
Vol.:(0123456789)1 3

International Journal of Peptide Research and Therapeutics           (2022) 28:35  
https://doi.org/10.1007/s10989-021-10345-2

VirVACPRED: A Web Server for Prediction of Protective Viral Antigens

Jesús Herrera‑Bravo1,2 · Jorge G. Farías3 · Fernanda Parraguez Contreras3 · Lisandra Herrera‑Belén3 · 
Juan‑Alejandro Norambuena3,4 · Jorge F. Beltrán3

Accepted: 7 December 2021 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Viral antigens are key in the development of vaccines that prevent or eradicate infections caused by these pathogens. Bio-
informatics tools are modern alternatives that facilitate the discovery of viral antigens, reducing the costs of experimental 
assays. We developed a bioinformatics tool called VirVACPRED, which is highly efficient in predicting viral antigens. In this 
study, we obtained a model based on the gradient boosting classifier, which showed high performance during the training, 
leave-one-out cross-validation (accuracy = 0.7402, sensitivity = 0.7319, precision = 0.7503, F1 = 0.7251, kappa = 0.4774, 
Matthews correlation coefficient = 0.4981) and testing (accuracy = 0.8889, sensitivity = 1.0, precision = 0.8276, F1 = 0.9057, 
kappa = 0.7734, Matthews correlation coefficient = 0.7941). VirVACPRED is a robust tool that can be of great help in the 
search and proposal of new viral antigens, which can be considered in the development of future vaccines against infections 
caused by viruses.
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Introduction

There is a considerable number of antiviral drugs against 
many viruses, and some of them do not eliminate infections 
but simply alter the clinical course of the disease (Huang 
et al. 2004). Antiviral vaccines have been the most success-
ful alternatives in the prevention of epidemics, and it is for 
this reason that is necessary to exploit new technologies that 
identify critical antigens in order to induce a potent immune 
response (Graham 2013). Vaccination has allowed combat-
ing various infectious diseases mediated by viruses, like 

influenza, smallpox, varicella, diphtheria, polio, hepatitis, 
rotavirus, papillomavirus, among others (Graham 2013; 
Soria-Guerra et al. 2015). A vaccine is a molecular agent 
that induces specific protective immunity that triggers an 
enhanced adaptive immune response to reinfection by patho-
gens through the enhancement of immune memory (Pol-
lard and Bijker 2021). Conventional vaccines are composed 
of attenuated or killed pathogens and they can take up to 
15 years to develop. While it is true that these vaccines have 
saved many lives, they can also have adverse effects that 
could compromise the life of the patient (Bogdanos et al. 
2001; Jarząb et al. 2013; Olson et al. 2001). The main com-
ponent of vaccines are molecules called antigens, which are 
foreign to the immune system, and in turn, can have the abil-
ity to induce an immune response (Lahariya 2016).

Protective antigens are capable of inducing protection 
against a disease caused by an infectious agent after they are 
evaluated by means of an immunization scheme in an animal 
model. This approach to vaccine development includes sev-
eral steps such as pathogen culturing, purifying the compo-
nents (candidate antigens), and evaluating immunogenicity in 
an animal model (“An overview of biotechnology in vaccine 
development” 2020). Recombinant DNA and sequencing tech-
nology have led to a new concept within the field of vaccine 
development, where antigens capable of stimulating a specific 
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immune response are identified (Brusic and Petrovsky 2005; 
Soria-Guerra et al. 2015; Tomar and De 2014, 2010). In recent 
years, RNA vaccines have been attracting increasing attention 
due to their ability to induce a safe and long-lasting immune 
response using in vivo models (Pardi et al. 2018; Zhang et al. 
2019). RNA vaccines differ from traditional ones in that they 
do not administer live attenuated agents or fragments of it, 
eliminating the risk of causing the disease that is intended to be 
prevented. For the development of RNA vaccines, it is neces-
sary to find the DNA sequences that encode essential antigens 
of the infectious agent and then transcribe them to obtain the 
corresponding RNA, which will be used as a vaccine (Brisse 
et al. 2020; Tombácz et al. 2021; Verbeke et al. 2019). How-
ever, like the traditional approach to vaccine development, the 
identification of candidate antigenic molecules is necessary.

The field of bioinformatics has allowed the acceleration 
and discovery of new vaccine candidates, through the large-
scale prediction of different molecules that constitute poten-
tial protective antigens. Currently, there are many bioinfor-
matic tools that predict antigenicity from a protein sequence, 
which is usually divided into small peptides called epitopes, 
which have the ability to induce an immune response medi-
ated by T lymphocytes (Soria-Guerra et al. 2015). However, 
the tools that allow predicting whether a protein is antigenic 
or not are very scarce, with Vaxijen v2.0 being a widely cited 
tool and the only one of its kind to date (Doytchinova and 
Flower 2007). The Vaxijen v2.0 approach is extremely inter-
esting and useful since it allows predicting antigenic proteins 
from various sources such as bacteria, viruses, and tumor 
cells. However, the viral antigen prediction model has not 
been updated for years. In consequence, taking into account 
the concept of Vaxijen v2.0, the main objective of the pre-
sent work, was to develop an updated immunoinformatic 
tool for the robust and reliable prediction of viral antigens.

Materials and Methods

Dataset

The dataset used in this work was extracted from the pub-
lication of Vaxijen v2.0. This dataset is composed of 100 
sequences of viral antigens referenced in the literature and 
100 sequences identified as non-antigens (Doytchinova and 
Flower 2007), for a total of 200 sequences. This dataset was 
divided into training and testing datasets in a relationship of 
80% and 20%, respectively (Fig. 1).

Antigen Feature Computation

To calculate the characteristics of the antigens, we use our 
script called AIDApy (Herrera-Bravo et al. 2021). AIDApy 
allows the calculation of 544 physicochemical and bio-
chemical properties derived from the AAindex database. The 
AAindex database contains numerical indices that indicate 
different physicochemical and biological characteristics 
of amino acids and amino acid pairings (Kawashima et al. 
2008). As mentioned above, in this study, all the indices 
contained in this database were calculated for the antigens 
and non-antigens by selecting the equation number (4) as 
shown below:

Feature Selection

Usually, machine learning models that include many vari-
ables show low performance, for this reason reducing the 
dimensionality of the variables is a procedure that helps 
solve this problem (Mladenić 2006). For this reason, after 
calculating all AAindex characteristics (a total of 544), the 
best ten predictors were filtered and selected. For this pur-
pose, the information gain function (Quinlan 1986) con-
tained in the Orange3 3.28.0 library and written in Python 3 
was used (Demšar et al. 2013).

Training, Cross‑Validation, and Testing

The training, leave-one-out cross-validation (LOOCV) and 
testing, were carried out with the use of the open source 
PyCaret 2.3.1 (https:// pypi. org/ proje ct/ pycar et/) and scikit-
learn 0.24.2 (https:// pypi. org/ proje ct/ scikit- learn/) libraries. 
PyCaret allows evaluation of several machine learning algo-
rithms in an efficient and fast way, abstracting the functionali-
ties of the popular Scikit-learn library on which it is based. 
A total of 16 machine learning algorithms were evaluated as 
shown below: random forest classifier (RF), extra trees clas-
sifier (ETC), quadratic discriminant analysis (QDA), light 
gradient boosting machine (LGBC), gradient boosting classi-
fier (GBC), naive Bayes classifier (NBC), linear discriminant 

(1)
a.an ∶ Total number of any amino acid of the 20 natural ones

(2)a.a[AAindex]n ∶ numerical value of each amino acid of the 20 natural ones in one of the 544 AAindex

(3)AAindexa.an =
a.an × a.a[AAindex]n

Sequence Length

(4)AAindex a.aantigen =

∑

AAindexa.an

20

https://pypi.org/project/pycaret/
https://pypi.org/project/scikit-learn/
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analysis (LDA), ada boost classifier (ABC), K neighbors clas-
sifier (KNN), decision tree classifier (DTC), SVM-linear ker-
nel (SVM-LK), logistic regression (LR), SVM-radial kernel 
(SVM-RK), Gaussian process classifier (GPC), MLP classifier 
(MLPC), and Ridge classifier (RC). For this study the PyCaret 
and scikit-learn library default parameter of all classifiers were 
used. The selection of the best classifier against the training, 
LOOCV, and testing phases was made based on the following 
metrics:

(5)Sensitivity(TPR) = TP∕(TP + FN)

(6)Accuracy(ACC) = TP + TN∕(TP + FP + FN + TN)

(7)Precision(PVV) = TP∕(TP + FP)

(8)F1 = 2TP∕(2TP + FP + FN)

Fig. 1  The architecture used for 
the generation of the predic-
tive models of protective viral 
antigens
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All of the performance measures shown above have a 
range from zero to one (0–1). Models with measurements 
close to one are considered more reliable.

(9)MCC = (TP)(TN) − (FP)(FN)∕
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(10)Kappa = p0 − pe∕1 − pe
Results

The results of the information analysis allowed iden-
tifying the best predictors AAindex as shown below: 
AURR980113 (score: 0.207), FINA770101 (score: 0.191), 
QIAN880116 (score: 0.190), QIAN880102 (score: 0.183), 
KOEP990101 (score: 0.179), QIAN880133 (score: 0.174), 

Table 1  Training performance 
measurements obtained during 
the LOOCV using 16 machine 
learning algorithms

AUC  area under the curve

Algorithms ACC AUC TPR PVV F1 Kappa MCC

RF 0.7471 0.8365 0.7611 0.7504 0.7437 0.4938 0.5086
ETC 0.7467 0.8485 0.7486 0.7507 0.7393 0.4927 0.5041
QDA 0.7412 0.8110 0.8278 0.7048 0.7543 0.4824 0.5010
LGBM 0.7405 0.8265 0.7333 0.7575 0.7311 0.4792 0.4962
GBC 0.7402 0.8045 0.7319 0.7503 0.7251 0.4774 0.4981
NBC 0.7173 0.8265 0.8750 0.6715 0.7542 0.4386 0.4710
LDA 0.7075 0.7827 0.7264 0.7012 0.7057 0.4142 0.4246
ABC 0.7069 0.7665 0.7375 0.7023 0.7028 0.4142 0.4339
KNN 0.7052 0.7792 0.7778 0.6821 0.7194 0.4104 0.4294
DTC 0.6775 0.6750 0.6389 0.7004 0.6560 0.3506 0.3582
SVM-LK 0.5144 0.0000 0.1222 0.2000 0.1048 0.0111 0.0243
LR 0.5088 0.7415 0.0000 0.0000 0.0000 0.0000 0.0000
SVM-RK 0.5088 0.2573 0.0000 0.0000 0.0000 0.0000 0.0000
GPC 0.5088 0.7427 0.0000 0.0000 0.0000 0.0000 0.0000
MLPC 0.5088 0.7591 0.0000 0.0000 0.0000 0.0000 0.0000
RC 0.5033 0.0000 0.0000 0.0000 0.0000 -0.0111 -0.0243

Table 2  Performance 
measurements obtained during 
the testing phase (independent 
dataset) with the 16 machine 
learning algorithms assessed

AUC  area under the curve

Algorithms ACC AUC TPR PVV F1 Kappa MCC

RF 0.8667 0.9266 1.0 0.8000 0.8889 0.7273 0.7559
ETC 0.8444 0.9266 0.9583 0.7931 0.8679 0.6828 0.7010
QDA 0.7556 0.8492 0.8333 0.7407 0.7843 0.5045 0.5092
LGBM 0.8667 0.9315 0.9167 0.8462 0.8800 0.7305 0.7335
GBC 0.8889 0.9008 1.0 0.8276 0.9057 0.7734 0.7941
NBC 0.8000 0.8373 0.9583 0.7419 0.8364 0.5897 0.6222
LDA 0.8000 0.8611 0.8333 0.8000 0.8163 0.5970 0.5976
ABC 0.8667 0.8502 1.0 0.8000 0.8889 0.7273 0.7559
KNN 0.8222 0.8621 0.9167 0.7857 0.8462 0.6386 0.6492
DTC 0.8667 0.8661 0.8750 0.8750 0.8750 0.7321 0.7321
SVM-LK 0.5333 0.5000 1.0 0.5333 0.6957 0.0000 0.0000
LR 0.4667 0.7778 0.0000 0.0000 0.0000 0.0000 0.0000
SVM-RK 0.4667 0.2222 0.0000 0.0000 0.0000 0.0000 0.0000
GPC 0.4667 0.7778 0.0000 0.0000 0.0000 0.0000 0.0000
MLPC 0.4667 0.7560 0.0000 0.0000 0.0000 0.0000 0.0000
RC 0.4667 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
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LEVM780103 (score: 0.172), QIAN880113 (score: 0.170), 
SUEM840101 (score: 0.168), and RICJ880117 (score: 
0.166), which were used for training with all the machine 
learning algorithms mentioned above. The LOOCV of the 
16 evaluated algorithms allowed obtaining models with 
marked differences in performance measures, where the 
RFC, ETC, QDA, LGBM, GBC, NBC, LDA, ABC, KNN, 
and DTC algorithms, showed the best performance meas-
ures (Table 1).

On the other hand, an excellent performance was 
observed on the independent dataset (testing), where these 
measures increased considerably, which is indicative of 
robust prediction models (Table 2). It is important to high-
light that the GBC algorithm presented the best performance 
measures during the testing phase, which allows its selec-
tion for the construction of a tool for the prediction of viral 
antigens (Table 2).

Taking into account the aforementioned aspects, we 
developed a web application called VirVACPRED, which 
includes the predictive model based on the gradient boosting 
classifier. This application was developed with the Python 
3.9 programming language and the Flask framework, both 
open sources. VirVACPRED has a friendly and robust inter-
face for the reliable and fast prediction of viral antigens, 
which is available at https:// virva cpred. herok uapp. com/. Vir-
VACPRED returns probability scores in the range of 0 and 
1, where probability scores >  = 0.5 indicate that the input 
sequence is a viral antigen.

Discussion

During the past decade, viruses have emerged or re-emerged 
that have suddenly become major threats to humanity and 
the global economy, which was a concern regarding their 
epidemic transmission (Afrough et al. 2019; Trovato et al. 
2020). Zoonoses such as Lassa fever, dengue fever, Mid-
dle East respiratory syndrome (MERS), swine flu, Ebola 
and Marburg hemorrhagic fevers, yellow fever, severe acute 
respiratory syndrome (SARS), West Nile fever, Zika, Chi-
kungunya vector-borne diseases, and recently the coronavi-
rus disease 2019 (COVID-19), are examples of the damage 
that viruses can cause in the world population (Trovato et al. 
2020). In this sense, the development of innovative and tech-
nological platforms that allow the discovery of new drugs to 
prevent and combat viral infections is essential.

Bioinformatics has emerged as a powerful tool for solving 
different problems within the biological sciences, including 
the field of immunology (Soria-Guerra et al. 2015). Cur-
rently, there are dissimilar bioinformatics tools focused 
on the prediction of small linear peptides presented in the 
context of MHC. However, tools aimed at predicting the 

antigenicity of a complete protein are scarce. The predic-
tion of the antigenicity of a protein is extremely important, 
considering that 90% of the epitopes processed by B cells are 
conformational and only 10% linear (Benjamin 1995; Huang 
and Honda 2006). Taking into account the aforementioned 
aspects, the need for tools that predict the global antigenicity 
of a protein is an important factor to take into considera-
tion. Vaxijen v2.0 is a widely cited tool, it allows evaluat-
ing global antigenicity from an input amino acid sequence 
(Doytchinova and Flower 2007). However, since the devel-
opment of Vaxijen v2.0 to date, there have been important 
advances in the field of machine learning, which could be 
used to improve the predictive capacity of viral antigens 
using the same approach as Vaxijen v2.0.

The results of the information gain analysis showed that 
the ten best predictive AAindexes are related to characteris-
tics of secondary protein structures such as helix, beta-sheet, 
alpha-helix, coil, beta-turn, and helix-coil. In this sense, we 
suggest that future tools focused on predicting antigenicity 
take these structural properties into account. In fact, it has 
been reported that the secondary structure of viral antigens 
is key to the development of an immune response mediated 
by T lymphocytes (Gairin and Oldstone 1993).

In this work, the GBC presented the best performance 
measures in the classification of viral antigens during the 
training and testing phase. This classifier has been success-
fully used in the development of predictive models in the 
area of bioinformatics, such as the prediction of submito-
chondrial localization (Yu et al. 2020), DNA-binding residue 
(Deng et al. 2018), gene-expression data analysis (Blagus 
and Lusa 2015), prediction of the interaction between target 
and ligand (Xuan et al. 2019), diagnostic classification of 
cancers (Ma et al. 2020), and prediction of RNA-protein 
interactions (Jain et al. 2018), among others. However, other 
classifiers such as ETC, QDA, LBGM, GBC, NBC, LDC, 
ABC, KNN, DTC, and RF, also presented good performance 
measures in both phases. It is important to highlight that 
the performance measures obtained with GBC, even out-
performing the RF classifier, the latter very popular and 
widely used in the field of bioinformatics (Beltrán Lissabet 
et al. 2019a, b; Jorge Félix Beltrán Lissabet et al. 2019a, 
b; Boulesteix et al. 2012; Herrera-Bravo et al. 2021). For 
this reason, as mentioned above, the GBC was selected to 
develop the VirVACPRED tool.

In this work, we make a comparison of VirVACPRED 
with the performance measures reported by Vaxijen v2.0. 
In this comparison, it was observed that both tools present 
a similar performance during training. However, VirVA-
CPRED presented a better performance over the independ-
ent dataset (Table 3 and Fig. 2), due to the high-performance 
measures obtained, demonstrating its high efficiency in the 
prediction of viral antigens.

https://virvacpred.herokuapp.com/
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As mentioned above, the datasets used to train and test 
VirVACPRED consisted of antigenic and non-antigenic 
protein sequences in monomeric states (primary sequence), 
obtained from different virus species (Doytchinova and 
Flower 2007). Consequently, we recommend that users 
make predictions using the viral primary sequences as input. 
VirVACPRED is a tool that has a friendly interface, which 

unlike Vaxijen v2.0, can process multiple protein sequences 
in FASTA format. We believe that VirVACPRED can be 
very useful in the discovery of new protective viral antigens, 
which could be considered in the formulation of future vac-
cines to prevent future epidemics. The tool is freely available 
at https:// virva cpred. herok uapp. com/. This tool has a simple 
user interface for amino acid sequence processing (Fig. 3).

Table 3  Comparison of the 
Vaxijen v2.0 and VirVACPRED 
performance measures

Tool Phase ACC AUC TPR PVV F1 Kappa MCC

VirVACPRED LOOCV 0.7402 0.8045 0.7319 0.7503 0.7251 0.4774 0.4981
Vaxijen v2.0 

Doytchinova 
and Flower 
(2007)

LOOCV 0.73 0.810 0.74 0.71 – – –

VirVACPRED Testing 0.8889 0.9008 1.0 0.8276 0.9057 0.7734 0.7941
Vaxijen v2.0 

Doytchinova 
and Flower 
(2007)

Testing 0.70 0.743 0.84 – – – –

Fig. 2  Receiver operating char-
acteristic curves of the gradient 
boosting classifier on the inde-
pendent dataset. This classifier 
shows an AUC value of 0.90 on 
the unseen data (testing data), 
which is an indicative of a good 
model for prediction of the viral 
antigen and non-viral antigen 
classes represented by zero and 
one, respectively

https://virvacpred.herokuapp.com/
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Conclusions

The discovery of viral antigens plays a key role in the 
development of vaccines that allow the prevention of viral 
infections. Vaxijen v2.0 and VirVACPRED are the only 
tools of their kind, which allow predicting the global anti-
genicity of a protein. VirVACPRED is an updated tool 
that allows predicting viral antigens with high efficiency 

according to the performance measures obtained in the 
training and testing phases. The present server is limited 
to processing no more than 1000 protein sequences per 
prediction. We believe that VirVACPRED can be of great 
help in the discovery of new viral antigens, which will 
allow the development of future vaccines that prevent the 
risk of infections caused by viruses.

Fig. 3  User interface of the Vir-
VACPRED tool for prediction 
of protective viral antigens. A 
Input and B result interfaces
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