expressed
FRGs
The “limma” package from R software was used to identify DEGs
between ASD and TD groups. Only genes with P < 0.05 were
considered as DEFRGs.

Functional Enrichment Analysis
The “clusterProfiler” R package was used to conduct Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses.

Establishment of a Ferroptosis-Related
Diagnostic Model
After obtaining 27 differentially expressed FRGs, random forest
analysis was performed to further identify key FRGs. The
“RandomForest” R package was used to conduct random forest
analysis. Parameters were set to default and genes with Gini
values greater than 1 were considered key genes. After taking
the intersection of GSE18123 and GSE111176, we obtained
four key FRGs. Multiple logistic regression was applied to
construct a ferroptosis-related diagnostic model. The diagnostic
score was calculated using the equation: Score = AKR1C3
expression∗(−0.2837) + CEBPG expression∗(−0.7620) + DDIT4
expression∗(−0.5943) + LAMP2 expression∗(−0.9101) + 21.38.

Evaluation of the Ferroptosis-Related
Diagnostic Model
Every individual from the Gene Expression Omnibus (GEO)
database was allocated a diagnostic score derived from FRDM.
Model specificity and sensitivity were assessed by calculating
the area under the curve (AUC) values of ROC curves.
The training cohort was GSE18123; the internal validation
cohort was GSE111176; the external validation cohort was
GSE113834 and GSE28521.

Regulatory Network
The microRNA (miRNA), long non-coding RNA (lncRNA),
and transcription factor (TF) that interact with key genes were
extracted from microRNA Data Integration Portal (mirDIP),
starBase, and transcriptional regulatory relationships unraveled
by sentence-based text mining (TRRUST) databases, respectively.
Cytoscape software was used to display the multi-factor
interaction network of key genes.

Molecular Docking
The protein structure information was downloaded from the
PDBbind database2. Compounds’ structure information was

1http://www.zhounan.org/ferrdb/index.html
2http://www.pdbbind.org.cn/
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FIGURE 1 | Identification of DEFRGs. Heatmap of DEFRGs from GSE18123 (A) and GSE111176 (B). (C) Venn diagram for DEFRGs.
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downloaded from DrugBank3. AutoDock Vina was used to
perform molecular docking, and compounds were filtered
according to the binding energy. Screening parameters were set
as Affinity < −7. PyMOL software was used to plot a protein-
compound binding diagram.

Statistical Analysis
The R software (version 4.1.1)4 was used to perform all statistical
analyses. Student t-test or one-way ANOVA was applied to
assess differences between groups. P < 0.05 was considered
statistically significant.

RESULTS

Identification of Differentially Expressed
FRGs and Enrichment Analysis
Forty four FRGs were extracted from the GSE18123 dataset
(Figure 1A). One hundred twenty-one FRGs were extracted from
the GSE111176 dataset (Figure 1B). After taking the intersection
of FRGs from two datasets, we at last obtained 27 FRGs for
further analysis (Figure 1C). The top 20 terms of the 27 FRGs’
enrichment analysis were displayed in four parts, including
biological process (Figure 2A), cell component (Figure 2B),
molecular function (Figure 2C), and KEGG (Figure 2D).

Random Forest Analysis
For the differentially expressed FRGs, random forest analysis was
performed to further identify key FRGs. The top 30 genes with

3https://www.drugbank.com/
4https://www.r-project.org/

high accuracy and Gini value were displayed in Figures 3A,B.
Genes with Gini value >1 were selected and we obtained 28
genes in GSE18123 and 35 genes in GSE111176. Integrating the
key genes from two datasets, we at last acquired 4 key FRGs
(Supplementary Figure 1).

Expression of Ferroptosis-Related
Genes in GSE18123 and GSE111176
AKR1C3, CEBPG, DDIT4, and LAMP2 were all highly expressed
in ASD samples in both GSE18123 (Figure 4A) and GSE111176
datasets (Figure 4B). Additionally, in GSE18123, FRGs have
positive correlations except for DDIT4 and LAMP2 genes
(Supplementary Figure 2A). In GSE111176, AKR1C3 and
DDIT4 have a positive correlation. CEBPG was negatively
associated with DDIT4; while positively associated with
LAMP2. DDIT4 and LAMP2 have a negative correlation
(Supplementary Figure 2B).

Construction and Evaluation of a
Ferroptosis-Related Diagnostic Model
Based on the four FRGs, we constructed diagnostic models
using multiple logistic regression in GSE18123 and GSE111176,
respectively. Then, ROC curves were used to evaluate the
model specificity and sensitivity. The AUC value for the
diagnostic model in GSE18123 is 0.7002; in GSE111176 is 0.7498
(Figure 5A). To further evaluate the reliability of the two models,
external datasets were used to perform validations. For the model
based on GSE18123, validation datasets including GSE111176,
GSE113834, and GSE28521 were adopted and the AUC value
is 0.7442, 0.7444, and 0.6474, respectively (Figure 5B). For
the model based on GSE111176, validation datasets including

FIGURE 2 | Enrichment analysis. (A–C) GO enrichment analysis (BP, CC, and MF, respectively). (D) KEGG enrichment analysis.

Frontiers in Psychiatry | www.frontiersin.org 4 May 2022 | Volume 13 | Article 886055

https://www.drugbank.com/
https://www.r-project.org/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-886055 May 7, 2022 Time: 14:47 # 5

Wu et al. A Diagnostic Model

FIGURE 3 | Random forest analysis. (A) Accuracy value and Gini value of candidate ferroptosis-related genes in GSE18123. (B) Accuracy and Gini values of
candidate ferroptosis-related genes in GSE111176.
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FIGURE 4 | Expression of FRGs in GSE18123 (A) and GSE111176 (B). *p < 0.05, **p < 0.01, ***p < 0.001.

GSE18123, GSE113834, and GSE28521 were adopted and the
AUC value is 0.6838, 0.6944, and 0.6417, respectively (Figure 5C).
Hence, the diagnostic model based on GSE18123 has a better
diagnostic performance. The cutoff value of the diagnostic model
was determined to be 0.9904 based on the Youden index (19);
a diagnostic index ≤0.9904 indicated an ASD, and a diagnostic
index >0.4 indicated its absence.

Multi-Factor Regulatory Network
According to the interaction degree, RORA, EAF1, and NFYB are
the only three transcription factors that can interact with CEBPG,
DDIT4, and LAMP2. In addition, hsa-miR-4703-3p can regulate
LAMP2 and AKR1C3; hsa-miR-6073 can regulate DDIT4 and
LAMP2 (Figure 6). These results indicated that TFs and miRNAs
may play an important role in the development of ASD.

Potential Therapeutic Compounds
According to the PDBbind database, AKR1C3, LAMP2,
and DDIT4 have available spatial structure information for
subsequent analysis. We found only piperaquine could dock to
all three FRGs with affinity < −7. The docking conformation
of piperaquine to FRGs was displayed in Figure 7A (AKR1C3),
Figure 7B (DDIT4), and Figure 7C (LAMP2). Figure 7D showed
the compound structure of piperaquine. The docking score was
shown in Supplementary Table 2.

DISCUSSION

At present, the ASD diagnosis was confirmed using clinical
expert assessment including the Autism Diagnostic Interview-
Revised (ADI-R) and the Autism Diagnostic Observation
Schedule (ADOS), but only a limited number have been
rigorously tested for diagnostic accuracy (20). In this study,
based on transcriptome data, we constructed a ferroptosis-related
diagnostic model to distinguish ASD patients from the TD
population. We used three validation datasets to evaluate the
precision of this model and the AUC value is 0.7442, 0.7444, and

0.6474, respectively. Hence, this diagnostic model may have the
potential to be applied in the future.

To date, the four genes in this study have not been reported
in ASD. CCAAT Enhancer Binding Protein Gamma (CEBPG) is
a member of the C/EBP family and has the sequences required
for DNA binding and heterodimer formation, but lacks the
sequences required for transactivation (21). CEBPG appears as
a stress-induced gene in some genome-wide expression studies,
which can stimulate promoters of IL-6 and IL-8 in B cell lines
(22). Previous studies have implicated CEBPG as an antioxidant
regulator that controls redox homeostasis in normal and cancer
cells (23). The neurobiology of ASD is considered related to
oxidative stress (24) which indicated that CEBPG may be
involved in the development of ASD. Aldo-Keto Reductase
Family 1 Member C3 (AKR1C3) is known as a hydroxysteroid
dehydrogenase, which exists in many normal human tissues at
varying levels (25). The mRNA expression and enzyme activity
of AKR1C3 in subcortical white matter were significantly higher
than in the cerebral cortex, and AKR1C3 activity in adults was
higher than in children, but no gender differences were observed
(26). In addition, the antioxidant response element (ARE) could
bind to the AKR1C3 promoter indicating that oxidative and
electrophilic stress might regulate AKR1C3 expression (27). Due
to the upregulation of AKR1C3 being closely correlated with
various diseases, a large range of research on AKR1C3 inhibitors
has been executed in the past few years, which could have the
potential to be applied to ASD patients. Lysosomal Associated
Membrane Protein 2 (LAMP2) is a major lysosomal membrane
glycoprotein, which plays a role in multiple biological processes
including antigen presentation, oxidative stress, and regulation of
T lymphocyte responses (28). LAMP2 is ubiquitously expressed
in the central nervous system and has been reported involved in
the development of Parkinson’s disease and Alzheimer’s disease
(29, 30). DNA Damage Inducible Transcript 4 (DDIT4), is known
as a HIF1A responsive protein that promotes oxidative stress-
dependent cell death (31). In addition, numerous studies have
suggested that DDIT4 was crucial for optimal T cell proliferation
and survival (32). Abnormal immune system regulation is
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FIGURE 5 | Evaluation of the constructed diagnostic model. (A) ROC curves in development datasets. (B) ROC curves in validation datasets based on the model
from GSE18123. (C) ROC curves in validation datasets based on the model from GSE111176.

involved in the pathophysiological process of ASD, including T
cell-related signaling pathways (33). Overall, all these four genes
are associated with oxidative stress or immune response, which
provides clues for the exploration of the pathogenesis of ASD.

To elucidate the potential mechanism of the four genes
in ASD, we conducted a multi-factor regulation network. We
identified that RORA, EAF1, NFYB, miR-4703-3p, and miR-6073
might play a role in the development of ASD. RAR-Related

Orphan Receptor A (RORA) is a ligand-dependent nuclear
receptor that regulates gene transcription. Recently, studies have
identified RORA as a novel candidate gene for ASD, which
may be conducive to the known pathophysiology, behaviors,
and sex bias of ASD (34). ELL Associated Factor 1 (EAF1) is
one of the EAF family members, which plays an essential role
in tumor suppression and embryogenesis (35). EAF1 and EAF2
can suppress Wnt/β-catenin signaling to affect neuroectodermal
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FIGURE 6 | Multi-factor regulatory network. Orange dots represent lncRNAs, red dots represent transcription factors (TF), green dots represent miRNAs, blue dots
represent mRNAs, and the size of dots represents the number of regulatory genes.

FIGURE 7 | Molecular docking. Docking conformation of DB13941 with AKR1C3 (A), DDIT4 (B), LAMP2 (C). The compound structure of DB13941 (D).
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and mesodermal patterning (36). Nuclear Transcription Factor Y
Subunit Beta (NFYB) plays a fundamental role in proliferation by
binding to and regulating the transcription of numerous cell cycle
regulatory genes (37). So far, there have been no reports on miR-
4703-3p and miR-6073, and our study provides insights into the
potential role of these miRNAs in ASD.

The classical therapeutic drugs for many diseases may
have unexpected curative effects in other diseases, which is
an approach known as drug repurposing. Piperaquine is a
bisquinoline antimalarial drug, which is known as an effective
drug to treat malaria, similar to chloroquine (38). We found
that piperaquine has good docking scores with all three FRGs,
which indicated piperaquine could be a promising drug for
the treatment of ASD. The immune complex consists of
brain tissue antigens and nerve-specific autoantibodies that can
penetrate the blood-brain barrier and damage nerve tissue of
children, resulting in cognitive, language development, and social
communication disorders of children (39). Previous studies have
shown that chloroquine has anti-inflammatory and antiviral
effects, which are used to treat many diseases such as systemic
lupus erythematosus (SLE), antiphospholipid antibody syndrome
(APS), Middle-east respiratory syndrome, and HIV infection
(40–42). Virus infection can cause irreversible damage to the
central nervous system which produces ASD-related symptoms
(43). Hence, piperaquine may play a role in the treatment of ASD
through the immune-related pathway. In the future, studies need
to be performed to explore the potential effect of piperaquine
on ASD patients.

To a certain extent, several limitations of this study should
not be ignored. (a) Clinical information was limited due to
the retrospective data from the GEO database; (b) the number
of samples in this study was relatively small, especially in
the GSE113834 and GSE28521. In addition, the data from
GSE113834 and GSE28521 was produced from the brain source.
Hence, the conclusions generated based on GSE113834 and
GSE28521 need to be further validated in the future; (c) ASD
is a multifactorial disease, so the investigation of FRGs cannot
comprehensively interpret the association of ASD risk.

Collectively, we identified four key FRGs as potential
biomarkers and constructed a diagnostic model of childhood
ASD, and derived potential criteria for ASD based upon this,
that would need future validation. In addition, we found that
piperaquine, previously a classic anti-malarial drug, may be
worth exploring as a potential therapeutic compound for ASD
treatment based on these findings.
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