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Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have

crucial roles in many aspects of vertebrate development and physiology, including

the development of many organs as well as left–right patterning and taste. They can

be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one

PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For

example, PKD1 forms a complex with PKD2 and mutations in either of these proteins

cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most

frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete

family of pkd genes in zebrafish and other teleosts. We describe the genomic locations

and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and

pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole

genome duplication that occurred at the base of the teleosts. However, in contrast to

mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes,

suggesting that these have been lost in the teleost lineage. In addition, teleost, and

holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be

in the process of being lost in the ray-finned fish lineage. We also provide the first

comprehensive description of the expression of zebrafish pkd genes during development.

In most structures we detect expression of one pkd1-like gene and one pkd2-like gene,

consistent with these genes encoding a heteromeric protein complex. For example, we

found that pkd2 and pkd1l1 are expressed in Kupffer’s vesicle and pkd1 and pkd2 are

expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and

pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b

and pkd2 in the floor-plate. Interestingly, and in contrast tomouse, we observe expression

of all seven pkd genes in regions that may correspond to taste receptors. Taken together,

these results provide a crucial catalog of pkd genes in an important model system for

elucidating cell and developmental processes and modeling human diseases and the

most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
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INTRODUCTION

Polycystic kidney disease (PKD) proteins are trans-membrane
proteins that share a conserved polycystin-cation-channel
domain, located in their last six trans-membrane domains. These
proteins are crucially important for human health as they have
essential functions in many aspects of vertebrate development
and physiology (Delmas, 2004b; Venkatachalam and Montell,
2007; Zhou, 2009; Semmo et al., 2014). Most notably, this
gene/protein family is named after PKD because mutations in
either PKD1 or PKD2 account for all of the known forms
of Autosomal Dominant Polycystic Kidney Disease (ADPKD),
which is the most common genetic cause and the fourth most
common cause of kidney failure. ADPKD affects one in 400–
1000 individuals, across all ethnic groups, which also makes it the
most frequent potentially-lethal single-gene disorder in humans
(Dalgaard, 1957; Iglesias et al., 1983; Reeders et al., 1985; Levy
and Feingold, 2000; Sutters and Germino, 2003; Zhou, 2009).
In PKD, large epithelial-lined cysts develop and fill with fluid.
This causes abnormally enlarged kidneys and the cysts compress
normal renal tissue, destroying it and impairing normal kidney
function. This usually results in chronic renal failure by middle
age. In addition, cysts can also form in the liver, pancreas, spleen,
ovaries, large bowel, brain, and heart and patients often have
cardiovascular defects (Grantham, 1993; Wu and Somlo, 2000;
Delmas, 2004b; Harris and Torres, 2009; Zhou, 2009; Cornec-
Le Gall et al., 2013; Paul et al., 2014; Semmo et al., 2014). Mice
heterozygous for a mutation in Pkd2 also develop kidney cysts
and renal failure and die as young adults (Wu and Somlo, 2000).
In contrast, mice that have homozygous mutations in Pkd2 or
Pkd1 die before birth, probably due to cardiac failure caused by
incorrect heart development (Wu and Somlo, 2000; Boulter et al.,
2001). In addition, these embryos have defects in their kidneys
and pancreas (Lu et al., 1997, 2001; Kim et al., 2000; Wu et al.,
2000; Boulter et al., 2001). Pkd1 homozygous mutants also have
skeletal defects (Boulter et al., 2001; Lu et al., 2001) and Pkd2 and
Pkd1l1 are required for left-right patterning/asymmetry and the
correct localization of several organs (Pennekamp et al., 2002;
McGrath et al., 2003; Field et al., 2011; Kamura et al., 2011;
Yoshiba et al., 2012; Yuan et al., 2015).

While less is known about the functions of the other Pkd
genes, about 50% of mice homozygous for a mutation in
Pkd2l1 have heterotaxy (intestinal malrotation; Delling et al.,
2013) and up-regulation of Pkd1l2 in mouse causes profound
neuromuscular defects (Mackenzie et al., 2009). Pkdrej is
expressed in sperm suggesting that it may have a role in male
fertility (Veldhuisen et al., 1999; Butscheid et al., 2006) and there
is in vitro evidence that a complex of PKD1L3 and PKD2L1 may
function as sour-taste receptors (Huang et al., 2006; Ishimaru
et al., 2006), although this may not be the case in vivo, at least in
mouse, as analysis of a mouse Pkd1l3mutant found no significant
defect in taste reception (Nelson et al., 2010).

In humans and mouse there are eight PKD genes: PKDREJ,

PKD1, PKD1L1, PKD1L2, PKD1L3, PKD2, PKD2L1, and

PKD2L2 (Zhou, 2009). These can be divided into two main

sub-groups. PKD1-like (also called polycystin-1) genes (PKDREJ,

PKD1, PKD1L1, PKD1L2, PKD1L3) are large multi-exon genes,

encoding proteins of 1700–4300 amino acids. For example,
human and mouse PKD1 each have 46 exons encoding about
4300 amino acids (Li et al., 2003). PKD1-like proteins have
11 trans-membrane domains, a large extracellular N-terminal
domain and a short intracellular C-terminal tail with a G-protein
binding site and, in some cases, a coiled-coil domain. The N-
terminal domain typically contains several repeats of an Ig-
fold-containing domain called the PKD domain, a lipoxygenase
homology/polycystin-lipoxygenase-atoxin PLAT/LH2 domain, a
G-protein-coupled receptor proteolytic site (GPS) and a receptor
egg jelly (REJ) domain (Delmas, 2004b; Zhou, 2009; Hofherr
and Kottgen, 2011; Semmo et al., 2014). In contrast, PKD2-like
(also called TRPP) proteins (PKD2, PKD2L1 and PKD2L2) are
shorter, <1000 amino acids in each case (Veldhuisen et al., 1999;
Li et al., 2003; Zhou, 2009; Semmo et al., 2014). These proteins are
non-selective cation-channel proteins with six trans-membrane
domains, an intracellular N-terminal domain and an intracellular
C-terminal domain that sometimes contains a coiled-coil domain
(Delmas, 2004b; Venkatachalam and Montell, 2007; Zhou, 2009;
Hofherr and Kottgen, 2011; Semmo et al., 2014). PKD2-like
proteins are part of the transient receptor potential (TRP)
channel superfamily (Delmas, 2004b; Ishimaru et al., 2006;
Owsianik et al., 2006; Ramsey et al., 2006; Venkatachalam and
Montell, 2007; Zhou, 2009; Nilius and Owsianik, 2011; Semmo
et al., 2014). TRP proteins all have six trans-membrane domains
with a pore domain between the 5th and 6th domains and they
have crucial roles in many different sensory functions including
detection of mechanical, chemical, and thermal stimuli (Montell,
2005; Owsianik et al., 2006; Ramsey et al., 2006; Venkatachalam
and Montell, 2007; Damann et al., 2008; Nilius and Owsianik,
2011; Venkatachalam et al., 2014). Interestingly, it has been
proposed that the PKD2-like/TRPP proteins may be the most
evolutionary ancient of all of the TRP proteins as they are found
not just in vertebrates and invertebrates but also in yeast (Palmer
et al., 2005; Venkatachalam and Montell, 2007; Semmo et al.,
2014).

PKD1-like and PKD2-like proteins form heteromeric
polycystin-receptor-channel complexes and, in at least some
cases, physical interaction between these proteins is crucial for
correct membrane localization of the resulting complex as well
as correct physiological function (Li et al., 2003; Murakami et al.,
2005; Ishimaru et al., 2006; Giamarchi et al., 2010; Field et al.,
2011; Semmo et al., 2014). Consistent with this, mutations in
partner proteins usually produce almost identical phenotypes
both in humans and model organisms (e.g., Barr and Sternberg,
1999; Sutters and Germino, 2003; Field et al., 2011). For example,
PKD2 and PKD1L1 physically interact and mutations in either
of these genes cause defects in left-right patterning (Field et al.,
2011). Similarly, PKD1 complexes with PKD2 and mutations in
either of these genes cause ADPKD (Qian et al., 1997; Tsiokas
et al., 1997; Yu et al., 2009; Zhu et al., 2011).

PKD heteromeric complexes are thought to form receptor-
mediated non-selective cation-channels that are often located
in primary cilia. For example, PKD1 and PKD2 form a non-
selective cation-channel located in primary cilia of renal epithelial
cells, that is thought to transduce extracellular stimuli such as
fluid flow, possibly through altering general intracellular calcium
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signals (Hanaoka et al., 2000; Nauli et al., 2003; Delmas, 2004a;
Delmas et al., 2004; Zhou, 2009 although see Delling et al.,
2016, which challenges this model) or by altering local ciliary
calcium concentrations (Delling et al., 2013; DeCaen et al., 2016).
Similarly, PKD2 and PKD1L1 may form a calcium channel in
the primary cilia of cells in the node, which could help establish
left/right asymmetry during early stages of development, by
sensing and transducing the left-biased signal (Pennekamp et al.,
2002; McGrath et al., 2003; Field et al., 2011; Kamura et al., 2011;
Yoshiba et al., 2012, although again see Delling et al., 2016, which
challenges this model).

Given the importance of PKD genes to many different aspects
of vertebrate embryonic development and physiology, it is crucial
that we know where all of these genes are expressed. This may
help us to identify other potential functions and interacting
partners for this family of proteins. Zebrafish is a powerful
model system for elucidating developmental and cell biological
processes and for modeling and studying human diseases (e.g.,
Hostetter et al., 2003; Huang et al., 2014; Avagyan and Zon,
2016; Bournele and Beis, 2016; Brown et al., 2016; Carneiro et al.,
2016; Griffin et al., 2016; Harrison et al., 2016; Kozol et al., 2016;
Myllymaki et al., 2016; Poureetezadi and Wingert, 2016; Song
et al., 2016; Wager et al., 2016; Wojciechowska et al., 2016; Zon,
2016). Consistent with this, all of the evidence so far suggests that
zebrafish pkd genes function in ways that are highly conserved
with their mammalian orthologs. For example, pkd2 expression
is enriched in the developing zebrafish pronephros (Bisgrove
et al., 2005; Schottenfeld et al., 2007), Pkd2 protein is present in
zebrafish kidney epithelial cells (Obara et al., 2006), and knock-
down of pkd2 function causes cyst formation in the zebrafish
pronephros (Sun et al., 2004; Obara et al., 2006; Streets et al.,
2006; Fu et al., 2008; Chang et al., 2011; Arif Pavel et al., 2016).
In addition, pkd2 is expressed in Kupffer’s vesicle (KV) during
early zebrafish embryogenesis (Bisgrove et al., 2005; Schottenfeld
et al., 2007; Roxo-Rosa et al., 2015). The KV is a transient organ
that forms during late gastrulation stages from dorsal forerunner
cells that coalesce near the caudal end of the zebrafish embryo,
and it is required to set up left/right asymmetry (Essner et al.,
2005; Kramer-Zucker et al., 2005; Sampaio et al., 2014; Smith
et al., 2014). Consistent with this, knock-down of Pkd2 function
in zebrafish causes disturbed left-right patterning/asymmetry
and randomization of heart and gut looping (Bisgrove et al.,
2005; Schottenfeld et al., 2007) and zebrafish pkd2 mutants have
impaired cardiac function (Paavola et al., 2013). Similarly, knock-
down of Pkd1 causes cyst formation in the liver (Tietz Bogert
et al., 2013). In addition, studies in zebrafish have identified
novel functions for Pkd proteins, such as helping to integrate
mechanosensory feedback into locomotor neural circuits (Bohm
et al., 2016).

Despite the importance of pkd genes, when we started this
study only three pkd genes had been described in zebrafish,
pkd1, pkd1b, and pkd2, although analyses of pkd2l1 were also
published more recently (Sun et al., 2004; Bisgrove et al., 2005;
Obara et al., 2006; Streets et al., 2006; Schottenfeld et al., 2007;
Feng et al., 2008; Fu et al., 2008; Francescatto et al., 2010;
Giamarchi et al., 2010; Hurd et al., 2010; Mangos et al., 2010;
Chang et al., 2011; Fogelgren et al., 2011; Merrick et al., 2012;

Graham et al., 2013; Paavola et al., 2013; Tietz Bogert et al.,
2013; Coxam et al., 2014; Djenoune et al., 2014; Fidelin and
Wyart, 2014; Goetz et al., 2014; Quan et al., 2015; Roxo-Rosa
et al., 2015; Yuan et al., 2015; Arif Pavel et al., 2016; Bohm
et al., 2016). It was also unclear whether zebrafish have duplicate
copies (ohnologs) of any of the Pkd genes found in mammals,
from the genome duplication event at the base of the teleosts
(Amores et al., 1998; Postlethwait et al., 1998; Force et al., 1999;
Postlethwait, 2007). Therefore, we decided to identify the full
complement of zebrafish pkd genes. Using bioinformatics and
RT-PCR-based cloning we have identified seven zebrafish pkd
genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1.
We have also identified what may be a remnant of pkd1l3
that lacks the polycystin-cation-channel domain sequence that is
conserved in all other pkd genes. Therefore, we do not consider
this a bona-fide pkd gene. In this paper we identify the sequences
and genomic locations of all of these genes. We also confirm that
no additional pkd genes exist in three other teleosts: medaka,
stickleback or green spotted pufferfish. In addition, we describe
the expression of each of the seven zebrafish pkd genes during
embryonic and larval development. Taken together, we provide
the first description of the complete family of zebrafish pkd genes
and the most comprehensive analysis of embryonic pkd gene
expression in any vertebrate.

MATERIALS AND METHODS

Ethics Approval
All zebrafish experiments in this research were approved by the
Syracuse University IACUC committee.

Zebrafish Husbandry and Fish Lines
Zebrafish (Danio rerio) were maintained on a 14-h light/10-
h dark cycle at 28.5◦C. Embryos were obtained from natural
paired and/or grouped spawnings of wild-type (WT; AB, TL,
or AB/TL hybrid) or mindbomb (mibta52b; Jiang et al., 1996) or
Tg(−8.1gata1:gata1-EGFP) (Kobayashi et al., 2001) fish. Embryos
were staged in hours post fertilization at 28.5◦C (h) or days post
fertilization (dpf) according to Kimmel et al. (1995).

Identification of pkd Genes
Initially we searched NCBI, http://www.ZFIN.org and Ensembl
for zebrafish pkd genes. We then blasted nucleotide sequences
for these genes against the zebrafish genome using Tblastn on
Ensembl http://www.ensembl.org/Danio_rerio/Tools/Blast?
db=core. We identified polycystin-cation-channel domains
and performed a Tblastn with these peptide sequences using
default parameters at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.
cgi?PROGRAM=tblastn&PAGE_TYPE=BlastSearch&BLAST_
SPEC=OGP__7955__9557&LINK_LOC=blasttab&LAST_
PAGE=blastn).

Protein sequences were obtained from mapped mRNA
transcripts using the Translate tool at the ExPASy Bioinformatics
Resource Portal: http://web.expasy.org/translate/. To compare
and analyze protein structures, protein domains were identified
by searching against the Pfam protein database at EMBL-EBI:
http://pfam.xfam.org (Finn et al., 2015).
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To amplify in situ hybridization probe templates and
confirm particular open reading frames we created zebrafish
cDNA from 27 h WT zebrafish embryos. Total RNA was
extracted by homogenizing 50–100mg of embryos in 1 mL
of TRIzol reagent (Ambion, 15596-026). RNA integrity (2:1
ratio of 28S:18S rRNA bands) and quality (A260/A280 ratio
of ∼2.0) was confirmed using agarose gel electrophoresis and
spectrophotometry respectively. cDNA was synthesized using
Bio-Rad iScript Reverse Transcription Supermix kit (Bio-Rad,
170-8891).

To map and confirm open reading frames, PCRs were
performed using 5 µl of cDNA template in a 50 µl reaction,
with Phusion High-Fidelity DNA Polymerase (NEB, M0530L)
and mapping primers listed in Supplementary Table 1. Reaction
conditions were 98.0◦C for 30 s, followed by 30 cycles of: 98.0◦C
for 10 s, Annealing (see Supplementary Table 1 for temperatures)
for 20 s, and extension at 72.0◦C (see Supplementary Table 1 for
extension times). A final extension step was performed for 5 min
at 72.0◦C.

For pkd1, pkd1l2a, and pkd1l2b we also performed inverse
PCR to identify missing 5′ sequence, as described in Lewis
et al. (1999), with the following modifications. One microgram
of total RNA extracted from 27 h WT zebrafish embryos (see
above) was incubated with 10 µM of gene specific primer (see
Supplementary Table 2) and 1 mM each of dNTPs in a final
volume of 10 µl for 5 min at 65◦C. Two-hundred units of M-
MuLV Reverse Transcriptase (NEB, M0253S) and eight units
of Protector RNase Inhibitor (Roche, 03335399001) were then
added and first strand cDNA synthesized by incubating for
1 h at 42◦C. Second strand cDNA synthesis was performed
immediately as described in Lewis et al. (1999), but the reaction
was incubated for 4 h at 14◦C, followed by 10 min at 70◦C, before
adding five units of T4 DNA Polymerase (NEB, M0203S) and
incubating for 10 min at 37◦C. Circularization was performed
as described in Lewis et al. (1999), with the exception that RNA
ligase was omitted and purification was performed using Amicon
Ultra-0.5 Centrifugal Filter Units with Ultracel-30 Membrane
(Millipore Sigma, UFC503024). Reaction products were diluted
to a final volume of 500 µl using nuclease-free water and
filtered by centrifuging for 10 min at 14000 × g, before eluting
by inverting filter and centrifuging for 2 min at 1000 × g.
Five microliters of purified, circularized product was used in
a 50 µl PCR with Phusion High-Fidelity DNA Polymerase
(NEB, M0530L). Reaction conditions were: 98.0◦C for 30 s,
followed by 35 cycles of: 98.0◦C for 10 s, Annealing—(see
Supplementary Table 1 for temperatures) for 20 s and Extension
(see Supplementary Table 1 for extension times) at 72.0◦C. A final
extension step was performed for 5 min at 72.0◦C.

For pkd1 and pkd1l2b, nested PCR was performed. The first
round of PCR was performed as described above, using the
respective Nested_Set 1 primers (Supplementary Table 1). This
product was diluted 1:10 in nuclease-free water and 2.5 µl of
that dilution used as a template in the second round PCR, using
Nested_Set 2 primers (Supplementary Table 1).

In all cases, PCR products were verified on a 1% agarose TAE
gel and then purified using EZ-10 Spin Column PCR Products
Purification kit (Bio Basic Inc, BS664). Purified PCR products

were sequenced using the PCR primers (Supplementary Table 1)
to prime the reactions and the resulting sequences blasted against
zebrafish genome assembly GRCz10 using Tblastn and default
parameters on Ensembl (http://www.ensembl.org/Danio_rerio/
Tools/Blast?db=core).

Our mapped mRNA transcript sequences for zebrafish pkd1,
pkd1l2a, and pkd1l2b have been submitted to NCBI [KY074550
(pkd1), KY074551 (pkd1l2a), and KY074552 (pkd1l2b)].

Phylogenetic Analyses
The peptide sequence for the polycystin-cation-channel domain
was identified using Pfam (http://pfam.xfam.org/; Finn et al.,
2015) and isolated, when present, from all of the pkd genes in
zebrafish (Danio rerio, dre), green spotted pufferfish (Tetraodon
nigroviridis, tni), medaka (Oryzias latipes, ola), stickleback
(Gasterosteus aculeatus, gac), spotted gar (Lepisosteus oculatus,
loc), elephant shark (Callorhinchus milii, cmi), fly (Drosophila
melanogaster, dme), human (Homo sapiens, hsa), and mouse
(Mus musculus, mmu). The following genome assemblies
were used: zebrafish—GRCz10, green spotted pufferfish—
TETRAODON 8.0, medaka—HdrR and stickleback—BROAD
S1. For spotted gar, elephant shark, fly, human, and mouse
proteins, the polycystin-cation-channel domain sequences were
isolated from the longest protein isoforms available in Ensembl
genomes LepOcu1 (GCA_000242695.1), ESHARK1, BDGP6
(GCA_000001215.4), GRCh38.p7 (GCA_000001405.22), and
GRCm38.p4 (GCA_000001635.6), respectively. Protein sequence
alignment was performed using Clustal Omega server at
EMBL-EBI (Version 1.2.3) and default parameters: http://
www.ebi.ac.uk/Tools/msa/clustalo/ (Goujon et al., 2010; Sievers
et al., 2011; McWilliam et al., 2013). Phylogenetic trees for
the PKD1-like and PKD2-like families were generated using
regions of the polycystin-cation-channel domain contained in
all of the proteins (see Supplementary Figures 1, 2). We
used both the neighbor-joining (NJ) method [plotted using
Phylodendron software (version 0.8d) http://iubio.bio.indiana.
edu/treeapp/treeprint-form.html] and the maximum likelihood
method, implementing a WAG substitution model, performed
using PhyML (v3.1/3.0 aLRT) accessed at the Phylogeny.Fr web
interface (http://www.phylogeny.fr/index.cgi; Dereeper et al.,
2008, 2010). The maximum likelihood analyses are presented
here (Figure 3).

Syntenic Analyses
Having identified genomic loci of teleost pkd genes through
Tblastn analysis (see above), we compared these to PKD loci
in human and mouse genomes using location-based displays in
Ensembl to identify any conserved synteny.

In situ Hybridization and
Immunohistochemistry
Embryos were fixed in 4% paraformaldehyde and single
in situ hybridization or fluorescent in situ hybridization
plus immunohistochemistry experiments were performed as
previously described (Concordet et al., 1996; Batista et al., 2008).
Embryos older than 24 h were often incubated in 0.003% 1-
phenyl-2-thiourea (PTU) to prevent pigment formation. For
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fluorescent in situ hybridization + immunohistochemistry, after
detection of the in situ hybridization reaction using TSA Kit
#5, with HRP, Goat anti-mouse IgG and Alexa Fluor 594
Tyramide (ThermoFisher Scientific, T20915), embryos were
washed 8 × 15 min in PBST and incubated in Image-iT FX
Signal Enhancer (ThermoFisher Scientific, I36933) for 30 min
at room temperature. Immunohistochemistry was performed
using a chicken polyclonal anti-GFP primary antibody (Abcam,
Ab13970, 1:500) and a Goat anti-chicken IgY (H+L), Alexa
Fluor 488 secondary antibody (ThermoFisher Scientific, A-
11039, 1:1000). Probes for in situ hybridization experiments were
prepared using PCR-based DNA templates from 27 h cDNA,
made as described above, and primers listed in Supplementary
Table 3. Primers for all zebrafish pkd genes, except pkd1 Primer
Set 1, were designed using the following parameter ranges:
nucleotide length—21 bases (minimum)-28 bases (maximum),
tm—58◦C (minimum)−65◦C (maximum) and GC content—
45% (minimum)-60% (maximum) with Primer3 web version
4.0.0 at http://bioinfo.ut.ee/primer3/ (Koressaar and Remm,
2007; Untergasser et al., 2012). All reverse primers include
the sequence for the T3 RNA Polymerase minimal promoter:
ATTAACCCTCACTAAAGGGA. This sequence is shown in bold
and underlined in the reverse primers listed in Supplementary
Table 3. To avoid cross-reactivity, whenever possible, riboprobes
were designed against 3′ UTR or coding sequence lacking all
of the conserved protein domains shown in Figure 2. pkd1 Set
1 primers used to make the zebrafish pkd1 riboprobe were
identical to those described by Coxam et al. (2014). These primers
generated a 580 bp PCR product and the resulting RNA probe
revealed specific embryonic expression. However, this region of
the pkd1 transcript was no longer included in the annotation
of the pkd1 gene in Ensembl GRCz10 (Figure 1A). Therefore,
we also generated an alternative pkd1 in situ probe that binds
3′ to the Coxam riboprobe, in a region included in the newer
Ensembl transcript (pkd1 Set 2 primers—see Supplementary
Table 3, Figure 1A). This probe produced identical, albeit weaker,
expression to the first (Coxam) riboprobe (data not shown). The
stronger Coxam riboprobe was therefore used throughout this
study.

To confirm genomic structure of pkd1l2a, two separate
riboprobes were generated and tested (Supplementary Table
3, Figure 1B). These were generated against two adjacent
genes that have been retired in Ensembl GRCz10 but that we
show here encompass different parts of pkd1l2a. The pkd1l2a
riboprobe generated with primer Set 1 is the most 3′ of the
two probes. It was designed against ENSDARG00000074116 and
it partially overlaps the current Ensembl pkd1l2a transcript. In
contrast, the pkd1l2a riboprobe generated with primer Set 2 was
designed against ENSDARG00000090210 and is immediately 5′

to the current Ensembl pkd1l2a transcript. Whilst both probes
produced the same expression patterns, the latter probe was
weaker in putative taste buds and therefore the probe designed
against ENSDARG00000074116 (primer set 1) was used for all of
the studies in this paper.

Each 50 µL probe reaction PCR contained 5 µL cDNA
and one unit of Phusion High-Fidelity DNA Polymerase (NEB,
M0530L). PCR conditions were: 94◦C for 3 min followed by 35

cycles of 94◦C for 30 s, 56.5◦C for 30 s, 72◦C for 1.5 min and then
a final extension step of 72◦C for 10 min. PCR products were
purified by phenol:chloroform extraction. in situ hybridization
probes were made using 1 µg purified PCR product, T3 RNA
Polymerase (Roche, 11031171001) and DIG RNA Labeling Mix
(Roche, 11277073910).

Imaging
Embryos 24 h and older were deyolked in 70% glycerol/30%
sterile water using mounting pins. For lateral and dorsal views
of the embryo, whole embryos were mounted in 70% glycerol in
coverslip sandwiches (24× 60 mm coverslips; VWR, 48393-106),
with 2–4 coverslips (22 × 22 mm; VWR, 16004-094) on either
side of the sample to avoid sample compression. For ventral
views of putative taste receptors, the trunk was dissected with a
razor blade and the head carefully inverted on to a 24 × 60 mm
coverslip and a similar coverslip sandwichmade. For lateral views
of eyes, they were dissected from forebrain using mounting pins
andmounted as for whole embryos, but using only 1–2 coverslips
each side of the specimen. Cross-sections were cut by hand using
a razor blade mounted in a 12 cm blade holder (World Precision
Instruments, Cat. #14134). Differential interference contrast
(DIC) pictures were taken using an AxioCam MRc5 camera
mounted on a Zeiss Axio Imager M1 compound microscope.
A Zeiss LSM 710 confocal microscope was used to image
embryos mounted in DABCO (1,4-Diazabicyclo[2.2.2]octane,
Sigma, D-2522, 2% w/v solution in 80% sterile glycerol) for
fluorescent double-labeling experiments. Images were processed
using Adobe Photoshop software (Adobe, Inc) and Image J
software (Abràmoff et al., 2004).

Cell Counts and Statistics
In all cases, cells counts are for both sides of a five-somite length
of the spinal cord adjacent to somites 6–10. Values are an average
of five embryos. Results were analyzed using the student’s t-test;
Error bars indicate standard error of the mean.

RESULTS

Zebrafish Have Seven pkd Genes
To establish the full complement of zebrafish pkd genes we
initially searched several online resources. We found NCBI
nucleotide reference sequences for six genes: XM_009294890
(called pkd1), XM_009297371 (called pkd1l1), XM_009303604
(called pkd1l2), XM_002662913 (called pkd1l3), DQ175629
(called pkd2), and XM_690312 (called pkd2l1) and an additional
gene, called pkd1b, on the zebrafish database website, ZFIN
(Note: some of these records have since been retired as a result
of standard genome-annotation processing and our data suggest
that some of these names are not correct). To identify additional
potential pkd genes, we blasted each of these sequences against
zebrafish genome assembly Ensembl Zv9 using Tblastn. We also
performed a textual search for pkd genes on Ensembl. Using these
methods, we identified 10 potential pkd genes [called at that time
pkd1, pkd1b, pkd1l3, pkd1l3 (1 of 4), pkd1l3 (2 of 4), pkd1l3 (3 of
4), pkdrej (1 of 2), pkdrej (2 of 2), pkd2, and pkd2l1].We examined
each of these, in order to determine which of them were indeed
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FIGURE 1 | Mapping pkd1, pkd1l2a, and pkd1l2b mRNA Transcripts. Summary of mRNA transcript mapping results for pkd1 (A), pkd1l2a (B), and pkd1l2b (C).

Approximate length in base pairs (bp) is indicated by scale at top of each panel. Mapped transcripts are shown in next row of each panel. Coding sequence is blue

and UTR is gray. Numbers flanking these mapped transcripts indicate nucleotide positions. Black vertical lines (coding sequence box, A) indicate putative start codon,

and morpholino sequence positions. Purple vertical lines (coding sequence boxes, A–C) indicate exon boundaries, where known. Mapped PCR amplicons generated

in this study are indicated with white boxes. Red indicates riboprobe sequences used in this study. Dark blue indicates novel sequence identified in this study but not

currently present in Ensembl GRCz10 genome. Genbank reference sequences used at beginning of this study are shown as pink boxes. Magenta lines with double

arrows beneath these indicate regions of sequence homology identified at start of this project. Genbank reference sequences identified during this study are shown as

orange boxes. Ensembl Zv9 transcript sequences are shown as lilac boxes. Ensembl GRCz10 transcript sequences are shown as green boxes. Numbers beneath

sequences show nucleotide positions. ∧, break in aligned sequence. Thin purple vertical lines in green boxes indicate exon boundaries, where known. Key exons for

interpreting mapping results are numbered. (A) Our newly mapped pkd1 transcript contains all but 173 bases of the older Zv9 ENSDART00000039911 transcript (lilac

boxes) as well as all but the first 45 nucleotides of the current GRCz10 ENSDART00000039911 transcript (green boxes). We have also identified additional 5′

sequence and missing regions of coding sequence. The GRCz10 ENSDART00000039911 transcript corresponds to nucleotides 2975–18401 of our mapped

transcript. The Zv9 ENSDART00000039911 transcript corresponds to nucleotides 218–13798 of our mapped transcript but contains some gaps (nucleotides

292–357, 430–597, 875–925, 1778–1786, 1935–1973, 8363–8410, 9804–9811, 10715–10725, 11608–11640, 12356, 12359–12389, 12852–12890, and

13109–13675 of our mapped transcript). Inverse PCR identified 5′ transcript sequence along with a novel stretch of nucleotides (292–357) absent from GRCz10

Ensembl genome (shown in dark blue). Nucleotides 2659–12720 of the Zv9 transcript are almost 100% identical to nucleotides 46–10179 of the GRCz10 transcript

(Continued)
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FIGURE 1 | Continued

and these regions align with nucleotides 2975–13108 of our mapped transcript. Nucleotides 10180–10746 of the GRCz10 transcript share no homology with the Zv9

transcript, but correspond to nucleotides 13109–13675 of our mapped transcript. Nucleotides 12721–12843 of the Zv9 transcript share 100% homology with

nucleotides 10747–10869 of the GRCz10 transcript and correspond to nucleotides 13676–13798 of our mapped transcript. The coding sequence of the GRCz10

transcript terminates 30 nucleotides downstream of the Zv9 transcript and is followed by 4573 bp of unique 3′ UTR sequence. Using RT-PCR we have confirmed that

our mapped transcript utilizes the same stop codon and 3′ UTR sequence. Specifically, we have confirmed that nucleotides 10192–11136, 11173–12085,

12598–13484, and 14524–15376 of 3′ UTR sequence in the GRCz10 transcript are transcribed and map to nucleotides 13121–14065, 14102–15014,

15527–16413, and 17453–18395 of our mapped transcript, respectively. Our inverse PCR revealed 217 nucleotides of coding sequence upstream of the Zv9

transcript and 66 nucleotides of novel coding sequence between nucleotides 71 and 72 of the Zv9 transcript. In total, this produces a 18401 bp transcript that

encodes a 4608 amino acid protein and we have deposited this sequence in NCBI (NCBI accession number KY074550). This sequence lacks a start methionine.

*indicates in-frame methionine at 527–529 nucleotides. However, if this is the start codon, the resulting protein would lack the leucine rich repeat domain, encoded by

the 175 amino acids in-frame upstream of this methionine, that is present in mouse, human and stickleback PKD1. There is a putative in-frame start codon a further

54 nucleotides (18 amino acids) upstream of our present transcript, which we think is more likely to be the true start codon. The location of the splice-blocking

morpholino sequence used by Mangos et al. (2010) that resulted in kidney cysts in some animals is also indicated (nucleotides 1187–1197 of the Zv9 transcript). (B)

Our current transcript for pkd1l2a encompasses both LOC101884812 and XM_002662913 and contains additional exons not present in either of these sequences.

The start of the current ENSDART00000173234.1 transcript coincides with the start of exon 23 in our longer transcript, but the first exon of

ENSDART00000173234.1 is shorter than exon 23 in our transcript. Exons 2–3, 4–7, and 9–17 of ENSDART00000173234.1 are identical to exons 24–25, 27–30, and

33–41 of our transcript. Exon 26 of our transcript is absent in ENSDART00000173234.1 and exons 31–32 and intron 31–32 exist as a single exon, exon 8, in

ENSDART00000173234.1. (C) Our current transcript for pkd1l2b contains both the si:ch211-168k15.4 and ENSDARG00000101214 (ENSDART00000124969.2)

sequences, utilizing a start codon 4 bases upstream of exon 1 in the current si:ch211-168k15.4 annotation, and transitioning between exon 16 of si:ch211-168k15.4

immediately into exon 9 of ENSDART00000124969.2. Nucleotides 683–7026 of our new 7898 bp mRNA transcript align perfectly with the original XM_009303604

6344 bp reference sequence. The start codon was identified in this study along with novel 5′ UTR sequence.

bona-fide pkd genes. These analyses identified seven pkd genes as
described below.

pkd1
When we commenced our bioinformatic analyses of zebrafish
pkd genes, the reference sequence XM_009294890 aligned in
Ensembl Zv9 with a 12843 bp transcript, ENSDART00000039911
(associated with gene ENSDARG00000030417 on chromosome
1) called pkd1, that lacked both start and stop codons (Figure 1A;
Table 1). However, this annotation changed in the current
genome assembly, GRCz10, which contains a revised 15472
bp ENSDART00000039911 transcript that lacks the first 2607
nucleotides present in the older transcript. Supporting the older
5′ sequence, Coxam et al. (2014) showed enriched expression
in zebrafish trunk at late embryonic stages using an in situ
hybridization riboprobe designed against nucleotides 1307–
1838 of the older transcript. We have also amplified this
region from zebrafish cDNA and, in our hands, a riboprobe
designed against this region is strongly expressed in embryonic
pronephros, consistent with pkd1 expression in other animals
(see expression analyses below). This expression is identical,
although stronger, to the expression that we see when we use
an alternative riboprobe designed against a more 3′ region
included in the newer Ensembl transcript (see Section Materials
and Methods and Figure 1A). In addition, Mangos et al. (2010)
describe a splice-blocking pkd1 morpholino aligned with the
older transcript (Figure 1A), that induced kidney cysts in some
animals, consistent with Pkd1 function in other animals. Taken
together, these data suggest that the current Ensembl annotation
is incorrect and that at least some pkd1 transcripts include parts
of the older upstream sequence.

Therefore, we used inverse PCR and overlapping PCR
amplicons, to identify/map the correct pkd1 sequence (see
Section Materials and Methods, Figure 1A and Table 1). All but
173 bases of the older ENSDART00000039911 transcript (Zv9)
are present in our newly mapped pkd1 transcript as are all but

the first 45 nucleotides of the current ENSDART00000039911
transcript (GRCz10). However, compared to our new transcript,
there are some gaps in the Zv9 transcript, and we have also
identified novel 5′ sequence that is not present in either transcript
nor the 5′ genomic sequence in GRCz10, suggesting that there
may be sequence missing from chromosome 1 in Ensembl. Taken
together, our data suggest that a transcript of at least 18401
bp exists that encodes a 4608 amino acid protein and we have
deposited this sequence in NCBI (accession number KY074550).
This sequence lacks a start methionine. There is a methionine
codon in-frame at 527–529 nucleotides (Figure 1A), but the
region upstream of this methionine encodes a leucine-rich-repeat
domain which is conserved in mouse, human and stickleback
PKD1. Therefore, we think that this methionine is unlikely to be
the start codon. We consider that the start codon is more likely
to be a putative in-frame methionine 54 nucleotides upstream of
our present transcript. We are confident that this gene is pkd1,
given our synteny and phylogeny analyses discussed below (see
also Table 1).

pkd1b
In contrast to pkd1, since the inception of this study the
annotation of ENSDARG00000033029, the gene called pkd1b in
our initial bioinformatic searches, has remained unchanged
within Ensembl. The current longest pkd1b transcript,
ENSDART00000153412.2, encodes a 3817 amino acid protein
(Table 1, Figure 2). This Ensembl sequence is strongly supported
by the reference sequence XM_017358624.1, which has the
Gene ID 565697 (https://www.ncbi.nlm.nih.gov/gene/), with the
exception that this reference sequence encodes an additional 73
amino acids at the amino terminus. Therefore, we cannot rule
out the possibility that the pkd1b transcript might be longer
than that currently shown in Ensembl. However, this would
not affect the predicted domain structure of Pkd1b protein, as
the additional 73 amino acids do not contain any additional
predicted protein domains (Figure 2). We are confident that
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FIGURE 2 | PKD protein domains. Schematics of protein domains identified in all eight human (Homo sapiens, hsa) and mouse (Mus musculus, mmu) and seven

zebrafish (Danio rerio, dre) PKD proteins. The zebrafish putative partial pkd1l3 ortholog is also shown. Approximate protein length is indicated by scale at top. Where

multiple transcripts exist in Ensembl, the longest protein isoform is shown. In all three species, PKD1 is the longest PKD protein and the only protein to contain a

leucine-rich repeat and carbohydrate-binding WSC domain in the amino-terminus. Pkd1b is not present in mammals. Zebrafish Pkd1b resembles Pkd1 with multiple

PKD domain repeats in the amino-terminus and REJ, PLAT/LH2, and polycystin-cation-channel domains in the carboxy-terminus. In all three species, PKD1L1

contains a shorter polycystin-cation-channel domain, approximately half the size of that in other Pkd proteins. Unlike mammals, zebrafish Pkd1l1 also contains a GPS

motif upstream of the PLAT/LH2 domain. The 5′ coding sequence of mouse Pkd1l1 gene is presently incomplete. PKD1L2 is unusual in humans in that, according to

information on Ensembl, longer transcripts represent polymorphic pseudogenes that have acquired mutations, preventing them from being expressed as functional

proteins. As a result, the current version of human PKD1L2 is half the size of mouse and zebrafish Pkd1l2 and lacks the polycystin-cation-channel domain

characteristic of PKD proteins. If this is correct, then this suggests that human PKD1L2 is no longer a bona-fide PKD gene. Mouse PKD1L2 and Zebrafish Pkd1l2a

and Pkd1l2b have identical domain structures, with the exception that Pkd1l2b lacks the REJ domain. PKD1L3 protein structure differs slightly between mammals.

Human PKD1L3 has a Lectin C-type domain in the amino-terminus and mouse PKD1L3 does not. In addition, the polycystin-cation-channel domain in mouse

PKD1L3 is 411 amino acids long, compared to only 237 amino acids in human PKD1L3. We have identified a putative partial pkd1l3 ortholog in zebrafish, but the

sequence lacks the polycystin-cation-channel domain, so we do not consider it a bona-fide pkd gene. Pkdrej and Pkd2l2 are not present in zebrafish. The only

currently identified domain in PKD2, PKD2L1, and PKD2L2 proteins is the polycystin-cation-channel domain.

this gene is pkd1b based on the protein domains that it encodes
(Figure 2) and our phylogeny analyses discussed below (see
also Table 1). However, it is worth noting that, despite its name

and the absence of this gene in mammals, we do not think that
this gene is a teleost duplicate of pkd1 (see Section Discussion
below).
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pkd1l1
The reference sequence XM_009297371, called pkd1l1 in our
initial analyses, aligns with the forward strand of chromosome 24.
In Ensembl Zv9 this region contained a small ORF of 225 amino
acids, called pkd1l3 (2 of 4). In GRCz10, this region of homology
is now called BX005392.1 (gene ENSDARG00000099162). The
longest transcript at this locus is ENSDART00000169516.1,
which encodes a protein of 2153 amino acids. Whilst there
is no stop codon in either ENSDART00000169516.1 or an
additional shorter transcript associated with BX005392.1, there
is a putative stop codon in-frame 27 bp downstream in the
3′ flanking sequence of ENSDART00000169516.1. To assess
whether this locus might encode a pkd gene, we generated two
alternative riboprobes, one designed against exons 39–43 and
the other against exons 46–49. As described below, both of
these riboprobes labeled putative taste receptors and we also saw
expression in dorsal forerunner cells / Kupffer’s vesicle similar to
pkd1l1 expression in medaka (Kamura et al., 2011). The structure
of this protein, including its shorter polycystin-cation-channel
domain and fewer PKD domains is consistent with that of
PKD1L1 in other vertebrates (Figure 2). In addition, our synteny
and phylogenetic analyses described below also suggest that this
gene is pkd1l1.

pkd1l2a
The XM_002662913 (used to be called pkd1l3) reference
sequence aligns with the reverse strand of chromosome 7. In an
early release of Zv9, this region contained two adjacent novel
genes, ENSDARG00000074116 and ENSDARG00000090210,
encoding proteins of 488 and 294 amino acids respectively
(Figure 1B). Temporarily these genes received the annotations
pkd1l3 (1 of 4) and pkd1l3 (3 of 4), before being retired from
the final release of Zv9. Given the proximity of these genes to
one another on the same chromosome and their consecutive
alignment with the XM_002662913 reference sequence, we
hypothesized that these genes might constitute different parts
of one longer gene. Consistent with this, riboprobes generated
against each gene produced identical expression patterns in
zebrafish ventral spinal cord and putative taste receptors
(Figure 1B; and see expression analyses below).

In GRCz10 this locus is now called pkd1l2a. A single
17-exon transcript, ENSDART00000173234.1, is predicted to
encode an 1124 amino acid protein. However, the 5′ sequence
of this transcript only partially overlaps the 3′ sequence of
ENSDARG00000090210 and is, therefore, likely to be incomplete
(Figure 1B). It is also likely to contain inaccuracies because
sequence present in our ENSDARG00000074116 riboprobe is
annotated as being intronic in ENSDART00000173234.1.

To identify the correct gene sequence, we used the
XM_002662913 sequence, which aligns with both of the retired
pkd1l3 genes as well as sequence upstream of them, to map the
mRNA transcript using RT-PCR. Since a preliminary protein
domain search of the reference sequence suggested we might
be missing amino-terminus sequence, we used the RefSeq GFF3
annotation import track in GRCz10 to identify a putative
locus, LOC101884812, immediately upstream (Figure 1B). A
protein domain search of this sequence using the Pfam

protein database identified lectin and galactose-binding-lectin
domains typically found in the amino-terminus of PKD1L2
proteins (Figure 2). We confirmed that these regions were
transcribed using RT-PCR (Figure 1B). We also performed
inverse PCR to identify any 5′ coding sequence that might
be further upstream (Figure 1B). Using these approaches we
identified an 8526 bp mRNA transcript, comprising 41 exons,
both 5′ and 3′ UTR sequences and encoding a protein of
2485 amino acids that is identical in domain structure and
length to mouse PKD1L2 (Figure 2, Table 1). This transcript
encompasses both LOC101884812 and XM_002662913 and
contains additional exons not present in either of these sequences
(Figure 1B). There is also considerable overlap between our
transcript and the current ENSDART00000173234.1 transcript
(Figure 1B). The structure of the protein encoded by our
mapped transcript, including its lack of a PKD domain and
the presence of a galactose-binding-lectin domain, is consistent
with PKD1L2 proteins in other animals (Figure 2). Our synteny
and phylogenetic analyses (see below) also suggest that this is a
pkd1l2 gene. Our pkd1l2a transcript has been deposited at NCBI
(accession number KY074551).

pkd1l2b
In Zv9 the XM_009303604 reference sequence partially aligned
with pkd1l2 (ENSDARG00000088121) on the forward strand
of chromosome 7 (1–2985 bp) and to a non-coding region
on the forward strand of Zv9_Scaffold3511 (1782–6344 bp),
suggesting that the pkd1l2 annotation on chromosome 7
might be incomplete (Figure 1C). Consistent with this, the
5′ coding sequence of the longest ENSDARG00000088121
transcript, ENSDART00000156286, lacked a start codon and
only encoded a protein of 859 amino acids. This gene was
subsequently renamed pkdrej (2 of 2) in a later Zv9 release.
Interestingly, in that same genome release an additional gene,
pkdrej (1 of 2), encoding a protein of 124 amino acids, was
reported immediately downstream of pkdrej (2 of 2). Our
PFAM protein domain analysis revealed that these “Pkdrej”
proteins contained classic features of Pkd proteins (Lectin C-
type domain, galactose-binding-lectin domain, and GPS motif
[Pkdrej (2 of 2)] and PLAT/LH2 domain [Pkdrej (1 of 2)].
However, neither protein contained the REJ domain, present
in amniote PKDREJ proteins (Figure 2), nor the polycystin-
cation-channel domain present in all other Pkd proteins. By the
first release of GRCz10, pkdrej (2 of 2) had become si:ch211-
168k15.4 and parts of pkdrej (1 of 2) had been included in
the largest transcript of a new gene, ENSDARG00000101214,
called pkd1l3, although in the most recent release of GRCz10
(version 86.10), ENSDARG00000101214 is named pkd1l2. These
two genes overlap each other (Figure 1C). Exons 10–16 and
the first 231 bases of exon 17 of si:ch211-168k1.5.4 are
identical to exons 2–9 of ENSDARG00000101214. However,
the si:ch211-168k15.4 transcript utilizes a stop codon present
in intron 9–10 of ENSDARG00000101214, and the transcript
for ENSDARG00000101214 (ENSDART00000124969.2) utilizes
a start codon present in exon 10 of si:ch211-168k15.4. Since
the protein encoded by ENSDART00000124969.2 is 1442 amino
acids long and contains a polycystin-cation-channel domain,
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we tested whether this transcript and si:ch211-168k15.4 might
actually be part of a larger pkd gene using RT-PCR. Since the
5′ coding sequence is incomplete in si:ch211-168k15.4 we also
performed inverse PCR to identify any 5′ coding sequence that
might be further upstream (Table 1). These analyses identified
a longer, combined 7898 bp transcript that contains both
the si:ch211-168k15.4 and ENSDARG00000101214 sequences,
utilizing a start codon 4 bases upstream of exon 1 in the
current si:ch211-168k15.4 annotation, and transitioning between
exon 16 of si:ch211-168k15.4 immediately into exon 9 of
ENSDART00000124969.2. Whilst the identification of the start
codon is unique to this study and we have also identified novel 3′

UTR sequence, nucleotides 683–7026 of our new 7898 bp mRNA
transcript align perfectly with the original XM_009303604 6344
bp reference sequence. The resulting 1902 amino acid protein
has very similar domains to Pkd1l2a (Table 1, Figure 2) and
its polycystin-cation-channel domain is most similar to that
of Pkd1l2a, with which it has >60% identity, more than 30%
higher than with any other zebrafish Pkd protein (Table 2). The
lack of a PKD domain and the presence of a galactose-binding-
lectin domain are also consistent with PKD1L2 proteins in other
animals, with the exception that, unlike zebrafish Pkd1l2a and
amniote PKD1L2, this protein is missing a REJ domain. Our
synteny and phylogenetic analyses, discussed below, also suggest
that this is a pkd1l2 gene. Therefore, we are confident that this
gene is pkd1l2b and we have deposited the transcript sequence at
NCBI (accession number KY074552).

pkd2
During this study the annotation of the gene called pkd2
remained unchanged within Ensembl. The pkd2mRNA reference
sequence identified at the start of this study, DQ175629.1,
aligns with the 14 exons present in the current Ensembl
pkd2 transcript, ENSDART00000020412.7, although the latter
contains additional UTR sequence. This suggests that pkd2
(ENSDARG00000014098) encodes a 904 amino acid protein. Our
synteny and phylogeny analyses (see below) confirm that this
gene is pkd2. Similar to PKD2 proteins in other vertebrates, the
main conserved domain in the encoded protein is the polycystin-
cation-channel domain (Figure 2, Table 1).

pkd2l1
The annotation of the gene called pkd2l1 also remained
unchanged within Ensembl during this study. The pkd2l1mRNA
reference sequence XM_690312 aligns with 100% homology to
exons 1–9, 11–12, and 14–15 of the current pkd2l1 transcript
ENSDART00000145948.1, which contains the additional exons
10 and 13. This suggests that pkd2l1 generates a 790 amino acid
protein and is encoded by ENSDARG00000022503. Consistent
with this, our in situ hybridization riboprobe (see expression
analyses below), which was designed against the 3′ coding and
UTR sequence present in ENSDART00000145948.1 (nucleotides
2062–2614), generated data similar to expression reported using a
riboprobe designed againstmore upstream sequence (nucleotides
1148–2022; Djenoune et al., 2014). As for zebrafish Pkd2, and
PKD2 family proteins in other vertebrates, the main conserved
domain in this protein is the polycystin-cation-channel domain

(Figure 2, Table 1). Our synteny and phylogeny analyses (see
below) also suggest that this gene is pkd2l1.

We also performed additional bioinformatics searches using a
newer version of the zebrafish genome released during our study,
GRCz10, to test if there were any additional potential pkd genes.
For this, we identified peptide sequences for the polycystin-
cation-channel domain in each of the zebrafish pkd genes
and performed Tblastn analyses with each of these sequences
against this newer version of the genome (see Section Materials
and Methods). We used the polycystin-cation-channel domain
because this is the domain that defines Pkd proteins (Figure 2).
Whenwe did this, several of the domains identified other already-
identified pkd genes (Table 1), but no new pkd genes were
identified.

Since the zebrafish pkd genes that we had identified included
only one set of potential teleost-duplicates or ohnologs, (just
pkd1l2a/pkd1l2b as we do not think that pkd1 and pkd1b are
teleost duplicates because these genes exist in both cartilaginous
and holostei fish as described below), we further investigated
whether teleost ohnologs of any additional pkd genes might exist
by searching for pkd genes in medaka, stickleback and green
spotted pufferfish. We performed a textual search for pkd genes,
and also blasted the polycystin-cation-channel domain for all
seven zebrafish Pkd proteins, against each of these genomes.
We identified the same complement of seven genes in both
stickleback and green spotted pufferfish and six genes in medaka
(pkd1b was missing; Table 1). For each zebrafish Pkd protein, the
polycystin-cation-channel domain had greatest homology with
the gene that our phylogeny and synteny analyses suggest is its
closest ortholog in each of the other teleost genomes (Table 1).
Whilst Pkd1l2b in green spotted pufferfish and stickleback have
slightly higher sequence homology with the polycystin-cation-
channel domain of zebrafish Pkd1l2a than Pkd1l2b, Pkd1l2a in
both of these teleosts shows even higher sequence homology
with zebrafish Pkd1l2a. Therefore, these data, together with our
phylogeny and synteny analyses, suggest that we have correctly
classified the genes that encode these proteins (Table 1). We
found no evidence in any of the teleosts examined for additional
duplicate (ohnolog) pkd genes.

Interestingly, our Tblastn analyses with full-length zebrafish
Pkd1b identified a small region of homology in each of the teleost
genomes with the PLAT/LH2 region of Pkd1b (data not shown).
Visual inspection of each of these loci revealed conserved synteny
with the region surrounding amniote PKD1L3 genes (Figure 4E).
To assess whether these teleost genomes might contain pkd1l3
orthologs, we performed Tblastn analyses with full-length mouse
PKD1L3 (Supplementary Table 4). These identified the same loci.
The putative pkd1l3 locus is not annotated in either zebrafish
or medaka genomes, although a transcript is present in a
previous zebrafish genome assembly (ENSDARG00000091803 in
Zv9, Table 1). In the green spotted pufferfish and stickleback
genomes, this locus contains a novel gene. Consistent with
our Tblastn analyses with polycystin-cation-channel sequences,
we have not detected these sequences encoding this domain
within any of these loci. Given that the polycystin-cation-
channel domain is the one domain that is present in all PKD
proteins, we do not consider these sequences bona-fide pkd
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genes and therefore have not analyzed them further in this
study.

Given that we found sequences with homology to part of the
pkd1l3 gene, to confirm that pkd212 and pkdrej are absent in
teleosts we performed Tblastn with full-length mouse PKD2L2
and PKDREJ against all of the teleost genomes discussed above.
Both of these analyses only produced alignments with already
identified Pkd proteins. Therefore, we are confident that there are
no pkd212 or pkdrej genes in these teleost genomes.

To investigate potential relationships between the zebrafish
pkd genes we aligned the polycystin-cation-channel domains for
each of the Pkd proteins and determined the percentage identity
of this domain between each of them. Pkd1l2a and Pkd1l2b have
the highest identity (62%; Table 2), which is consistent with them
being recently duplicated genes. Pkd2l1 and Pkd2 also have a
high degree of identity at 57%. However, all of the other pair-wise
comparisons have <30% identity at the amino acid level.

To investigate the evolution of zebrafish pkd genes we
identified all of the PKD genes in both spotted gar (Lepisosteus
oculatus; a holostei fish) and elephant shark (Callorhinchus milii;
a cartilaginous fish). In both of these species we found 8 pkd
genes: pkd1, pkd1b, pkd1l1, pkd1l2, pkdrej, pkd2, pkd2l1, and
pkd2l2 (Figure 3, Supplementary Table 5). Unlike mammals,
spotted gar, and elephant shark both have a pkd1b gene. In
contrast, similar to mammals and unlike teleosts they only have
one pkd1l2 gene (Supplementary Table 5). However, like teleosts,
spotted gar only has a partial pkd1l3 sequence that lacks the
polycystin-cation-channel domain but is located in a region with
conserved synteny with other pkd1l3 regions (data not shown).
It is currently less clear whether a pkd1l3 gene exists in elephant
shark. In the mammalian, teleost and holostei genomes that we
have examined, PKD1L3 is always located close to a gene called
DHODH (Figure 4E). dhodh is located on Scaffold_12 of the
elephant shark current genome, but we did not find any evidence
for a pkd gene nearby (data not shown), although we cannot rule
out the possibility that this gene exists elsewhere in the genome.

To confirm orthologous relationships between teleost and
mammalian PKD1-family and PKD2-family genes we performed
phylogenetic analyses of human (Homo sapiens), mouse (Mus
musculus), spotted gar (Lepisosteus oculatus), elephant shark

(Callorhinchus milii), zebrafish (Danio rerio), medaka (Oryzias
latipes), green spotted pufferfish (Tetraodon nigroviridis), and
stickleback (Gasterosteus aculeatus) PKD1-like and PKD2-like
proteins. We used the region of the polycystin-cation-channel
domain that was present in all of the proteins and both Neighbor-
Joining (NJ) and maximum likelihood methods (see Section
Materials and Methods, Supplementary Figures 1–2, Figure 3).
In the resulting phylogenetic trees (Figure 3; data not shown),
all of the zebrafish proteins cluster with the expected proteins
from other species, suggesting that their annotations are correct.
Consistent with Pkd1l2a and Pkd1l2b being teleost duplicates of
PKD1L2 proteins in other vertebrates, all of the PKD1L2 proteins
cluster together. Interestingly, in the maximum likelihood tree,
mammalian PKD1L3 genes are also contained in this cluster,
although this was not the case in the NJ analysis (Figure 3 and
data not shown). However, we are confident that none of the
teleost pkd1l2 genes are pkd1l3 genes as we have also found partial
pkd1l3 genes in teleosts as discussed above.

To further test whether we had correctly identified
orthologous relationships, we also examined the genomic
regions around each of the zebrafish pkd genes and their
proposed orthologs in other vertebrates for conserved syntenic
relationships with other neighboring genes. We found that the
pkd1 genomic locus contains both a NTHL1 and TSC2 gene
in humans, mouse and all four teleost species (Figure 4A).
In contrast, whilst the genomic regions around green spotted
pufferfish and stickleback pkd1b share synteny with each other,
none of the genes in this region are found near zebrafish pkd1b
(Figure 4B). The PKD1L1 locus has considerable shared synteny
between human and mouse and between teleosts, but the teleost
loci don’t have any obvious shared synteny with the amniote
loci (Figure 4C). In contrast, PKD1L2 is located near a GCSH
and a BCO1 gene in both mammals and at least one teleost and
there are other genes found in common near most of the teleost
pkd1l2a genes (Figure 4D).

The PKD2 locus, like the PKD1 locus, also has some conserved
synteny between different vertebrates (Figure 5A). This genomic
region contains an ABCG2 and PPM1K gene in humans,
zebrafish, green spotted pufferfish, medaka, and stickleback.
While the mouse Pkd2 locus doesn’t seem to contain these

TABLE 2 | Similarities of polycystin-cation-channel domains of zebrafish Pkd proteins.

Pkd Protein Polycystin-cation-channel

domain size (amino acids)

Pkd protein

Pkd1 Pkd1b Pkd1l1 Pkd1l2a Pkd1l2b Pkd2 Pkd2l1

Pkd1 392 100 27.78 16.95 23.81 25.20 25.86 24.07

Pkd1b 293 27.78 100 21.64 20.98 20.49 20.63 19.23

Pkd1l1 181 16.95 21.64 100 28.49 21.79 27.37 22.91

Pkd1l2a 419 23.81 20.98 28.49 100 62.26 29.56 29.80

Pkd1l2b 417 25.20 20.49 21.79 62.26 100 28.47 27.97

Pkd2 421 25.86 20.63 27.37 29.56 28.47 100 57.38

Pkd2l1 421 24.07 19.23 22.91 29.80 27.97 57.38 100

Percentage identity between polycystin-cation-channel domains of zebrafish Pkd proteins generated using Clustal Omega (see Section Materials and Methods). Column 2 indicates the

size of the polycystin-cation-channel domain in amino acids. Compare the protein in each row to the protein in each column to read the pairwise identity percentage.
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FIGURE 3 | Phylogenetic analysis of PKD proteins. Phylogenetic analysis of human (Homo sapiens, hsa), mouse (Mus musculus, mmu), spotted gar (Lepisosteus

oculatus, loc), elephant shark (Callorhinchus milii, cmi), zebrafish (Danio rerio, dre), medaka (Oryzias latipes, ola), green spotted pufferfish (Tetraodon nigroviridis, tni),

and stickleback (Gasterosteus aculeatus, gac) PKD1-like proteins (A) and PKD2-like proteins with the Drosophila melanogaster (dme) Pkd2 protein as an outgroup

(B). In both cases a region of the polycystin-cation-channel domain that was present in all of the proteins was used (see Section Materials and Methods and

Supplementary Figures 1, 2). Both analyses used a maximum likelihood method, with WAG substitution, performed using PhyML (v3.1/3.0 Alrt; see Section Materials

(Continued)
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FIGURE 3 | Continued

and Methods). Human PKD1L2, stickleback Pkd1b and teleost, and spotted gar Pkd1l3 proteins are not included as they lack the polycystin-cation-channel domain.

We did not include an invertebrate protein in the analysis of PKD1-like proteins as the evolution of this gene family seems to be more complex and while vertebrate

PKD1-like proteins do have some homology to invertebrate proteins, this homology is limited and we did not identify an invertebrate protein that had good support for

being a clear outgroup for this family. aLRT Sh-like branch support values are shown in red to the left of each branch. Red arrowheads indicate the branch that each

value corresponds to. Scale bar = 0.4 nucleotide substitutions per site (A), 0.5 nucleotide substitutions per site (B).

genes—it shares three other genes with the human locus. The
Pkd2l1 locus also has considerable conserved synteny between
different teleost genomes and between mouse and human. In
addition, a couple of genes are present in both mammals and at
least one teleost: CHUK (present in mammals and zebrafish) and
a SEC gene—SEC31B (present in mammals) and sec23lp (present
in zebrafish and stickleback; Figure 5B).

Based on all of these analyses, we are convinced that the genes
that we have identified are indeed pkd1, pkd1b, pkd1l1, pkd1l2a,
pkd1l2b, pkd2, and pkd2l1 and that these are the only bona-
fide pkd genes in zebrafish and the other teleosts that we have
examined.

Expression of pkd Genes during Zebrafish
Development
As described in the introduction, pkd genes have important
developmental functions in many different tissues and in at least
some of these locations, PKD1-like and PKD2-like proteins act
in a heteromeric complex. However, before we started this study
the expression patterns, and hence the potential functions and
binding partners, were not known for several of the zebrafish
pkd genes. Therefore, we performed a comprehensive expression
analysis for all seven genes at developmental stages from 8 h to 5
dpf. We identified expression of specific subsets of these genes in
many different tissues/structures as described below.

Dorsal Forerunner Cell and Kupffer’s Vesicle

Expression
As previous studies have established that pkd2 is expressed
in Kupffer’s vesicle (KV) during early zebrafish embryogenesis
(Bisgrove et al., 2005; Schottenfeld et al., 2007; Roxo-Rosa et al.,
2015), we investigated expression of all seven zebrafish pkd genes
in dorsal forerunner cells/KV at 8.3, 10, and 12 h (Figure 6).
We found no expression of pkd1, pkd1b, pkd1l2a, pkd1l2b, and
pkd2l1 at any of these stages (Figures 6J–S), with the exception
that there is some spinal cord expression of pkd1b at 12 h (arrows
in Figure 6M). In contrast, pkd1l1 was expressed in a cluster of
dorsal forerunner cells at 8.3 h (Figure 6D), that later condense
to form the KV at 10 and 12 h (Figures 6E–F). pkd2 expression
was not detected at 8.3 h (Figure 6G), but was present in a group
of cells in the KV region at 10 h, resolving in to a ring of cells
surrounding the KV by 12 h (Figures 6H–I).

Pronephros/Kidney Expression
It has already been reported that pkd2 expression is enriched
in developing zebrafish pronephros (Bisgrove et al., 2005;
Schottenfeld et al., 2007), and Pkd2 protein is present in zebrafish
kidney epithelial cells (Obara et al., 2006). However, before this
study, it was unknown if any other pkd genes are expressed in

the developing zebrafish pronephros. Therefore, we examined
expression inWT embryos (8.3, 10, 12, 24, 27, 30, 36, and 48 h, 3,
4, and 5 dpf). We found no expression of pkd1b, pkd1l1, pkd1l2a,
pkd1l2b, or pkd2l1 in the developing pronephros at any of these
stages (Figures 6–9 and data not shown). In contrast, while
pkd1 and pkd2 are not expressed in presumptive pronephric
mesoderm at 8.3, 10, or 12 h (Figures 6G–K), they are both
expressed in the pronephros by 24 h, although the expression
of pkd1 is much stronger than that of pkd2 (Figures 7A,K,
9O,P,A’,B’). The expression of pkd1 in the pronephros persists
until 3 dpf. We also found that weak pkd2 expression persists
in the pronephros during the pharyngula period (arrows in
27 and 36 h) but it was not enriched above the otherwise
ubiquitous expression of pkd2 by 2 dpf (Figures 10A–D and data
not shown).

Spinal Cord Expression
Zebrafish pkd2l1 was recently shown to be expressed in a unique
population of spinal cord cells, called Kolmer Agduhr (KA) cells
or cerebrospinal fluid-contacting neurons (CSF-cNs; Djenoune
et al., 2014). In addition, pkd1b has been reported as being
expressed broadly in the spinal cord at late somitogenesis stages
but restricted to medial floor plate ependymal cells by 3.5 dpf
(Mangos et al., 2010) and low level expression of pkd2 has been
observed in the floor plate during somitogenesis stages (Bisgrove
et al., 2005; Schottenfeld et al., 2007). Therefore, we were very
interested in investigating expression of pkd genes in spinal cord
cells, particularly to see if we could identify a potential partner
for Pkd2l1 in KA cells and/or additional Pkd proteins expressed
in the floor plate.

We examined spinal cord expression of all 7 pkd genes
in WT embryos at 12, 24, 27, 30, 36, and 48 h, and 3, 4,
and 5 dpf. In addition, we examined expression in mindbomb
mutants at 24 h. mindbomb encodes an E3-ubiquitin-ligase that
is required for efficient Notch signaling. In mindbomb mutants
Notch signaling is lost and, as a result, the vast majority of
spinal cord progenitor cells precociously differentiate as early-
forming populations of spinal cord neurons at the expense of
later forming neurons and glia (Jiang et al., 1996; Schier et al.,
1996; Itoh et al., 2003; Park and Appel, 2003; Batista et al., 2008).
Therefore, comparing expression of genes in the spinal cords of
mindbomb mutants and WT embryos enables us to distinguish
between progenitor domain expression (which should be lost)
and post-mitotic expression (which is often, although not always,
expanded). In addition, if a gene is expressed very weakly in
post-mitotic spinal cord cells, its expression is usually easier
to observe in mindbomb mutants, where the expression is
often expanded and stronger (Batista et al., 2008). Therefore,
examining expression in mindbomb mutants also helps us to be
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FIGURE 4 | Conserved synteny around zebrafish pkd1-like genes. Examination of syntenic relationships between pkd and neighboring genes in genomic

regions associated with zebrafish pkd1 family genes. Species is indicated on left and chromosomes on right. Un-Random (tni), unordered random sequences that

have yet to be assigned to a chromosome. hsa, human (Homo sapiens); mmu, mouse (Mus musculus); dre, zebrafish (Danio rerio); ola, medaka (Oryzias latipes); tni,

green spotted pufferfish (Tetraodon nigroviridis); and gac, stickleback (Gasterosteus aculeatus). Pkd genes are indicated in bold red text. Schematics are not to scale.

For ease of comparison, gene clusters are shown in the same orientation, even though in some cases, gene organization is as shown, but on the opposite strand of

the chromosome. Schematics only include annotated coding genes. Antisense processed transcripts and ribosomal and long-non-coding RNA loci are not included.

Colors indicate homologous genes within an individual panel. So, for example, pink genes in pkd1 (A) are homologous to each other (they are all SLC9A3R2 despite

their slightly different positions) but they are not homologous to pink genes in the pkd1l1 panel. However, gray (novel) genes in (A) are an exception, as these three

genes are not homologous to each other. We did not find a pkd1b gene in medaka, and none of the genes flanking pkd1b in green spotted pufferfish and stickleback

are found near the zebrafish pkd1b gene (B). The PKD1L1 locus is syntenic within but not between amniotes and teleosts (C). Zebrafish pkd1l2a is the only teleost

gene to share synteny with both the aminote and other teleost PKD1L2 loci (D). Only stickleback and medaka pkd1l2b genes share any synteny among the pkd1l2b

genes (D). As in amniotes, all teleost putative partial pkd1l3 orthologs are flanked by dhodh genes (E).
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FIGURE 5 | Conserved synteny around zebrafish pkd2-like genes. Examination of syntenic relationships between pkd and neighboring genes in genomic

regions associated with zebrafish pkd2 family genes. Species is indicated on left and chromosomes on right. hsa, human (Homo sapiens); mmu, mouse (Mus

musculus); dre, zebrafish (Danio rerio); ola, medaka (Oryzias latipes); tni, green spotted pufferfish (Tetraodon nigroviridis); and gac, stickleback (Gasterosteus

aculeatus). Pkd genes are indicated in bold red text. Schematics are not to scale. For ease of comparison, gene clusters are shown in the same orientation, even

though in some cases, gene organization is as shown, but on the opposite strand of the chromosome. Schematics only include annotated coding genes. Antisense

processed transcripts and ribosomal and long-non-coding RNA loci are not included. Colors only indicate homologous genes within an individual panel. So, for

example, pink genes in the pkd2 panel are not homologous to pink genes in the pkd2l1 panel. The teleost pkd2 genes share synteny with human but not mouse

PKD2 (A). The teleosts share considerable synteny at the pkd2l1 locus, but only zebrafish and stickleback pkd2l1 genes share any synteny with amniotes (B).

more confident about whether a gene is expressed in the spinal
cord or not.

Both WT and mindbomb mutant expression analyses
suggest that pkd1, pkd1l1, and pkd1l2b are not expressed in
zebrafish spinal cord (Figures 7A,B,E,F,I,J, 8S–A’, 9M–X and
Supplementary Figures 3G–U). It is likely that pkd2 is also not
expressed in spinal cord, other than very weakly in floor plate
(Figures 7K,L, 8B’–D’, 9Y–B’ and Supplementary Figures 3V–
Z). In contrast, pkd1b was expressed broadly in the spinal cord
and pkd1l2a and pkd2l1 were both expressed in post-mitotic
cells in ventral spinal cord (Figures 7–9, 11, see more detailed
descriptions below).

pkd1b is expressed very broadly throughout the dorsal/ventral
extent of the spinal cord at 24 h in what appears to be mainly
progenitor cells (Figures 8A, 9A,C). By 27 h, expression in
the most dorsal part of the spinal cord has reduced. By 30
h the expression has resolved into two broad domains in the
ventral spinal cord, one just above the notochord and one
in the middle of the dorsal/ventral axis. This continues until
5 dpf, at which point expression in the more dorsal domain
is much weaker (Figures 8B–F). Consistent with pkd1b being
expressed by progenitor cells, most of its spinal expression is
lost in mindbomb mutants, with the exception of the floor plate
expression, which remains. This suggests that pkd1b may be
expressed in floor plate in addition to being broadly expressed in
spinal cord progenitor cells (Figures 9B,D). Consistent with this,
we observe pkd1b expression in the floor plate of the hindbrain
from 24 h until at least 5 dpf (insets in Figures 12 E’–G’).

pkd1l2a and pkd2l1 have very similar spinal expression
patterns. Both genes are already expressed in two rows of
ventral cells by 24 h (Figures 8G,M) as well as being expressed
more weakly in occasional more dorsal cells (Figures 8, 11).
This expression also extends into caudal hindbrain (insets in
Figures 12M–O, Y–A’). Unusually for post-mitotic spinal cord
cells, but consistent with KA cells, these cells are located
medially in ventral spinal cord, in positions where they
can contact the CSF-containing central canal (Figures 11A,B,
9E,G,I,K). The expression of both of these genes continues
throughout all of the stages that we examined, although the
two rows become less distinct at later stages and pkd2l1
expression seems to become weaker in the more ventral
row of cells by 4 dpf (Figures 8H–L,N–R). To confirm that
these genes are both expressed by KA cells, we performed
double labels with Tg(−8.1gata1:gata1-EGFP) zebrafish which
express GFP in both KA and V2b cells in the spinal cord
(Kobayashi et al., 2001; Batista et al., 2008). Consistent with
the previous report (Djenoune et al., 2014), we find that
pkd2l1 is expressed in all ventral KA′′ cells and more dorsal
KA′ cells. In addition, we show for the first time that
zebrafish pkd1l2a is also expressed in both of these cell types
(Figures 11C–I’).

Ear Expression
We also detected expression of two pkd genes in specific
territories of the ear at 4–5 dpf (Figures 10E–H). We observed
pkd1l1 and pkd2l1 expression in the ectoderm of the inner
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FIGURE 6 | pkd2 and pkd1l1 are expressed in Kupffer’s vesicle. Lateral

expression of pkd genes at 8.3, 10, and 12 h. Region shown in main panel at

each stage is indicated by red dotted boxes in schematics (A–C). Inset images

in (D–S) show whole-mount view of embryo, dorsal forerunner cells/KV

located in bottom right-hand corner. There is no expression of pkd1, pkd1b,

pkd1l2a, pkd1l2b, or pkd2l1 in dorsal forerunner cells or KV at any of these

stages. The boundary of the KV cavity is faintly visible in M as a slightly different

focal plane has been shown to include spinal cord expression. However,

pkd1b is not expressed in the margin of KV. Arrows in (M) indicate caudal limit

of spinal cord expression of pkd1b. pkd1l1 is expressed in the KV region at all

three stages (D–F) and pkd2 is expressed at 10 and 12 h but not 8.3 h (G–I).

Scale bar (D) = 50 µm, (D–S) main panels and 200 µm, inset panels.

ear that supports the posterior canal and posterior crista at
4 dpf. pkd1l1 is also weakly expressed in the utricular otolith.
By 5 dpf, pkd1l1 expression persists in the utricular otolith
and the underlying utricular macula. It is also expressed in the
neighboring ectoderm flanking the lateral canal and lateral crista
(Figures 10E,F). In contrast, the expression of pkd2l1 persists in
the tissue surrounding the posterior canal and posterior crista
(Figures 10G,H).

Lateral Line and Neuromasts
Interestingly, we also detected expression of pkd1, and only pkd1,
in the neuromasts (asterisks, Figures 10I,J,L,M) and lateral line
primordium (white dotted line, Figures 10I,K). This expression
was first apparent at 36 h and it persists in the neuromasts until 3
dpf, but is lost by 4 dpf.

Fin Buds
Similarly, out of all 7 pkd genes, we only detected expression of
pkd1 in the pectoral fin buds. pkd1 is expressed in these structures
at 36, 48 h, and 3 dpf, but we could not detect expression above
background by 4 dpf (arrows in Figures 10N,O and data not
shown). At 36 and 48 h, pkd1 expression is ubiquitous throughout
these structures but as reported previously (Mangos et al., 2010)
expression is restricted to the base of the fin by 3 dpf.

Somite Expression
We also only detected expression of one pkd gene in somites.
pkd2 is first expressed in the ventral half of each rostral somite
at 4 dpf and this expression persists at 5 dpf (Figure 7L, arrows
in Figures 10P–R).

Eye Expression
We detected transient expression of five different pkd genes in the
retina. pkd1b, pkd1l1, pkd1l2a, pkd1l2b, and pkd2l1 are expressed
in the ganglion cell layer (adjacent to the lens, single cross)
and the amacrine cells (outer cell layer immediately adjacent to
the ganglion cell layer, double cross) of the eye at 4 dpf. The
expression of pkd1b and pkd1l2b is weak, but the expression
of pkd1l1, pkd1l2a, and pkd2l1 is stronger (Figures 10S–W).
However, only pkd1l2b expression persists at 5 dpf (data not
shown).

Taste Bud Expression
In other vertebrates, PKD1L3 and PKD2L1 have been proposed
to function as sour taste receptors (Huang et al., 2006; Ishimaru
et al., 2006, although also see Nelson et al., 2010; Hofherr
and Kottgen and references therein). In zebrafish, the taste
buds first form at about 3 dpf on the lips/jaw and pharyngeal
arches and then at 4 dpf they also form on the mouth
and oro-pharyngeal cavity (Hansen et al., 2002; Kapsimali
et al., 2011). Consistent with possible expression in the taste
buds, we observe dynamic expression of all seven zebrafish
pkd genes in the pharyngeal and/or jaw regions at these
stages.

Mangos et al. (2010) reported expression of pkd1 in the
pharyngeal arches and jaw forming regions at both 52 and 72 h
and our data agrees with this. We see strong expression in the
pharyngeal arches by 48 h (data not shown) and this expression
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FIGURE 7 | Expression of pkd genes in zebrafish embryos and larvae. Lateral views of whole embryo expression of pkd genes at 24 h and 5 dpf. Rostral left,

dorsal up. (A,B) pkd1 is strongly expressed in the pronephros at 24 h (arrows, A) but not at 5 dpf. By 5 dpf, pkd1 expression persists only in the putative taste

(Continued)
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FIGURE 7 | Continued

receptors (white asterisks, B). (C,D) pkd1b is broadly expressed throughout the dorsal-ventral hindbrain and spinal cord, and in the caudal-most midbrain at 24 h. By

5 dpf, strong expression persists in the floor plate in the midbrain and hindbrain, whilst weaker expression persists in putative taste receptors of the pharynx (white

asterisks, D). (E,F) pkd1l1 is not expressed at 24 h but is detected in the ear at 5 dpf (white dotted line, F). (G,H) pkd1l2a is expressed in cells in the ventral-most

spinal cord at 24 h. This expression persists at 5 dpf, as does expression in putative taste receptors (white asterisk, H). (I,J) pkd1l2b expression is not detected at 24

h and persists only weakly in the pharyngeal cartilage at 5 dpf (white asterisk, J). (K,L) pkd2 is expressed in the pronephros (arrows, K) and perhaps very weakly in the

floor plate at 24 h (arrowheads, K). By 5 dpf, pkd2 expression is restricted to the ventral region of the rostral somites and putative taste receptors (white asterisks, L).

(M,N) Like pkd1l2a, pkd2l1 is also expressed in cells in the ventral-most spinal cord at 24 h. This expression also persists at 5 dpf, together with weak expression in

putative taste receptors (white asterisks, N). Low level diffuse staining in the brain in (A,C,F,H,L,N) and more widely in (E,I,K) is probably background staining. These

embryos were stained for longer periods in order to try and detect any weak, but specific, expression in the spinal cord. As a consequence of this, the brain, which

contains large ventricles which sometimes trap RNA riboprobes, often has background staining (see Section Discussion). Scale bar (A) = 100 µm.

remains strong at 3 dpf on both the ceratobranchial arches (the
more caudal parts of the pharyngeal arches, posterior to the
eyes, arrowheads Figures 12D, 13A), and also more anteriorly on
the hyosymplectic cartilage (medio-lateral and just posterior to
the eyes, derived from the second pharyngeal arch, arrowheads
Figures 12D, 13A). Expression is decreased at 4 and 5 dpf
(arrowheads Figures 12A–F, 13A–C). Consistent with an earlier
report (Bisgrove et al., 2005), we also find pkd2 expression
in the pharyngeal arches at 3 dpf (arrowheads Figures 12G,J).
In addition, we demonstrate here that strong expression of
pkd2 persists in the pharyngeal arches at 4 dpf (arrowheads
Figures 12H,K). By 5 dpf, there is also some expression on the
pharyngeal walls and the expression in the pharyngeal cartilage
has reduced caudally and remains in only the rostral-most
pharyngeal cartilage (arrowheads Figures 12I,L, 13D–F).

pkd1l2a and pkd1l2b are also expressed in putative taste buds,
although their expression patterns differ from one another and
from those of pkd1 and pkd2. We observed pkd1l2a expression
on the pharyngeal walls and cartilage at all stages examined. In
contrast to pkd1, which is expressed not only across the entire
surface of the ceratobranchial arches but also on the medio-
lateral hyosymplectic cartilage at 3 dpf, pkd1l2a is expressed
only laterally on the ceratobranchial arches and in very few cells
medially, in the pharyngeal cavity between the eyes. By 4 dpf,
pkd1l2a expression is strongest on the ceratohyal cartilage, which
is the most rostral and medial component of the pharyngeal
cartilage and this expression persists at 5 dpf (arrowheads
Figures 12M–R, 13G–I). In contrast to pkd1l2a, we did not
detect expression of pkd1l2b on the pharyngeal walls. Instead
it is expressed in a few medial cells of the ceratobranchial
arches (caudal-most pharyngeal arches) at 3 dpf. This expression
spreads laterally by 4 dpf, and is expanded further by 5 dpf such
that it is adjacent and caudal to that of pkd1l2a at these stages
(arrowheads Figures 12S–X, 13J–L). At 3 dpf the expression
of pkd2l1 partially overlaps that of pkd1l2a and pkd1l2b across
the ceratobranchial arches, although, like pkd1l2b, pkd2l1 is not
expressed on the pharyngeal walls, it is only expressed on the
pharyngeal cartilage. This expression of pkd2l1 increases and
expands laterally across the ceratobranchial arches over the next
2 days (arrowheads Figures 12Y,Z,A’–D’, 13M–O).

We also see weak expression of pkd1b in the pharynx, probably
on the pharyngeal walls at 2, 3, 4, and 5 dpf. By 4 dpf, and
persisting at 5 dpf, this gene is also expressed in a few locations on
the pharyngeal cartilage (arrowheads Figures 12E’–J’, 13P–R).
pkd1l1 is only expressed very transiently in these regions. There

is no obvious expression on either the pharyngeal cartilage or the
pharyngeal walls at either 3 or 5 dpf. However, there is a transient
pulse of expression on both the pharyngeal walls and parts of
the pharyngeal cartilage at 4 dpf (arrowheads Figures 12K’–P’,
13S–U).

DISCUSSION

In this paper, we identify seven zebrafish pkd genes and
confirm their orthologous relationships with Pkd genes in
other vertebrates using phylogenetic and syntenic analyses. Our
bioinformatics analyses strongly suggest that this is the full
complement of pkd genes in zebrafish and other teleosts and
we are confident in our classification/naming of all of these
genes, based on our synteny and phylogenetic analyses. The only
possible exceptions are zebrafish pkd1l2a and pkd1l2b. The gene
that we have called pkd1l2b in zebrafish has much more shared
synteny with pkd1l2a genes in other teleosts than the gene that we
have called zebrafish pkd1l2a. However, our phylogenetic analysis
suggests that our assignments of pkd1l2a and pkd1l2b in zebrafish
are correct. In addition, the other teleost Pkd1l2a proteins
share higher homology with the zebrafish Pkd1l2a polycystin-
cation-channel domain than with the Pkd1l2b polycystin-cation-
channel domain. Finally, all of the teleost Pkd1l2a proteins,
including zebrafish, contain a REJ domain (with the exception
of green spotted pufferfish for which we only have a very short
protein sequence available) and none of the teleost Pkd1l2b
proteins, including zebrafish, contain a REJ domain.

Interestingly, our data suggest that only two pkd ohnologs
from the whole genome duplication that occurred at the base
of the teleosts have been retained: all four teleost genomes that
we analyzed have both a pkd1l2a and a pkd1l2b gene, whereas
we have not found Pkd1l2b in other vertebrates. In contrast, we
found orthologs of all of the other teleost pkd genes in at least
some other vertebrate lineages.

This limited number of teleost duplicate genes or ohnologs
is accompanied by the lack of some pkd genes that exist in
mammals. Our systematic bioinformatic analyses of all four
teleost genomes, demonstrates that they lack pkd212 and pkdrej
genes. Given that both of these genes are present in the
cartilaginous fish, elephant shark (Callorhinchus milii) and the
holostei fish, spotted gar (Lepisosteus oculatus), it is likely that
these two genes have been lost in the teleost lineage. In addition,
while we have found putative partial pkd1l3 genes in teleosts,
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FIGURE 8 | Spinal cord expression of zebrafish pkd genes. Lateral views showing expression of pkd genes at 1–5 dpf. Rostral left, dorsal up. (A–F) pkd1b is

expressed broadly in the spinal cord. pkd1l2a (G–L) and pkd2l1 (M–R) are both expressed in two rows of cells in the ventral spinal cord and occasionally weakly in

more dorsal cells (asterisk). (S–U) pkd1, (V–X) pkd1l1, (Y–A’) pkd1l2b, and (B’–D’) pkd2 are not expressed in spinal cord. Some of these embryos have background

expression as we stained them for long periods of time to try and detect any weak, but specific, expression. Expression of pkd2 is visible in the rostral ventral somites

(D’). Scale bar (A) = 50 µm.

these sequences lack the region that encodes the polycystin-
cation-channel domain that is present in all other PKD genes,
suggesting that they are no longer bona-fide PKD genes. The

spotted gar genome also contains a partial pkd1l3 sequence that
is missing this polycystin-cation-channel domain region but has
conserved synteny with pkd1l3 genomic regions in other species.
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FIGURE 9 | Expression of zebrafish pkd genes in mindbomb mutants. Lateral views (A,B,E,F,I,J,M,N,Q,R,U,V,Y,Z) and cross-sections

(C,D,G,H,K,L,O,P,S,T,W,X,A’,B’) of pkd expression in the trunk of mindbomb mutants and sibling embryos with WT phenotypes. Dorsal is up. In lateral views, rostral

is left and only the spinal cord region is shown. Arrows (O,P,A’,B’) indicate pronephros expression. Arrowheads (Y,Z,A’ and higher magnification inset in A’) indicate

weak expression of pkd2 in the floor plate of the spinal cord. The focal plane in B’ does not include labeled floor plate cells. Scale bar (A) = 50 µm (lateral views,

A,B,E,F,I,J,M,N,Q,R,U,V,Y,Z); Scale Bar (C) = 30 µm (cross-sections, C,D,G,H,K,L,O,P,S,T,W,X,A’,B’) and 10 µm (inset in A’).

This suggests that pkd1l3 may be in the process of being lost in
the ray-finned fish lineage. In contrast, it is likely that the Pkd1b
gene has been lost somewhere in the lobe-finned fish lineage as
elephant shark, spotted gar, zebrafish, green spotted pufferfish
and stickleback genomes all contain this gene, but mouse and
human genomes do not (Figures 2, 3; Supplementary Table 5).

Interestingly, our data suggest that pkd1b has also undergone
relatively rapid evolution in the teleost lineage. This gene
appears to be absent in medaka. In addition, stickleback Pkd1b
lacks the polycystin-cation-channel domain, suggesting that it
is no longer a bona-fide Pkd protein and the polycystin-cation-
channel domain is, unusually, not very highly conserved between
zebrafish and pufferfish Pkd1b.

It is not clear what the functional significance is of teleosts
having fewer pkd genes than mammals. It is possible that PKD
proteins have additional functions in mammals compared to
teleosts, but as not much is currently known about the functions
of PKD1L3, PKD2L2, and PKDREJ it is difficult to test this idea.
PKD1L3 is implicated in detection of sour-taste in mammals

(Huang et al., 2006; Ishimaru et al., 2006) although this may
not be the case in vivo in mouse, as analysis of a mouse
mutant in Pkd1l3 detected no defects in taste reception (Nelson
et al., 2010; Chen et al., 2011; Hofherr and Kottgen, 2011
and references therein). However, as we find expression of all
seven zebrafish pkd genes in potential taste-bud regions, taste
detection is unlikely to be an amniote-specific PKD function.
PKDREJ expression has only been detected in sperm (Butscheid
et al., 2006; Sutton et al., 2008; Hofherr and Kottgen, 2011)
and PKD2L2 is expressed most prominently in mouse testis and
oocytes (Veldhuisen et al., 1999; Guo et al., 2000; Taft et al., 2002;
Chen et al., 2008; Hofherr and Kottgen, 2011), so it is possible
that PKD proteins have a function in germ cells in mammals but
not teleosts.

Prior to the start of this project, expression data for zebrafish
pkd genes was limited to pkd1 (previously called pkd1a), pkd1b
and pkd2 (Bisgrove et al., 2005; Obara et al., 2006; Schottenfeld
et al., 2007; Mangos et al., 2010; Coxam et al., 2014). In addition,
expression of pkd2l1 in spinal cord KA cells was described
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FIGURE 10 | Expression of pkd genes in kidney, somites and sensory organs. (A–D) Lateral view of pkd1 (A,B) or pkd2 (C,D) expression in pronephros (black

and white arrows) at 27 and 36 h. Rostral left, dorsal up. pkd1 is strongly expressed in pronephros at 27 h (A). Expression starts to decline at 36 h (B). Expression of

pkd2 is weak in pronephros at 27 h (C) and is reduced even further by 36 h (D). (E–H) Lateral expression of pkd genes in the ear at 4–5 dpf. Dotted line shows ear

boundary. Weak expression of pkd1l1 (E) and pkd2l1 (G) is first detected at 4 dpf in the inner ear ectoderm that supports the posterior canal and posterior crista

(black arrowheads). pkd1l1 is also weakly expressed in the utricular otolith (white arrows). By 5 dpf, pkd1l1 expression persists in the utricular otolith and the

underlying utricular macula (white arrows). It is also expressed in neighboring ectoderm flanking the lateral canal and lateral crista (white asterisks; F). At 5 dpf the

expression of pkd2l1 persists in tissue surrounding the posterior canal and posterior crista (black arrowheads; H). (I–M) Lateral view of pkd1 expression in neuromasts

(white asterisks) and lateral line primordium (white dotted line) at 36 h and 3 dpf. Rostral left, dorsal up. Weak expression of pkd1 in neuromasts and lateral line

primordium is first detected at 36 h [I, higher magnification of the neuromasts (J) and lateral line primordium (K)]. By 3 dpf expression persists in neuromasts (L and

higher magnification view, M). pkd1 is also expressed in pectoral fin buds (black arrows) at 36 h [dorsal view, rostral top (N), and lateral view—rostral left, dorsal up

(O)]. (P–R) Lateral expression of pkd2 in rostral somites at 4 and 5 dpf. Rostral left, dorsal up. pkd2 is first expressed in the ventral half of each rostral somite at 4 dpf

(black arrows in P, higher magnification in Q) and persists at 5 dpf (black arrows in R). (S–W) Lateral expression of pkd genes in the eye at 4 dpf. Rostral left, dorsal

up. pkd1b, pkd1l1, pkd1l2a, pkd1l2b, and pkd2l1 are expressed in the ganglion cell layer (adjacent to lens, single white cross) and amacrine cells (outer cell layer

immediately adjacent to ganglion cell layer, double white cross) of the eye at 4 dpf. The expression of pkd1b (S) and pkd1l2b is weak (V) and the expression of pkd1l1

(T), pkd1l2a (U), and pkd2l1 (W) is stronger. Only the expression of pkd1l2b persists in these cell layers at 5 dpf (data not shown). Scale bar (A) = 23 µm (J,K,M);

42 µm (E–H,O); 50 µm (A–D,Q,R); 55 µm (N); 62.5 µm (S–W); and 100 µm (I,L,P).

during this study (Djenoune et al., 2014). In this paper we
confirm and extend these earlier expression analyses and we
also provide completely novel information on the expression
of pkd1l1, pkd1l2a, and pkd1l2b. In general, our results are
consistent both with earlier studies in zebrafish and with studies

of PKD gene expression in mammals. The main difference is that,
for some of the pkd genes, previous reports suggest that they are
expressed ubiquitously, whereas we see more specific expression
patterns. It is always difficult to distinguish between low-level
generalized expression and background staining, so we cannot

Frontiers in Cell and Developmental Biology | www.frontiersin.org 28 February 2017 | Volume 5 | Article 5

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


England et al. Zebrafish pkd Genes

FIGURE 11 | pkd1l2a and pkd2l1 are co-expressed in zebrafish KA

cells. Dorsal view of pkd1l2a (A) and pkd2l1 (B) expression in 24 h spinal

cord. Rostral left. Most of the labeled cells are KA cells that abut the central

canal. Asterisks indicate expression in occasional weak, more lateral cells (that

correspond to the more dorsal cells indicated in Figures 8G–R). Prolonged

(Continued)

FIGURE 11 | Continued

staining sometimes reveals additional weak, lateral cells (data not shown). (C)

Average number of cells (y-axis) expressing pkd1l2a (blue) and pkd2l1 (red) in

KA′′ and KA′ cells (x-axis) at 24 h in WT spinal cord region adjacent to somites

6–10 (n = 5). Error bars indicate standard error of the mean. There is no

statistical difference between the number of pkd1l2a and pkd2l1-expressing

KA′′ (p = 0.6419) and KA′ (p = 0.8571) cells respectively (Student’s t-test).

These data do not include occasional non-KA lateral cells (2 cells each in 2/5

pkd2l1-labeled embryos; 0 cells in 5 pkd1l2a-labeled embryos). (D–F’,G–I’)

Lateral views of zebrafish spinal cord at 30 h. Anterior left, dorsal top. In situ

hybridization (purple) for pkd1l2a (D,D’) and pkd2l1 (G,G’), EGFP

immunohistochemistry (green) in Tg(–8.1gata1:gata1-EGFP) embryos

(E,E’,H,H’) and merged views (F,F’,I,I’). (D’–I’) Magnified single confocal

plane of white dotted box region. 100% of pkd1l2a and pkd2l1-expressing KA

cells co-express Tg(–8.1gata1:gata1-EGFP) and 100% of GFP-positive

Tg(–8.1gata1:gata1-EGFP) KA cells co-express either pkd1l2a (F, indicated

with + in F’) or pkd2l1 (I, indicated with + in I’). No GFP-positive

Tg(–8.1gata1:gata1-EGFP) dorsal V2b cells co-express either pkd1l2a (white ˆ

in F,F’) or pkd2l1 (white ˆ in I,I’). Double-labeled cells are not indicated in (D–I)

main panels as they are so numerous. Scale bar (A) = 50 µm (A,B). Scale bar

(D) = 50 µm (D–I) and 20 µm (D’–I’).

rule out that there is also low-level ubiquitous expression in these
cases.

In most structures we only detect expression of one pkd1-
like gene and one pkd2-like gene, suggesting that these genes
encode a heteromeric Pkd1/Pkd2 complex in each case. For
example, in the dorsal forerunner cells/KV only pkd2 and
pkd1l1 are expressed (Figure 6). This is consistent with medaka
(Kamura et al., 2011) and mammals, where these two genes
are expressed in the equivalent structure, the node (Field et al.,
2011; Barratt et al., 2014). This suggests that the expression
of these two genes in these related structures, and presumably
their function in left/right patterning, is highly conserved
between teleosts and mammals. However, the expression of
these two genes is not identical in zebrafish. pkd1l1 is expressed
before pkd2 and while pkd1l1 is expressed in a condensed
group of cells at 12 h, pkd2 expression resolves into a hollow
ring. These expression patterns appear to be at least partially
complementary, with the pkd2 expression surrounding the
pkd1l1 expression (Figures 6D–I). This suggests that the proteins
encoded by these genes may only physically interact in a subset
of the cells expressing each gene. Interestingly, a recent report
suggests that in the mouse node an extracellular domain of
PKD1L1 may be required for left-right patterning and that
PKD1L1 may be an upstream genetic repressor of PKD2 in
this organ (Grimes et al., 2016), which could explain the
mainly complementary expression patterns of these two genes in
zebrafish.

Similarly, in the developing pronephros we only detect
expression of pkd1 and pkd2. This is again, consistent with
other vertebrates and with the fact that mutations in these two
PKD genes, and only these two PKD genes, cause ADPKD in
humans. While pkd2 expression in the zebrafish pronephros
was published previously (Bisgrove et al., 2005; Obara et al.,
2006; Schottenfeld et al., 2007), this is the first report of pkd1
expression in the developing pronephros. Both pkd1 and pkd2
are expressed in the pronephros by 24 h, although the expression
of pkd1 is much stronger than that of pkd2 (Figures 7A,K,
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9O,P,A’,B’). The expression of pkd1 persists until 3 dpf, although
expression of pkd2 is no longer enriched above its otherwise
ubiquitous expression by 2 dpf. In contrast, Obara et al. (2006)
observed expression of Pkd2 protein in the pronephros at 2 dpf
by immunohistochemistry, suggesting that enrichment of Pkd2
protein expression may persist longer than that of the RNA.

In the spinal cord, we confirm the recently reported expression
of pkd2l1 in zebrafish KA cells (Figures 7M,N, 8M–R, 9I,K,
11B,C,G–I’). This expression is also conserved in mouse (Huang

et al., 2006; Orts-Del’immagine et al., 2012; Petracca et al.,
2016). Excitingly, we identify the potential partner of Pkd2l1
in these specialized neurons as Pkd1l2a (Figures 7G,H, 8G–L,
9E,G, 11A,C–F’). This is also consistent with a very recent report
in mouse (Petracca et al., 2016). Our data suggests that all KA′

and KA′′ cells express both pkd1l2a and pkd2l1 (Figure 11). We
also see expression of both of these genes in a very small number
of more dorsal and lateral spinal neurons that are likely to be V2b
neurons (Figures 8G,I,L–N, 11A,B). This is consistent with the

FIGURE 12 | Expression of pkd genes in taste bud regions. Lateral (A–C,G–I,M–O,S–U,Y,Z,A’,E’–G’,K’–M’) and ventral (D–F,J–L,P–R,V–X, B’–D’,H’–J’,N’–P’)

views of pkd gene expression at 3, 4, and 5 dpf. Rostral is left Rostral is left (A–C,G–I,M–O,S–U,Y,Z,A’,E’–G’,K’–M’) and top (D–F,J–L,P–R,V–X,B’–D’,H’–J’,N’–P’).

In most of the lateral views, the eyes are out of focus. Insets in (M–O) and (Y–A’) show expression of pkd1l2a and pkd2l1 in KA cells in the rostral spinal cord (small

white arrows). Insets in (E’–G’) show expression of pkd1b in the floor plate of the midbrain and hindbrain. White arrowheads indicate the locations of pharyngeal

expression. Scale bar (A) = 100 µm.
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FIGURE 13 | Summary of pkd expression in ventral pharyngeal regions.

(A–U) Schematics showing ventral views of zebrafish pharyngeal regions

summarizing expression of pkd genes at 3, 4, and 5 dpf. Black dots indicate

expression on pharyngeal cartilage and red dots indicate expression on

pharyngeal walls. Cartilage schematics are modified from Schilling and Kimmel

(1997), Knight et al. (2003), and Edmunds et al. (2016). Locations of the major

cartilaginous elements are shown in panel (A). m, Meckel’s cartilage (ventral

component of lower jaw); ch, ceratohyal cartilage (derived from the second

pharyngeal arch); pq, palatoquadrate cartilage (derived from the first

pharyngeal arch, forms the dorsal mandibular cartilage); hs, hyosymplectic

cartilage (also derived from the second pharyngeal arch); cb1–5,

ceratobranchial cartilage 1–5 (forms the ventral branchial or gill arches).

previous report from Djenoune et al. (2014) as they also saw a
small number of dorsal cells that did not contact the central canal
and might, therefore, be cells other than KAs.

We also observe broad expression of pkd1b in the spinal
cord (Figures 8A–F), consistent with an earlier report (Mangos
et al., 2010) and weak expression of pkd2 in the floor plate

(Figures 9Y,Z,A’). Our mindbomb mutant results (Figure 9)
suggest that the broad expression of pkd1b is in progenitor cells
and that this gene is also expressed in the floor plate. This suggests
that a Pkd2/Pkd1b heterocomplex may have a function in the
floor plate. In mouse, Pkd1 is also strongly expressed in the
spinal cord (Guillaume et al., 1999), suggesting that there may
be a conserved role for Pkd1 proteins in this region of the CNS.
Interestingly, mouse PKD1 expression also seems to be enriched
in the floor plate region (Guillaume et al., 1999). In contrast,
only very low to undetectable spinal cord expression of Pkd2 has
been reported in mouse (Guillaume and Trudel, 2000). Given
our results in zebrafish, it would be interesting to examine more
closely if there is any enrichment of PKD2 in the mouse floor
plate.

In contrast to the spinal cord, and also to some previous
reports (e.g., Bisgrove et al., 2005; Mangos et al., 2010; Coxam
et al., 2014), with the exceptions of pkd2l1 and pkd1l2a expression
in KA cells, which extends into the caudal hindbrain (Djenoune
et al., 2014; Figures 7G,H,M,N, insets in Figures 12M–O,Y,Z,A’)
and pkd1b expression in the floor plate in the hindbrain
(Figures 7C,D, insets in Figures 12E’–G’) we do not see
substantial expression of any of the pkd genes in the zebrafish
brain at the stages that we examined. Due to the tubular structure
of the brain, it is prone to probe trapping, particularly in the folds
between the forebrain and midbrain and midbrain/hindbrain
boundary, which often causes background expression. While
we cannot rule out that some of the other genes are expressed
broadly or ubiquitously in the brain, we think that any staining is
more likely to be background rather than specific expression.

Our experiments also detected expression of pkd1l1 and
pkd2l1 in the ear, and of pkd1b, pkd1l1, pkd1l2a, pkd1l2b, and
pkd2l1 in the retina, suggesting that these genesmay be important
for development of these crucial sensory organs. In addition, as
mentioned above, we observe dynamic expression of all seven
zebrafish pkd genes in regions that may correspond to taste
receptors. This is in contrast to mouse, where only Pkd1l3 and
Pkd1l2 have been described as being expressed in these cell
types (Huang et al., 2006; LopezJimenez et al., 2006). Notably,
LopezJimenez and colleagues did not observe any expression of
Pkd1, Pkd2, or Pkd1l1 in mouse taste receptors (LopezJimenez
et al., 2006). It will be interesting in future studies to confirm
whether all of the pkd expression in zebrafish pharyngeal regions
corresponds to taste receptors and which pkd genes are co-
expressed in particular subsets of these cells. If, indeed, pkd
gene expression demarcates different types of receptor cells,
these additional pkd expression domains in zebrafish might be
consistent with suggestions that teleosts have relatively large
numbers of different taste receptors (Okada, 2015).

We also observe expression of pkd1 in neuromasts, although
interestingly, we did not find expression of either of the pkd2-
like genes in these cells. Given that zebrafish neuromasts
are deposited by the migrating lateral line primordium, it is
intriguing that the large extracellular domain of Pkd1 has been
implicated in both cell migration and adhesion (Streets et al.,
2003; Castelli et al., 2015).

In addition, we found expression of pkd2, and only pkd2, in
the rostral-ventral somites (Figures 8D’, 10P–R), suggesting that
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this gene is expressed in a subset of muscle cells. Interestingly,
in Drosophila, Pkd2 is required for optimal contractility of
smooth muscle cells (Gao et al., 2004), suggesting that it may
have a similar role in zebrafish muscle. Potentially consistent
with this idea, there is evidence that Pkd2 physically interacts
with Tropomyosin I (Li et al., 2003a) and skeletal isoforms of
Troponin I (Li et al., 2003b).

Finally, we also observe expression of pkd1 in the pectoral
fins, as previously reported (Mangos et al., 2010). However, in
contrast to this paper, we do not detect expression of pkd1 in the
caudal notochord or around the KV. Unfortunately the authors
of this paper do not report which region of pkd1 they used to
make their RNA in situ hybridization probe, but as the sequence
that their ATG start codon morpholino is designed against is not
included in our new pkd1 transcript, it is possible that their probe
contained sequence that recognized other genes in addition to
pkd1.

In conclusion, in this paper we identify and provide a
comprehensive description of the zebrafish family of pkd genes
and their expression domains during embryogenesis and larval
stages. Our data suggest that different pairs of Pkd1-like and
Pkd2-like proteins have specific functions during vertebrate
development. In particular, that Pkd2 and Pkd1l1 may be
required for setting up correct left-right patterning, that Pkd1

and Pkd2 may be required for correct kidney development, that
Pkd1l1 and Pkd2l1 may be required for ear development and
that Pkd1l2a and Pkd2l1 may be required for correct function
of spinal KA cells. We also identify expression of all seven pkd
genes in potential taste bud-forming regions and of five pkd genes
in the retina. Interestingly, we also find expression of single pkd1
or pkd2 genes in certain structures, such as pkd1 in neuromasts
and pectoral fins and pkd2 in somites, suggesting that proteins
encoded by these genes may also have functions independent
of Pkd1/Pkd2 heterocomplexes. Given the importance of PKD
proteins for many different aspects of vertebrate development
and physiology, this description of the full complement of
zebrafish pkd genes and their expression in different tissues and

organs is a fundamental first step to characterizing the functional
roles of these biologically vital proteins.
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