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Gene co-expression networks have become a usual approach to integrate the vast
amounts of information coming from gene expression studies in cancer cohorts. The
reprogramming of the gene regulatory control and the molecular pathways depending on
such control are central to the characterization of the disease, aiming to unveil the
consequences for cancer prognosis and therapeutics. There is, however, a multitude
of factors which have been associated with anomalous control of gene expression in
cancer. In the particular case of co-expression patterns, we have previously documented a
phenomenon of loss of long distance co-expression in several cancer types, including
breast cancer. Of the many potential factors that may contribute to this phenomenology,
copy number variants (CNVs) have been often discussed. However, no systematic
assessment of the role that CNVs may play in shaping gene co-expression patterns in
breast cancer has been performed to date. For this reason we have decided to develop
such analysis. In this study, we focus on using probabilistic modeling techniques to
evaluate to what extent CNVs affect the phenomenon of long/short range co-expression in
Luminal B breast tumors.We analyzed the co-expression patterns in chromosome 8, since
it is known to be affected by amplifications/deletions during cancer development. We
found that the CNVs pattern in chromosome 8 of Luminal B network does not alter the co-
expression patterns significantly, which means that the co-expression program in this
cancer phenotype is not determined by CNV structure. Additionally, we found that region
8q24.3 is highly dense in interactions, as well as region p21.3. The most connected genes
in this network belong to those cytobands and are associated with several manifestations
of cancer in different tissues. Interestingly, among the most connected genes, we found
MAF1 and POLR3D, which may constitute an axis of regulation of gene transcription, in
particular for non-coding RNA species. We believe that by advancing on our knowledge of
the molecular mechanisms behind gene regulation in cancer, we will be better equipped,
not only to understand tumor biology, but also to broaden the scope of diagnostic,
prognostic and therapeutic interventions to ultimately benefit oncologic patients.
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1 INTRODUCTION

It is difficult to exaggerate the negative impact that cancer has, not
only as a global health burden, but also as a phenomenon with
enormous societal and economic consequences. Last year, cancer
was the cause of death for 10 million people, mainly in poor and
developing countries. Of all tumor types, breast cancer is the
malignant neoplasm with the largest incidence worldwide (Siegel
et al., 2020). Many survivors of the disease (five or more years
after diagnosis) still have to live with physical and psychological
problems that persist over time (Stein et al., 2008) and drastically
reduce their quality of life and productivity.

Breast cancer is also a highly complex and heterogeneous
disease, both from the molecular and from the clinical/
phenotypic standpoints. It is known that breast cancer
diagnosis, response to treatment, relapse, and outcome are
largely dependent on the molecular features that have been
associated with the so-called breast cancer subtypes (Liu et al.,
2007; Kittaneh et al., 2013; de Anda-Jáuregui et al., 2016):
Luminal A, the most common, estrogen and progesterone
receptor positive but, in general, epidermal growth factor 2
receptor negative; Luminal B subtype is positive for estrogen
receptor and epidermal growth and negative for progesterone;
HER2+, these tumors are negative for estrogen and progesterone
and positive for epidermal growth factor 2; finally the Basal
subtype tumors, which are mostly (around 80%) triple
negative, i.e., negative for estrogen, progesterone, and
epidermal growth factor 2. These classifications are useful to
determine the origin, evolution and treatment to be followed in
each case, although each patient is unique and each subtype has
peculiarities.

Of the estrogen-positive subtypes, Luminal B is often the most
aggressive and although luminal breast tumors are susceptible to
be treated with targeted therapy (a fact that commonly, but not
always, is associated with better outcomes), in some cases present
the worst prognosis for patients. This is so, due to several
molecular and functional features that have been related to
higher proliferation rates and pharmacological resistance
(Cheang et al., 2009; Tran and Bedard, 2011; Creighton, 2012;
Ades et al., 2014), or even due to metabolic alterations (Serrano-
Carbajal et al., 2020).

Luminal B breast cancer subtype is hormone-receptor positive
(estrogen-receptor and/or progesterone-receptor positive), and
either HER2 positive or HER2 negative. This subtype presents
high levels of Ki-67. In general, Luminal B tumors grow slightly
faster than those from Luminal A subtype. Additionally, the
prognosis is commonly worse (Li et al., 2016).

Luminal B breast tumors are characterized by a lower
expression of estrogen receptor, and low expression of
progesterone receptor (Harbeck et al., 2013). It is also defined
by aggressive clinical behavior; its prognosis is similar to that of
non-luminal cancers (Tran and Bedard, 2011). Bone metastasis
appears more often in Luminal B patients than in non-luminal
ones. However, recurrence or metastasis in this subtype have a
better prognosis after treatment than non-luminal tumors. It has
also been shown that Luminal B subtype presents high metabolic
deregulation (Li et al., 2016; Serrano-Carbajal et al., 2020).

Luminal B subtype tumors accounted for nearly 40% of all
breast cancers (Metzger-Filho et al., 2013). Therefore,
understanding the molecular basis of the luminal B subtype is
a matter of current concern.

One of the most actively investigated genomic regions in the
manifestation of breast cancer is cytoband 8q24.3 (Wokolorczyk
et al., 2008; Dorantes-Gilardi et al., 2021). This region results
particularly relevant to study in the present context, since 8q24
has been repeatedly reported to harbor multiple variants
associated with the incidence of breast cancer and other type
of neoplasms (Tong et al., 2020). Indeed, genomic variants in
8q24 have been ascertained to be associated with risk of breast
cancer on systematic reviews and meta-analyses (Wang et al.,
2020). Particularly interesting is the fact that larger genomic
alterations (including copy number variants, CNVs) have been
linked to breast cancer onset (Jia et al., 2019), often via disruption
of healthy breast cells transcriptional programmes (Ibragimova
et al., 2020). Indeed, such effects have been actually linked via
clinical and pathological features to breast tumors of the Luminal
B subtype (or related: ER+, PR- and HER2-) giving rise to basal-
like and endocrine resistant phenotypes (Liu et al., 2018).

It has been argued that some of these genomic alterations have
relevant consequences for transcriptional regulation anomalies
associated with cancer. Gene regulatory programmes are known
to be altered, a fact that has been linked with the onset and
development of tumor phenotypes (de Anda-Jáuregui et al., 2016;
Hernández-Lemus et al., 2019). In this regard, our group has
thoroughly described how the more relevant gene-gene co-
expression interactions in several cancer types often occur
between genes from the same chromosome (cis-), even in
proximal chromosomal locations. Conversely, inter-
chromosome (trans-) interactions (or even long distance intra-
chromosome co-expression interactions) are comparatively less
abundant and have lower values of diverse statistical dependency
measures (Espinal-Enríquez et al., 2017; de Anda-Jáuregui et al.,
2019; Dorantes-Gilardi et al., 2020; García-Cortés et al., 2020;
Zamora-Fuentes et al., 2020; Andonegui-Elguera et al., 2021;
Dorantes-Gilardi et al., 2021; García-Cortés et al., 2021).

Since a large number of molecular players and processes are
known to be involved in (normal and) anomalous transcriptional
regulatory patterns, establishing which, among the multitude of
potential causes of this phenomenon in tumors are actually more
relevant given the available experimental evidence becomes
desirable. Particularly important has been the discussion on
the effects that CNVs have on gene expression patterns in
several diseases (Stranger et al., 2007; Henrichsen et al., 2009),
including breast cancer (Kumaran et al., 2017; Ohshima et al.,
2017; Safonov et al., 2017; Sun et al., 2018; Shao et al., 2019).

With this in mind, we have decided to investigate the effect
that CNVs may have on the phenomenon of distance-associated
gene co-expression in breast cancer. For the reasons already
discussed we have chosen to perform a detailed study centered
in the chromosome 8 and the 8q24 region in Luminal B breast
tumors. In this study, we implemented a probabilistic modeling
approach to evaluate how CNVs affect long and short range co-
expression profiles in Luminal B breast tumors. We analyzed the
co-expression patterns in chromosome 8, since it is known that
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amplifications and deletions in that chromosome may influence
cancer development. We found that CNV signatures in
chromosome 8 of Luminal B network do not significantly alter
the co-expression patterns, hence the co-expression program in
this tumor phenotype is not determined by CNV structure.
Additionally, we found that the 8q24.3 region is highly dense
in co-expression interactions, as well as p21.3. The most
connected genes in this network belong to those cytobands
and have been associated with several tumor types.
Interestingly, among the most connected genes, we found
MAF1 and POLR3D, which may constitute an axis of
regulation of gene transcription, in particular for non-coding
RNA species. We believe that by advancing our knowledge of the
molecular mechanisms behind gene regulation in cancer, we will
be improving, not only to understand tumor biology, but also the
scope of diagnostic, prognostic and therapeutic interventions to
ultimately benefit oncologic patients.

This article is organized as follows: Section 2 explains what
conditional mutual information (CMI) is and why it is
appropriate in the present investigation; the Kolmogorov-
Smirnov method is also presented to quantify the difference
between two probability distributions. In section 3, the
method used to build the networks is explained. It is also
established (via conditional mutual information distributions),
that CNVs are not significantly associated with the structural
features (in particular distance-dependent co-expression
patterns) of the analyzed co-expression networks. The results
are analyzed in section 4. There, the genes with the highest
connectivity as well as their possible relationship in the
development of cancer are identified and discussed. Finally, in
section 5 the conclusions and some consequences of this work are
presented.

2 METHODS

2.1 Data Acquisition
The complete collection of The Cancer Genome Atlas (TCGA)
breast RNA-Seq samples was downloaded in January 2019 from
the GDC repository https://portal.gdc.cancer.gov/repository.
This collection included 113 solid tissue, normal samples and
1,102 primary tumor samples. From these samples, 192
corresponded to Luminal B tumors. Data acquisition was
carried out by using the TCGABiolinks R package (Colaprico
et al., 2016).

2.2 Data Integration
An integrity check was carried out in raw expression files using
gene annotations from BioMart. Only protein coding genes
belonging to conventional chromosomes (1, 2, . . . , 22, X and
Y) were kept. The CNVs of the micro-RNAs were masked from
the 8q24.3 region and excluded from the analysis.
Supplementary Materials S1, S2 contains gene expression and
genetic information of chromosome 8 genes. Pre-processing and
quality control of the gene expression samples were performed as
in (Espinal-Enríquez et al., 2017). In brief, we used for NOIseq R
library for quality control (Tarazona et al., 2011, 2015). For batch

effect removal, normalization, transcript length and GC content
correction, EDASeq library was implemented (Risso et al., 2011).
Finally, for multi-dimensional noise reduction we used ARSyN R
library (Nueda et al., 2012).

2.3 Conditional Mutual Information
Measures
We considered information theoretical measures of statistical
dependency as follows: Let X, Y and Z denote discrete random
variables having the following features:

1 Finite alphabets X , Y and Z, respectively
2 Joint probability mass distributions p (X, Y, Z), and partial-
joint probability mass distributions p (X, Y), p (X, Z), etc.,

3 Marginal probability mass distributions p (X), p (Y) and p (Z)

Let also X̂, Ŷ and Ẑ denote additional discrete random
variables defined on X, Y and Z respectively, the associated
probability mass distributions will be p̂(X), p̂(Y) and p̂(Z),
their joint probability mass distribution ̂p(X, Y, Z) defined on
J , the joint probability sampling space; J � X × Y × Z. For
particular realizations, we have p(x) = P (X = x),
p̂(y) � P(Ŷ � y), etc., It is possible to define the
Conditional Mutual Information (CMI) function I (X; Y|Z)
as follows:

I X;Y|Z( ) � ∑
z∈Z

∑
y∈Y

∑
x∈X

pX,Y,Z x, y, z( )logpZ z( )pX,Y,Z x, y, z( )
pX,Z x, z( )pY,Z y, z( )

(1)
Formally I (X; Y|Z) is a measure representing the expected

value of the mutual information of two random variables X
and Y given the value of a third random value Z. Thus I (X; Y|
Z) represents the expected value (w.r.t. Z) of the Kullback-
Liebler divergence from the conditional joint distribution P
(X, Y|Z) to the product of the conditional marginals P (X|Z)
and P (Y|Z).

CMI calculations were performed with R infotheo library
(Meyer and Meyer, 2009).

2.4 Assessment of the Impact of Copy
Number Variant in Gene Co-Expression
Programs
In order to ascertain to what extent the CNVs are able to influence
the gene co-expression programs, we performed Kolmogorov-
Smirnov (KS) tests to evaluate the differences among the diverse
CMI distributions. The KS statistic between 2 distributions is
defined as:

Dn,m � supx|F1,n x( ) − F2,m x( )| (2)
here, F1,n (x) and F2,m (x) are the empirical distribution functions
of the first and the second sets. Statistical significance of the KS
tests is asymptotically given as follows.

The null hypothesis is rejected (at significance level α),
whenever

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8066073

Hernández-Gómez et al. CNVs in BRCA Co-Expression Network

https://portal.gdc.cancer.gov/repository
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Dn,m > c α( )
�����
n +m

n ·m
√

(3)

with c(α) �
��������
−ln(α2) · 12

√
KS tests were performed with the ks. test library in R.
Circos plots visualizations were made using the BioCircos

JavaScript library (Cui et al., 2016).

3 IMPLEMENTATION

It has been argued that mutual information (MI) is a reliable
measure to establish links between genes in co-expression
networks (Margolin et al., 2006a,b; Hernández-Lemus and
Siqueiros-García, 2013; Lachmann et al., 2016). Given that
there is generally a sufficient amount of data available to
reconstruct the probability distributions associated with the
expression of genes, it is possible to use it without major
restrictions when measuring the statistical dependency
structures between them (Hernández-Lemus and Rangel-
Escareño, 2011). It is also a measure that takes into account
the non-linear contributions of interdependence in the series,
which makes it more appropriate in the context of the complex
regulatory patterns of gene expression.

The adoption of MI-based network deconvolution methods
has opened the entrance of the tenets of information theory in the
analysis of biomolecular networks. However, when, as in the
present work, it is necessary to evaluate the mutual information
between two random variables (corresponding to each of the
individual gene expression profiles in the present case), given a
third, potentially influential feature, one relevant alternative is the
evaluation of the Conditional Mutual Information measures.
Indeed CMI has already been used in the construction of
regulatory networks in a different but related context to the
one presented here (Liang and Wang, 2008; Zhang et al., 2012).

An underlying problem when applying MI and CMI to
establish the dependency between variables is choosing the
method for reconstruction of the associated probability
distributions. There are two main ways to do this, using the
k-nearest neighbor non-parametric method (Kraskov et al., 2004)
and through kernel density estimation (Terrell and Scott, 1992).
In this work we have chosen the second method, in particular
with a Gaussian kernel estimation. The implementation used is
the one corresponding to the R package Infotheo.

The role of CNVs has been pointed out as a possible element
causing the loss of co-expression with the distance that is
observed in cancer and that has been reported previously
(García-Cortés et al., 2021). Ideally, a non-cancerous person
has two copies of each gene, however many disorders of
genetic origin are caused by the deletion, repetition or
insertion of DNA segments, sometimes as long as the arm of a
chromosome or a complete chromosome. Given that in the past,
they have been found to be responsible for genetic diseases, to
think that they may also have a relevant role in the loss of co-
expression is an appealing idea.

To systematically evaluate the contribution of CNVs in gene
co-expression in cancer, it is convenient to use an area of the

genome that is particularly active in its manifestation and to
calculate the influence of CNVs both in that region and in the
surrounding areas. As previously mentioned, 8q24.3 has been
identified as particularly active and connected in co-expression
networks, mainly in breast cancer tissues. Thus, we chose the
Luminal B breast cancer subtype, given the poor prognosis
compared with the Luminal A subtype. Furthermore, gene
expression patterns have shown altered metabolic pathways
even more evident than in Basal-like or HER2+ phenotypes
(Serrano-Carbajal et al., 2020). We took the CNV values of
183 coding genes from the 8q24.3 region (Supplementary
Materials S3, S4), we take them one by one as conditional
and calculate the CMI of 442 genes, including not only those
of this region but of the entire chromosome 8. Supplementary
Materials S3–S6 show the copy number alteration map of all
samples for chromosome 8.

We repeated the above calculation for the same genes with
control tissue samples assuming a number of CNVs equal to two
in all samples as conditional. From the obtained values we
construct co-expression networks. For each of the 183
conditional layers there are 97,461 links. The question behind
this analysis is: How important is the difference obtained between
the different conditional layers? For control tissue networks the
question becomes trivial, since all the conditionals are essentially
the same, but for those corresponding to Luminal B this
difference may be relevant due to the already documented
anomalous CNV structure in the region.

To quantify the differences between each of the 183
conditional layers obtained, we calculated the difference
between the distributions of CMI values for all possible pairs
of them (16,653 comparisons) using the Kolmogorov-Smirnov
test. In essence, this test compares the cumulative functions of
two distributions and it establishes as a measure, the D statistic,
i.e. the maximum vertical difference between them
(Supplementary material S5). In Figure 1 we show
graphically the workflow for this project.

4 RESULTS AND DISCUSSION

4.1 Contribution of CopyNumber Variants to
the Co-Expression Program is Marginal
Figure 2 shows a heatmap with the values of the D statistic of the
Kolmogorov-Smirnov test for each different pair of the 183
distributions of CMI values obtained. The largest of them,
which occurs between the layers corresponding to the CNVs
of the COL22A1 gene (ENSG00000169436) and
(ENSG0000016943), is less than 0.06. This result indicates that
the contribution of 8q24.3 CNVs in the co-expression networks
of genes on chromosome 8 in the luminal B subtype of cancer is
marginal.

This result acquires relevance since copy number alterations
are a mesoscopic phenomena, which can affect large parts of the
genome. On the other hand, changes in the co-expression
landscape are considered a microscopic event, since those
changes may affect specific genes and their regulatory
relationships. Hence, with this result we provide evidence that
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a large-scale event such as amplifications/deletions of large
portions of chromosome 8 do not significantly alter the gene
co-expression program in cancer.

4.2 Conditional Mutual Information is Higher
in Luminal B Than in Controls
Since all the layers corresponding to Luminal B samples have
essentially the same distribution of CMI, we take the first, whose
conditionals are the CNVs of the COL22A1 gene, as

representative of the entire family of networks and proceed to
analyze it. Figure 3 shows the difference between CMI from the
Luminal B subtype network and the one from the control
network. As it can be clearly observed, the control CMI values
are lower than the cancer counterpart.

In (Espinal-Enríquez et al., 2017), we observed that mutual
information values from control gene co-expression networks are
higher than in the cancer-derived network. However, the
calculation was taken over all the gene-gene co-expression
interactions, i.e. intra and inter-chromosomal gene

FIGURE 1 | Workflow of this study. RNASeq obtained from tumor and control adjacent tissue biopsies (coming from the TCGA/GDC collaboration database)
serves as a basis for conditional co-expression and CNV analysis. Samples were pre-processed for quality control and normalization, batch effect removal and mlti-level
noise reduction. Copy number variation and RNA expression data were used to perform the conditional mutal information, Finally, spatial co-expression analysis was
implemented.
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correlations. In this case, the CMI is taken between chromosome
8 genes only, i.e., just intra-chromosome interactions.

Taking into account that the loss of long-range co-expression
phenomenon has been previously reported in networks form
different cancer types (Zamora-Fuentes et al., 2020; Andonegui-
Elguera et al., 2021), and also for breast carcinoma (Espinal-
Enríquez et al., 2017; Alcalá-Corona et al., 2018; de Anda-
Jáuregui et al., 2019; Dorantes-Gilardi et al., 2020), and in
particular for breast cancer subtype networks (de Anda-
Jáuregui et al., 2019; García-Cortés et al., 2020; Dorantes-
Gilardi et al., 2021), the finding of a higher average co-
expression in intra-chromosome 8 of Luminal B breast cancer
compared with the control one, reinforces the fact that this
phenomenon is a common trait in several types of cancer.

4.3 Cancer Network Grows in Small Local
Regions, but not in Control
Figure 4 corresponds to Luminal B subtype interactions. Top-left
to bottom-right shows the Top-500, 1,000, 2,000, and 3,000
interactions in chromosome 8. As it can be appreciated,

interactions appear local in the first place, markedly in
cytobands q24.3 (yellow arcs) and p11.23. Subsequently, inter-
cytoband and inter-arm interactions occur, but in a small fraction
(top-right). For the top-2,000 edges, it is clear that several
interactions appear from q24.3. Finally, for the top-3,000 edges,
8q24.3 region is strongly connected with the rest of chromosome 8,
and more inter-arm and inter-cytoband edges appear.

On the other hand, the Figure 5 shows the existence of a non-
localized connectivity for the control network; since for the first
500 highest connections, interactions occur between genes from
different cytobands, or even from different arms, much more
often than in the cancer phenotype. The same effect is shown in
the top-1,000 and 2,000 interaction circos plots. It is worth
noticing the small number of intra-cytoband interactions, even
in the top-3,000 edges (830 out of 3,000, dark blue edges).

We believe that this pattern where the highest correlations
appear between physically close genes, is in agreement with other
phenomena observed in breast and other cancers in which the
loss of long-distance co-expression is evident, such as kidney
(Zamora-Fuentes et al., 2020) or lung (Andonegui-Elguera et al.,
2021).

FIGURE 2 | Heatmap corresponding to the values of the D statistic for the Kolmogorov-Smirnov test. Both axes represent the same CNV layers. As it can be
observe from the color code at the right part of the figure (very low values of D), none of the CNV layers present a larger KS statistics, which reflects that copy number
alterations do not significantly change gene co-expression values.
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4.4 Extreme Regions Exhibit a High
Connectivity Pattern in Luminal B Network
We decided to analyze the topology of the resulting networks, but
we only kept the highest interactions for this purpose. We set 0.35
as a threshold for CMI in the Luminal B network. This threshold
resulted in a network with 11,449 edges and 420 genes. For
comparison, we conserved the same number of edges in the
control network. Taking into account the highest CMI values in
the Luminal B phenotype, a very intriguing phenomenon
appears: the first (8p11.21–23) and last (8q24.3) codifying
regions of the chromosome 8 exhibit strong connections.
Additionally, this strength decrease towards the centromere.
Conversely, in the control network, the strength of
interactions does not depend on the location of genes. This
remarkable difference between the breast cancer and the non-
tumor adjacent phenotype can be appreciated in Figure 6

Regarding the Luminal B chromosome 8 network, the genes of
the extreme regions also constitute themost connected nodes of the
network. The case of cytoband q24.3 is the most emblematic one.
Cytoband q24.3 is the one with more intra-cytoband edges (1,640
out of 11,449). It is also the cytoband with more genes in the
network (79 out of 420). Regarding the inter-cytoband edges, the
large majority of interactions from any cytoband also correspond
to those fromq24.3. That is the reason for which the average degree
of region q24.3 is the highest of the network (52). The non-extreme
region p11.23 is an exception that has strong interactions.

It is important to mention that in region p11.23, there are
some crucial genes in terms of cell maintenance, as well as for
cancer development. For instance, four genes, namely BAG4,
LSM1, ASH2L and BRF2 serve as housekeeping genes. On the
other hand, FGFR, a keystone gene in cancer development, has
been observed to be amplified in luminal B breast tumors (Erber
et al., 2020; Voutsadakis, 2020; Amina et al., 2021).

4.5 Highly Connected Genes and Their
Possible Relationship With Cancer
In Table 1 we show the most connected genes in the Luminal B
network. As it can be observed, most of the genes belong to region
q24.3. However, three genes, KCTD9, POL3RD, and ATP6V1B2
belong to the region p21.3. The gene with the highest
Betweenness Centrality (BC) is KCTD9. Below we will provide
a brief summary of what it is known of those genes in Luminal B
breast cancer or other carcinomas.

ZNF7 (Zinc Finger Protein 7) has been indicated as a
biomarker of survival in glioblastoma Esteve-Codina et al.
(2021) and Burkitt’s lymphoma (Gallego and Lazo, 1994).
ZNF7 is the most connected gene in the Luminal B breast
cancer co-expression network, and it is slighlty overexpressed
(Table 1).

Many genes on chromosome 8 have been associated with
mental illnesses, mainly schizophrenia, and their mutations are
presumed to be involved in the development of our mental
abilities. This is the case of the coding genes for the KCTD
(Potassium Channel Tetramerization Domain) proteins.
However, it has recently been indicated (Angrisani et al.,
2021) that the 25 members of this family are potentially
involved in a second fundamental activity: 13 of them have an
exclusive pro-tumor function, 5 an exclusive anti-tumor function,
5 a pro/anti-tumor role, and 2 with a function not yet determined.
KCTD9 has a pro-tumor function not yet reported in the
literature, but inferred through databases. However, in this
case, KCTD9 is underexpressed (−1.16) which may implicate a
dual role in the phenotype.

MAF1 gene is known for its regulatory effect on the
polymerase III, although it has also been associated with
cancer, given that it activates the expression of the PTEN
protein, which is an important tumor suppressor (Zhang et al.,

FIGURE 3 |Conditional Mutual Information for normal adjacent tissue (black) and Luminal B tumors (red). We can notice that Luminal B tumors present distinctively
higher values of CMI than Controls.
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2018). Interestingly POLR3D is also one of the most connected
genes in the Luminal B breast cancer network. POLR3D gene
encodes an RNA polymerase 3 subunit D, and synthesizes small
RNAs, such as 5S rRNA and tRNAs, which, when inhibited by
TRIPLIDE (TPL) influence the control of colorectal cancer (Liang
et al., 2019). POLR3D is also inhibited by miR-320 (Ramassone
et al., 2018).

The fact that MAF1 and POLR3D genes were highly
connected could be an indicator of alterations in the
transcriptional regulation program. Since MAF1 regulates
polymerase III, and POLR3D encodes an RNA polymerase III
subunit, the emergence of an axis of transcriptional regulation of

non-coding RNA species results appealing. The latter may imply
that in the Luminal B subtype, transcriptional regulation
mediated by non-coding RNAs could affect the gene
regulatory program. The latter coincides with the fact that
POLR3D abnormal activity is characteristic of cancer cells
(White, 2004).

ADCK5 has been indicated as an intermediary in the growth
and metastasis of lung cancer. This gene promotes invasion and
migration of lung cancer cells through the ADCK5-SOX9-
PTTG1 pathway Qiu et al. (2020).

Regarding PTK2, this gene in association with KCNMA1 gene
has been reported as a tumor suppressor in gastric cancer Ma

FIGURE 4 | Top interactions of Luminal B CMI network at different cut-offs (500, 1,000, 2,000, and 3,000 edges). At first, the intra-cytoband interactions dominate,
mainly in q24.3, p21.3, p11.21 and p11.23; secondly, the inter-cytoband interactions (particularly in p-arm), and finally, the inter-arm edges. Red arc at the external circle
represents the centromere of Chr8. Color code of the co-expression interactions are also described. The take-homemessage is that for the top interactions, the location
of participating genes is very close between them, in particular, at cytoband q24.3.
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et al. (2017). Additionally, the SMARCE1 gene regulates
metastasis in breast cancer through its interaction with HIF1A
and PTK2 Sethuraman et al. (2016). It has also been associated
with hepatocarcinoma (Okamoto et al., 2003). Additionally,
PTK2/FAK is considered a driver of radio-resistance in HPV-
negative head and neck cancer (Skinner et al., 2016).

Recently, the FAM83H gene (also located on chromosome 8,
specifically in the 8q24.3 region) has been related to Zinc Finger
Proteins (ZNFs) genes, specifically ZNF16. Gallbladder cancer is
highly associated with the expression of these two genes Ahn et al.
(2020).

ATP6V1B2 gene has been identified as a possible biomarker
(from controlled-to-aggressive growth with invasion of muscle

tissue) for bladder cancer. Specifically, it is underexpressed in the
early stages of the disease and over-expressed in the advanced
stages Fang et al. (2013). Additionally, it has been associated with
follicular lymphoma, activating autophagic flux and mTOR
pathway (Wang et al., 2019).

ZNF707 has recently been Kim et al. (2020) identified as highly
overexpressed in the Japanese population. High expression has
also been shown in kidney and luminal B cancer patients
Machnik et al. (2019) which suggests that ZNF707 could be
involved in the development of cancer in general, regardless of the
tissue.

In brief, we can establish that the most connected genes in the
chromosome 8 network for Luminal B breast cancer are

FIGURE 5 | Top interactions of control tissue CMI network at different cut-offs. In this figure, analogue to Figure 4, although both, expression and co-expression
are not uniform, many of the strongest links correspond to inter-arm interactions. The color code is the same than in Figure 4. It is clear the difference between the area
covered by top-3,000 interactions in control circos-plot and the one observed in the Luminal B case. The density of links in the control network is larger than in Figure 4.
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significantly related to the oncogenic phenotype. Particularly
interesting is the case of MAF1, which in turn regulates
POL3RD expression, suggesting an axis of non-coding RNA
regulation.

As it can be also observed in Table 1, the differential
expression in the large majority of hub genes is not significant.
However, the co-expression patterns of these genes are
importantly different than in the control case. We have
observed previously, in clear cell renal carcinoma progression,

that the gene expression patterns do not change significantly over
progression stages, however, the co-expression networks are
clearly different between those stages (Zamora-Fuentes et al.,
2020). Therefore, slightly different gene expression patterns may
implicate a dramatical alteration in the co-expression landscape.
The differential expression of all Chr8 genes is provided in
Supplementary Material S6.

5 CONCLUSION

The understanding of the intricate relationship between copy
number alterations, which can be seen as a mesoscopic
dimension, with the regulation of the gene co-expression
program, which can be understood as a microscopic
phenomenon, is a highly promissory pathway for intense
research in the near future. In this work, we have shown, for
the case of Chromosome 8 in Luminal B breast cancer, that
the Copy Number Alteration scenario does not influence, in a
relevant manner, the Conditional Mutual Information
program. That is independent on which region is
analyzed. As a summary of findings, we can establish the
following:

FIGURE 6 | Top CMI values between genes of Chromosome 8 for Luminal B (upper) and control (lower) networks. In this figure, the genes are placed according to
its start position. Yellow-to-blue arcs represent co-expression interactions between the connecting genes. The size and color of the genes are proportional to the degree.
As it can be observed, for the case of Luminal B, the extreme left and right sides contain the majority of highest CMI interactions (dark arcs), in particular, cytobands q24.3
and p11.21–23. Conversely, in the control network, interactions are not particularly biased to a specific region. Top-degree genes are indicated with black arrows.
ZNF7, MAF1 and LRRC14 genes are overlapped in the figure.

TABLE 1 | The most connected genes belong to q24.3 and p21.2.

Gene Band Degree BC Log2FC

ZNF7 q24.3 109 0.00544 0.47
KCTD9 p21.2 106 0.00656 −1.16
MAF1 q24.3 105 0.00562 0.07
LRRC14 q24.3 102 0.00512 0.34
ADCK5 q24.3 101 0.00523 0.93
PTK2 q24.3 99 0.00516 −0.03
POLR3D p21.3 97 0.00508 −0.36
ZNF16 q24.3 97 0.00518 0.38
ATP6V1B2 p21.3 96 0.00579 −0.15
ZNF707 q24.3 96 0.00410 0.99
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• CNVs do not influence Conditional Mutual Information (as
observed in Figure 2).

• Co-expression program in the chromosome 8 for Luminal B
breast cancer shows localized hotspots regions in certain
cytobands.

• The large majority of Chromosome 8 gene co-expression
interactions shows low CMI values, meanwhile the extreme
parts of the chromosome show higher values.

• Cytoband q24.3 has the highest values of MI, is the most
dense in terms of interactions, and its genes have the highest
degree.

• In the control phenotype there is a homogeneous CMI
distribution regarding the location of genes in the top
interactions, contrary to the case of Luminal B network.

• Taking into account a growing of the networks from highest
to lowest CMI values, in the case of Luminal B network, the
top CMI values appear between intra-cytoband genes; after
that, between inter-cytoband and same-arm genes; finally
between inter-arm genes. In the case of the control network,
there is no clear localization pattern.

• Genes such as ZNF7, KCTD9, MAF1, or POLR3D have the
highest degree centralities. Those genes have been reported
to have influence in cancer.

• MAF1 and POLR3D could form an axis of non-coding RNA
regulation, which can be a possible complex for future
research.

Further steps towards a whole understanding of how copy
number alterations may affect the co-expression program in
breast cancer must include the analysis of the conditional
mutual information of all chromosomes in Luminal B breast
cancer. A similar study in the other molecular subtypes is also
needed. The influence of the progression stage must be also taken
into account. Finally, this analysis over other cancer tissues will
provide a solid and robust landscape of the role of copy number
alterations in the rise and development of cancer.
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