
ORIGINAL RESEARCH
published: 06 July 2022

doi: 10.3389/fpubh.2022.898270

Frontiers in Public Health | www.frontiersin.org 1 July 2022 | Volume 10 | Article 898270

Edited by:

Yuanpeng Zhang,

Nantong University, China

Reviewed by:

Tianming Ma,

Chinese Academy of Medical

Sciences, China

Qie Fan,

People’s Hospital of Guangxi Zhuang

Autonomous Region, China

Xiuqin Li Li,

ShengJing Hospital of China Medical

University, China

Huaxing Huang,

The Second Affiliated Hospital of

Guangzhou Medical University, China

*Correspondence:

Yang Yang

cmuyy2007@sina.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

Received: 17 March 2022

Accepted: 08 June 2022

Published: 06 July 2022

Citation:

Liu D, Wan Y, Qu N, Fu Q, Liang C,

Zeng L and Yang Y (2022)

LncRNA-FAM66C Was Identified as a

Key Regulator for Modulating Tumor

Microenvironment and

Hypoxia-Related Pathways in

Glioblastoma.

Front. Public Health 10:898270.

doi: 10.3389/fpubh.2022.898270

LncRNA-FAM66C Was Identified as a
Key Regulator for Modulating Tumor
Microenvironment and
Hypoxia-Related Pathways in
Glioblastoma
Dan Liu 1†, Yue Wan 1†, Ning Qu 2, Qiang Fu 3, Chao Liang 4, Lingda Zeng 5 and Yang Yang 6*

1Oncology Department, Jinzhou Central Hospital, Jinzhou, China, 2Department of Pediatrics, Jinzhou Central Hospital,

Jinzhou, China, 3Department of Neurosurgery, Shengjing Hospital Affiliated to China Medical University, Shenyang, China,
4Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China, 5Department of

Otorhinolaryngology Surgery, Jinzhou Central Hospital, Jinzhou, China, 6Department of Neurosurgery, Jinzhou Central

Hospital, Jinzhou, China

Although the role of hypoxia has been greatly explored and unveiled in glioblastoma

(GBM), the mechanism of hypoxia-related long non-coding (lnc) RNAs has not been

clearly understood. This study aims to reveal the crosstalk among hypoxia-related

lncRNAs, tumor microenvironment (TME), and tumorigenesis for GBM. Gene expression

profiles of GBM patients were used as a basis for identifying hypoxia-related lncRNAs.

Unsupervised consensus clustering was conducted for classifying samples into different

molecular subtypes. Gene set enrichment analysis (GSEA) was performed to analyze

the enrichment of a series of genes or gene signatures. Three molecular subtypes

were constructed based on eight identified hypoxia-related lncRNAs. Oncogenic

pathways, such as epithelial mesenchymal transition (EMT), tumor necrosis factor-α

(TNF-α) signaling, angiogenesis, hypoxia, P53 signaling, and glycolysis pathways, were

significantly enriched in C1 subtype with poor overall survival. C1 subtype showed

high immune infiltration and high expression of immune checkpoints. Furthermore, we

identified 10 transcription factors (TFs) that were highly correlated with lncRNA-FAM66C.

Three key lncRNAs (ADAMTS9-AS2, LINC00968, and LUCAT1) were screened as

prognostic biomarkers for GBM. This study shed light on the important role of hypoxia-

related lncRNAs for TME modulation and tumorigenesis in GBM. The eight identified

hypoxia-related lncRNAs, especially FAM66C may serve as key regulators involving in

hypoxia-related pathways.

Keywords: hypoxia, long non-coding RNAs, molecular subtypes, tumor microenvironment, transcription factors,

FAM66C, biomarkers, bioinformatics analysis

INTRODUCTION

Glioblastoma (GBM) is the most diagnosed cancer type in malignant brain tumors, contributing a
proportion of about 57% within gliomas. Age-adjusted incidence of primary GBM varied greatly
depending countries from 0.51 to 3.21 per 100,000, with a diagnosed peak in older individuals at
the ages between 75 and 79 (1, 2). Genders and race make an effect on the incidence as well. In
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the United States, the male-to-female ratio is 4.00 vs. 2.53 per
100,000, and non-Hispanic whites have the highest incidence (2).
Due to the complex diagnosis and resistance or poor sensitivity of
the brain to chemotherapeutic molecules, GBM presents dismal
prognosis with median overall survival (OS) of 14.4 months (3).
Therefore, understanding the molecular mechanisms underlying
its aggressive behavior may benefit management and targeted
therapies for GBM patients.

Molecular features, such as isocitrate dehydrogenase (IDH)
mutations, TERT promoter mutations, MGMT promoter
methylation, and chromosome 1p/19q co-deletion status,
have been found to serve as indicators for glioma prognosis
and classifications (4, 5). World Health Organization (WHO)
proposes three molecular classifications for GBM, IDH wild-
type (wt) (corresponding to primary GBM), IDH-mutant
(corresponding to secondary GBM), and NOS (lacking
any access to molecular diagnostic testing) (6). Different
molecular features lead to different outcomes or sensitivity to
chemotherapy, which improves accurate treatments for GBM
patients. For example, IDH-mutant status is associated with
longer OS after chemoradiotherapy comparing with wt IDH (7).
Besides chemotherapy and radiotherapy, other strategies, such
as cancer vaccines, oncolytic viral therapies, immune checkpoint
blockade, and chimeric antigen receptor T-cell therapy, have
been developing, and clinical trials are undergoing (8).

Profound understanding of GBM pathogenesis is a basis for
the targeted therapies. Abundant studies have demonstrated
that hypoxia is a critical hallmark of cancer development,
not excluding GBM (9, 10). Rapid tumor cell proliferation
accompanying with an erratic tumor neovascularization leads
to unfavorable oxygen diffusion and thus affects the formation
of tumor microenvironment (TME) (11). Hypoxia inducible
factor (HIF) is a transcription factor (TF) mainly for regulating
hypoxic metabolism, whose upregulation is associated with
worse survival (12, 13). In the regulation of HIF, long non-
coding RNAs (lncRNAs) serve as activators or suppressors for
interfering HIF pathway (14, 15). LncRNAs are recognized as
important regulators serving as onco- and tumor-suppressor
lncRNAs on the activity of TFs, RNA-binding proteins, and
microRNAs. The dysregulation of lncRNAs can alter cancer genes
and cancer cell proliferation synergistically with dysregulated
cancer pathways (16).

A number of studies have explored a series of lncRNAs serving
as biomarkers for GBM, such as HIF1A-AS2 (17), HOTAIR (18),
and HOXA11-AS (19). However, a comprehensive study on the
relation between hypoxia and lncRNAs in GBM has not been
unveiled yet.

In this study, we employed GBM expression profiles from
public databases to explore the role of lncRNAs in hypoxia
and tumor progression. Using hypoxia-related lncRNAs, we
constructed three molecular subtypes for comprehensively
characterizing the link of lncRNAs in orchestrating TME and
controlling tumorigenesis. We found that many oncogenic
pathways and immune-related pathways linked to hypoxia-
related lncRNAs. Unlike with some other cancer types, repeat
tissue sampling is more complicated and risky in GBM patients.
Therefore, effective biomarkers for predicting efficacy and

prognosis before and after treatment are substantially needed.
The study also identified three key hypoxia-related lncRNAs for
potentially applying in GBM patients.

MATERIALS AND METHODS

Data Information
The workflow of this study was shown in
Supplementary Figure S1. Using GDC Application
Programming Interface (API), we downloaded RNA-seq
data of GBM from The Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov/), named as TCGA-GBM dataset.
“mRNAseq_693 (batch 1)” and “mRNAseq_325 (batch 2)”
datasets were downloaded from Chinese Glioma Genome Atlas
(CGGA) database (http://www.cgga.org.cn/), and they were
combined through the function “combat” in sva R package (20),
named as CGGA-GBM dataset. TCGA-GBM and CGGA-GBM
samples (only primary GBM samples were included) with clinical
information were retained (total 151 samples and 218 samples,
respectively). GSE108474 dataset was downloaded from Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/).

Identification of Hypoxia-Related LncRNAs
Hypoxia-related genes were obtained from
“HALLMARK_HYPOXIA” in MSigDB (https://www.gsea-
msigdb.org/gsea/msigdb/). GTF file (GRCh38.p13) was obtained
from GENCODE (https://www.gencodegenes.org/) for dividing
the expression profiles into mRNA and lncRNA. First, expression
of a gene set in hypoxia pathway was used as an input to calculate
hypoxia score for each sample in TCGA-GBM and CGGA-GBM
datasets through single sample GSEA (ssGSEA) in GSVA R
package (21). Then, Pearson correlation analysis was applied
to assess the correlation between hypoxia score and lncRNA
expression in two datasets, respectively. |coefficient| > 0.4
and p < 0.05 were determined to screen lncRNAs, defined as
hypoxia-related lncRNAs.

Unsupervised Consensus Clustering
Unsupervised consensus clustering in ConsensusClusterPlus R
package was implemented to construct molecular subtypes based
on the expression of hypoxia-related lncRNAs (22). PAM and
“canberra” algorithms were selected as measure distance. In total,
500 bootstraps were conducted with each has 80% samples of
training cohort. Consensus matrix and cumulative distribution
function (CDF) were used to confirm the optimal cluster number
k (set from 2 to 10).

Assessment of Genomic Features and
Gene Mutations
The scores of genomic features including aneuploidy,
homologous recombination defects, fraction altered (the
fraction of bases pairs deviating from the baseline ploidy),
number of segments, and tumor mutation burden (non-silent
mutation rate) were obtained from the previous research (23).
The top 20 mutated genes were called by mutect2 tool (Fisher’s
exact test, p < 0.05) (24).
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Gene Set Enrichment Analysis
Gene set enrichment analysis is a statistical method for evaluating
the enrichment of a gene set in a list of gene signatures
ranked by interested phenotypes, such as a pathway with a
bulk of genes (25). We used GSEA to analyze all hallmark
pathways and identify the differentially enriched hallmark
pathways among different molecular subtypes. All hallmark
pathways were collected from MSigDB (v7.4, https://www.gsea-
msigdb.org/gsea/msigdb/) (26). False discovery rate (FDR) <

0.05 was selected to screen significantly enriched pathways.
GSEA was also performed in TME analysis including the
fraction of immune cells and the enrichment of immune
checkpoints. The gene signatures of immune cells and immune
checkpoints were obtained from Senbabaoglu et al. andHisgAtlas
database, respectively (27, 28). ANOVA was performed among
three subtypes.

Estimation of Stromal and Immune Cells in
Malignant Tumors Using Expression Data
Estimation of stromal and immune cells in malignant tumors
using expression data (ESTIMATE) method is conducted for
evaluating the immune infiltration based on a series of gene
signatures through ssGSEA (29). It is a popular tool for
comparing the enrichment of stromal cells and immune cells
between tumor samples and normal samples. Immune score,
stromal score, and ESTIMATE score were calculated, where
ESTIMATE score is the combined score of immune score and
stromal score. ANOVA was conducted among three subtypes.

Tumor Immune Dysfunction and Exclusion
Analysis
Tumor immune dysfunction and exclusion (TIDE) analysis
(http://tide.dfci.harvard.edu) was used to calculate the
enrichment score of three immunosuppressive cells, including
myeloid-derived suppressor cells (MDSCs), M2 tumor-
associated macrophages (TAMs), and cancer-associated
fibroblasts (CAFs) (30). TIDE describes tumor immune escape
through characterizing T-cell dysfunction and T-cell exclusion
based on identified gene signatures, which can predict the
sensitivity to immune checkpoint blockade. The Kruskal–Wallis
test was conducted among three subtypes.

Analysis of the Relation Between LncRNAs
and TFs
Transcription factor activity was calculated according to the
algorithm of Garcia-Alonso et al. (31), and ANOVA was
conducted to screen differential TFs among three subtypes (p <

0.05). Pearson correlation analysis was performed to assess the
relation between nuclear lncRNAs and differential TFs (|R| ≥
0.3, p < 0.05). ClusterProfiler R package was used to annotate
significantly enriched pathways of upregulated TFs (32). The top
10 enriched pathways were visualized (p < 0.05).

First-Order Partial Correlation Analysis
First-order partial correlation analysis can eliminate the effect
of one variable when there are criterion variable and two

predictor variables, which is able to identify meaningful gene–
gene associations (33). The association between the two variables
may be sharply reduced after removing the effect of the third
variable. It was applied to identify key lncRNAs linking hypoxia-
related genes to hypoxia score. The hypoxia score was assumed
to be x, and hypoxia-associated gene expression was y. The
first-order partial correlation between x and y conditioned on
lncRNAs was:

rxylncRNA =
rxy − r∗

xlncRNA
rylncRNA

√

(

1− r2
xlncRNA

)∗
(

1− r2
ylncRNA

)

Construction of a Prognostic Model Based
on Key LncRNAs
Three identified key hypoxia-related lncRNAs were included as
three indictors to establish a prognostic model defining as: risk
score = Σ (beta i × Exp i). Beta represents the coefficients of
univariate Cox regression. Exp represents lncRNA expression
and i represents lncRNAs. Median of risk score was determined
as a cut-off to classify samples into high-risk and low-risk groups.

Statistical Analysis
Statistical analysis was conducted in the R software (4.1.0).
Default parameters were used if there was no indication.
Statistical methods were described in the corresponding sections.
p < 0.05 was considered as significant.

RESULTS

Hypoxia-Related LncRNAs Are Associated
With Hypoxia Score and Survival
Hypoxia is a common characteristic of tumors that has been
linked to poor survival and invasive traits in a variety of cancers,
including GBM.We aimed to build a molecular subtyping system
focusing on hypoxia-related lncRNAs to better understand the
function of hypoxia in characterizing TME. To begin, hypoxia-
related lncRNAs from the hypoxia hallmark pathway were
screened using the Pearson correlation analysis to find lncRNAs
that were strongly connected with hypoxia enrichment score. In
TCGA-GBM and CGGA-GBM datasets, 159 and 65 lncRNAs
were screened, respectively, with an intersection of eight lncRNAs
between two datasets including AC017002.1, ADAMTS9-AS2,
LINC00968, LUCAT1, MIR210HG, AC114730.3, FAM66C,
and MYCNOS (Supplementary Table S1; Figure 1A). Then,
unsupervised consensus clustering was applied based on the eight
lncRNAs in TCGA-GBM dataset. The optimal cluster number k
= 3 was determined by CDF, relative change in area under CDF
curve and consensus matrix (Figures 1B–D). As a result, three
molecular subtypes of C1, C2, and C3 were defined to classify
GBM samples. Not surprisingly, C3 subtype with the lowest
hypoxia score had the longest survival, whereas C1 subtype with
the highest hypoxia score had the worst survival in both TCGA-
GBM and CGGA-GBM datasets (Figures 1E–H), indicating that
the eight hypoxia-related lncRNAs did have a strong correlation
with GBM progression.
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FIGURE 1 | Three molecular subtypes of GBM based on hypoxia-related long non-coding RNAs (lncRNAs). (A) Venn plot of hypoxia-related lncRNA significantly

associated with hypoxia score in TCGA-GBM and CGGA-GBM datasets. Pos and Neg represent positive and negative correlations between lncRNAs and hypoxia

score. (B,C) CDF curve and relative change in area under CDF curve when cluster number k = 2–10. (D) Consensus matrix when k = 3. (E,F) Kaplan–Meier survival

plot of three subtypes in TCGA-GBM and CGGA-GBM datasets. Log-rank test was conducted. (G,H) Hypoxia score of three subtypes in TCGA-GBM and

CGGA-GBM datasets. The Kruskal–Wallis test was conducted. Log-rank test was conducted in (E,F). The Kruskal-Wallis test was conducted in (G,H). ***P < 0.001,

****p < 0.0001. GBM, glioblastoma; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; CDF, cumulative distribution function.

C3 Subtype Has the Highest Proportion of
IDH-Mutant Type
Age and gender were reported to be associated with GBM
occurrence and survival, with that advanced ages had a higher
incidence and poor survival rate (34). Males are more common
to develop GBM comparing with females. We investigated the
distribution of three subtypes in different ages and genders.
Although no significant difference was observed, still a tendency
indicated that older ages had a higher proportion in subtypes with
worse survival in both two datasets (Figures 2A,B). Of genders,
all three subtypes presented higher proportions of males, but no
difference and regularity were observed (Figures 2C,D).

Isocitrate dehydrogenase, 1p/19q, and MGMT promoter
methylation are three important features reported to serve as

prognostic indicators for gliomas (5), with IDH-wt and IDH-

mutant are two WHO classifications for GBM (6). To illustrate

whether a correlation was shown between these molecular
features and lncRNA expression patterns, we analyzed the
distribution of three features in three subtypes. As a result,
we found that C3 subtype had the highest proportion of the
combination of IDH-mutant, 1p/19q co-deletion, and MGMT
promoter methylation (Figures 2E–J), which was consistent
with the previous observations that these three status were
associated with longer survival (4, 5). Especially, a higher
proportion with over than 1/4 of samples in C3 subtype had IDH
mutation in CGGA-GBM dataset (p < 0.05, Figure 2F). IDH
mutation has been demonstrated to have an effect on cellular
metabolism, cancer biology and oncogenesis (35). The above
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FIGURE 2 | The distribution of different clinical features including age (A,B), gender (C,D), and molecular features including IDH (E,F), 1p/19q co-deletion (G,H),

MGMT promoter methylation (I,J) in three subtypes. The upper group is TCGA-GBM dataset and the lower group is CGGA-GBM dataset. ANOVA was conducted.

*p < 0.05. NaNNA, no available data. IDH, isocitrate dehydrogenase; GBM, glioblastoma; TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas.

results supported that the molecular subtyping based on the eight
lncRNAs had a close relation with clinical features and classical
molecular features.

Different Mutation Patterns Among Three
Subtypes
Furthermore, we tried to elucidate if there was a difference of
genomic features among three subtypes. Five aspects, including
aneuploidy, homologous recombination defects, fraction altered
(the fraction of bases pairs present in the copy number
profiles deviating from the baseline ploidy), number of segments
(the total number of segments present in the copy number
profile), and tumor mutation burden, were selected, and
corresponding scores of three subtypes were calculated in TCGA-
GBM dataset (Supplementary Figure S2A). Only homologous
recombination defects and number of segments were shown
to be differential among three subtypes, with a tendency of
samples with worse survival had lower scores. Furthermore,
analysis on the correlation between genomic features and
hypoxia score also revealed a negative correlation of homologous
recombination defects and number of segments with hypoxia
score (Supplementary Figure S2B, R = −0.318, p = 0.000114;
R = −0.396, p = 8.34e−07, respectively), which was accordant
with the result that C3 subtype with the longest survival had the
lowest hypoxia score (Figures 1E–H).

In addition, we analyzed gene mutations of all samples
in TCGA-GBM dataset and screened the top 20 significantly
mutated genes. Overall, C3 subtype had the most mutations
and copy number variations (Supplementary Figure S2C). In
C1 subtype, CKMT1A and MKS1 were mostly mutated with
frequencies of 14 and 11%, respectively. In C2 subtype, DNAH11
and PUM1 consisted of 19 and 15%mutation rate, respectively. In
C3 subtype, PIK3CAmutations contributed a highest proportion
of 21%. Notably, IDH1 was only found to be mutated in C3
subtype, and the majority mutation type was missense, which was
consistent with the previous research that IDH-mutant patients
had longer OS (35). Three subtypes manifested the distinct
mutation patterns that may contribute to distinct prognosis.

Oncogenic Pathways Are Highly Enriched
in C1 Subtype
As three subtypes based on lncRNA expression have been
demonstrated to be associated with survival and molecular
features, we assumed that these eight lncRNAs may be involved
in critical pathways affecting prognosis. By using GSEA on
hallmark pathways for samples in two datasets, significantly
enriched pathways were outputted (FDR < 0.05, Figures 3A,B).
In TCGA-GBM dataset, a total of 38 pathways were dysregulated
with 28 activated and 10 suppressed, comparing with C3
subtype (Figure 3A). In CGGA-GBM dataset, 30 pathways were
activated, and three pathways were suppressed in C1 subtype in
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FIGURE 3 | Differentially enriched pathways among three subtypes. (A,B) Relatively activated and suppressed hallmark pathways of C1 subtype comparing with C3

subtype in TCGA-GBM and CGGA-GBM datasets. Count represents the number of genes. (C) Normalized enriched score (NES) of differentially enriched pathways in

two datasets. (D,E) Rader plots of upregulated pathways of C1 vs. C3 and C2 vs. C3 in two datasets. Dotted circles from inner to outside indicate NES of −4, 0, and

4, respectively.

comparison with C3 subtype. Within these activated pathways,
oncogenic pathways were highly enriched such as epithelial
mesenchymal transition (EMT), tumor necrosis factor-α (TNF-
α) signaling via NFKB, hypoxia, angiogenesis, KRAS signaling,
P53 signaling, and glycolysis pathways (Figure 3C). The above-
enriched pathways have been illustrated to be highly activated
in cancer, and they are commonly activated together with
hypoxia such as EMT and angiogenesis can be induced by
hypoxia (36, 37). Immune-related pathways were also enriched
such as interferon-γ response, inflammatory response, and IL6-
JAK/STAT3 signaling pathways. In comparison with C2 subtype,
these activated pathways were more enriched in C1 subtype
(Figures 3D,E), implying that the eight lncRNAs for subtyping
possibly served as important regulators in activating these
oncogenic or immune-related pathways.

Worse Survival Is Associated With Higher
Immune Infiltration
In most of cancer types, high immune infiltration of
lymphocytes indicates favorable survival. However, due to
immunosuppressive microenvironment of the brain, the relation

between immune infiltration and survival is controversial in
GBM, with most references support the conclusion that high
immune infiltration is correlated with worse survival (38, 39). To
reveal the relation between subtypes and immune infiltration,
we obtained gene signatures of 24 immune cell types from
previous research (27) and evaluated their expression levels
to estimate the proportion of these immune cells. The result
showed that C1 subtype had higher proportion of most immune
cells, such as dendritic cells (DCs), CD8T cells, cytotoxic cells,
macrophages, natural killer (NK) cells, and regulatory T (Treg)
cells (Figures 4A,B). In addition, high activity of angiogenesis
and antigen presenting in C1 subtype also facilitated the
formation of unfavorable TME. The highest stromal score and
immune score were also exhibited in C1 subtype (p < 0.0001,
Figures 4C,D), supporting the result in previous studies that
high immune infiltration was related to unfavorable survival.
Compared with normal samples, tumor samples exhibited
significantly higher immune infiltration, especially in recurrent
samples (p < 0.001, Supplementary Figure S3). Additionally,
unsupervised consensus clustering on gene signatures of immune
cells showed the same conclusion that C1 subtype obviously
had higher immune infiltration than C3 subtype (Figures 4E,F).
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FIGURE 4 | Description of tumor microenvironment (TME) in three subtypes. (A) Estimated proportion (ssGSEA score) of immune cells through GSEA in TCGA-GBM

dataset. (B) Stromal score and immune score of three subtypes calculated by ESTIMATE in TCGA-GBM dataset. (C) Estimated proportion (ssGSEA score) of immune

cells through GSEA in CGGA-GBM dataset. (D) Stromal score and immune score of three subtypes calculated by ESTIMATE in CGGA-GBM dataset. (E,F)

Unsupervised consensus clustering of immune cells for C1 and C3 subtypes. The Kruskal–Wallis test was conducted. ns, no significance. *p < 0.05, **p < 0.01, ***p

< 0.001, ****p < 0.0001.
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FIGURE 5 | Expression of immune checkpoints and the proportion of critical immune cells in three subtypes. (A,B) Immune checkpoints that were differentially

expressed among three subtypes in TCGA-GBM and CGGA-GBM datasets. The vertical axis indicates log (TPM+1) expression value. ANOVA was conducted. (C–H)

Estimated proportion of myeloid-derived suppressor cells (MDSCs), M2 tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) in

TCGA-GBM and CGGA-GBM datasets. The Kruskal–Wallis test was conducted. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Therefore, we inferred that hypoxia-related lncRNAs may
modulate TME through immune-related pathways.

Distinct Expression of Immune
Checkpoints in Three Subtypes
To further understand the mechanism of TME modulation, we
assessed the expression of 21 immune checkpoints for all samples
(28). Obviously, most of immune checkpoints were highly
expressed in C1 subtype (Supplementary Figure S4), indicating
activated immune response and active communication between
immune-related cells. Among these immune checkpoints, 13 of
21 were all highly expressed in C1 subtype in both two datasets,
including ARHGEF5, CD244, CD27, CD274, CD80, CEACAM1,
CTLA4, GEM, HAVCR2, ICOS, IDO1, PDCD1, and TNFSF4
(Figures 5A,B). Upregulation of some immune checkpoints,
such as CD27, CD274 (PD-L1), CTLA4, IDO1, and PDCD1
(PD-1), were reported to be associated with poor survival and
recurrence in gliomas (40–43).

Myeloid-derived suppressor cells and M2 TAMs are believed
to contribute to immune suppression in GBM (38). In both

two datasets, we observed relatively low enrichment of MDSCs
and M2 macrophages in C1 subtype (Figures 5C–F). CAFs
are illustrated to be implicated in angiogenesis, tumor growth,
migration, andmalignancy (44). In our results, CAFs were shown
to be the most accumulated in C1 subtype (Figures 5G,H),
supporting that CAFs play critical roles in leading to tumor-
beneficial TME and tumor progression. Consequently, these
results further supported the reasonability of our molecular
subtyping and indicated the important role of hypoxia-related
lncRNAs in regulating TME.

Hypoxia-Related LncRNAs Are Involved in
Tumorigenesis Through Regulating
Transcriptional Factors
In the previous sections, we identified eight hypoxia-related
lncRNAs and developed three molecular subtypes based on these
lncRNAs. Oncogenic pathways and immune-related pathways
were highly enriched in C1 subtype (Figure 3). Notably, C1
subtype showed high immune infiltration and high expression
of immune checkpoints (Figures 4, 5). Therefore, we suspected
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FIGURE 6 | Exploring the function of hypoxia-related long non-coding RNAs (lncRNAs). (A) Correlation between hypoxia-related lncRNAs and PCGs. (B) Location of

hypoxia-related lncRNAs analyzed by LncATLAS. Positive indicates RCI > 0 and negative indicates RCI < 0. (C) The location of the 8 identified hypoxia-related

lncRNAs. Red indicates RCI > 0 and green indicates RCI < 0. (D) The top 10 TFs negatively correlated to nuclear lncRNAs. (E) The number of activated and

suppressed TFs by comparing C1 with C3. (F) The top 10 enriched pathways of upregulated TFs in C1 subtype. Size indicates gene counts.

that hypoxia-related lncRNAs were involved in promoting
tumorigenesis possibly by regulating expression of genes
contributing to tumor progression. To verify our hypothesis, we
next analyzed the relation between hypoxia-related lncRNAs and
protein-coding genes (PCGs). Significant correlations of whether
positive or negative were observed between them in both two
datasets (Figure 6A), suggesting that hypoxia-related lncRNAs
served as regulators on PCG expression.

Long non-coding RNAs regulate gene expression through
various ways largely depending on the location of lncRNAs.
We then applied LncATLAS to assess the location of hypoxia-
related lncRNAs. According to relative concentration index
(RCI), we found that most of lncRNAs located in the nuclear
(negative, RCI < 0), with 62.06% in TCGA-GBM dataset and
70.19% in CGGA-GBM dataset (Figure 6B). Of eight hypoxia-
related lncRNAs using for subtyping, six of them located in
the nuclear besides AC017002.1 and MYCNOS only locating
in the cytoplasm (Figure 6C). LncRNAs located in the nuclear
were reported to regulate gene expression through interacting
with genes directly or recruiting TFs (45). Therefore, we next

evaluated the TF activity related to the six lncRNAs in three
subtypes based on the algorithm developed by Garcia-Alonso
et al. (31). As a result, a total of 52 and 48 TFs in TCGA and
CGGA datasets, respectively, were screened to be differentially
expressed among three subtypes (Supplementary Tables S2, S3).
Correlation analysis between differential TFs and nuclear-located
lncRNAs identified the top 10 TFs that were all negatively
correlated with lncRNA expression (p < 0.05, Figure 6D).

By comparing the TF activity between C1 and C3 subtypes,
we found the majority of TFs were relatively upregulated in C1
subtype (Figure 6E), and 33 TFs were upregulated in both two
datasets. We inferred that these 33 TFs played key roles in tumor
progression, and thus implemented enrichment analysis on them
to identify key pathways. Not surprisingly, the result showed that
33 TFs were highly enriched in oncogenic pathways including
PI3K-Akt signaling, JAK-STAT signaling, HIF-1 signaling, and
p53 signaling pathways (Figure 6F). Among 33 upregulated TFs,
we observed that lncRNA-FAM66C was strongly and negatively
correlated with 10 of 33 TFs including RELA, FOS, STAT3,
NFKB1, CEBPB, ETS1, SP1, USF2, ETS2, and SMAD3 (R<−0.3,
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FIGURE 7 | LncRNA–TF pairs that exhibited negative correlation (R < −0.3) in both two datasets. Horizontal axis indicates TFs and vertical axis indicates lncRNAs.

PCG, protein-coding gene; TF, transcription factor; RCI, relative concentration index.
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FIGURE 8 | Identifying key hypoxia-related long non-coding RNAs (lncRNAs). (A) First-order partial correlation analysis among hypoxia score, expression of

hypoxia-related genes, and lncRNAs. Green and red curves indicate GSE108474 and TCGA-GBM datasets, respectively. Solid and dotted curves indicate the

correlation between hypoxia score and expression of hypoxia-related genes before and after removing the effect of lncRNAs, respectively. (B) GSEA of hypoxia-related

genes associated with three key lncRNAs. Size indicates gene counts. (C,D) Kaplan–Meier survival plots of high-risk and low-risk groups classified by three key

lncRNAs in TCGA-GBM (C) and CGGA-GBM (D) datasets.

p < 0.05, Figure 7). Some of these TFs have been abundantly
reported to regulate immune response, such as RELA, STAT3 and
SMAD3, suggesting that lncRNA-FAM66C plays a pivotal role in
orchestrating immune response and TME.

Identifying Three Key Hypoxia-Related
LncRNAs With Prognostic Value
As hypoxia-related lncRNAs were illustrated to be highly
associated with hypoxia score, oncogenic pathways and
prognosis, we attempted to identify key lncRNAs serving as
prognostic indicators based on first-order partial correlation
analysis. According to the correlation analysis among hypoxia
score, the expression of hypoxia-related genes, and the six
lncRNAs, we identified three key lncRNAs (ADAMTS9-AS2,
LINC00968, and LUCAT1) that significantly affected the
correlation between hypoxia score and the expression of

hypoxia-related genes when eliminating three lncRNAs in both

TCGA-GBM and CCGA-GBM datasets (Figure 8A). GSEA

on hypoxia-related genes with relation to all three lncRNAs
revealed that immune-related pathways were significantly
enriched including cytokine–cytokine receptor interaction,
IL-17 signaling pathway, TNF signaling pathway, NF-kappa B
signaling pathway, and complement and coagulation cascades
(Figure 8B). In the relation between immune cells and the
three lncRNAs, we observed that the expression of three
lncRNAs were all significantly associated with the enrichment of
macrophages (p < 0.05, Supplementary Figure S5). In addition,
LINC00968 and LUCAT1 were also significantly correlated
with neutrophils and immature DCs (iDCs), whereas cytotoxic
cells and DCs were only correlated with LUCAT1 (p < 0.01,
Supplementary Figure S5). In a pan-cancer analysis of the
relation between LINC00968 and immune infiltration, we
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found its expression also strikingly correlated with the immune
infiltration in other cancer types (Supplementary Table S4).
Moreover, we established a prognostic model based on the
three lncRNAs (Risk Score = 0.1782968∗ADAMTS9-AS2 +

0.1510304∗LINC00968 + 0.1551735∗LUCAT1), and found that
these three lncRNAs were effective to classify samples into high-
risk and low-risk groups in both TCGA-GBM and CGGA-GBM
datasets (Figures 8C,D, p = 0.0052 and p = 0.002, respectively).
In addition, receiver operating characteristic (ROC) analysis
showed that the model had a favorable performance in predicting
prognosis for GBM patients (Supplementary Figure S6).

DISCUSSION

Hypoxia is involved in the formation of cancer hallmarks
such as angiogenesis, TME modulation, and dysregulated
metabolism (10). In the present study, we underlined the critical
role of hypoxia for GBM development through describing
the associations among hypoxia-related genes, hypoxia-related
lncRNAs, TME, and oncogenic pathways. Importantly, we
expanded the possible mechanism of hypoxia in contributing to
modulate TME and promote tumorigenesis.

Based on the eight identified hypoxia-related lncRNAs, we
constructed three molecular subtypes with differential OS. IDH
mutations were found to be the most in C3 subtype, supporting
the previous finding that mutant IDH was a favorable factor
for OS and progression-free survival in GBM patients (46).
It has been reported that IDH-wt glioma stem cells (GSCs)
presented larger transcriptomic changes than IDH-mutant GSCs
in response to hypoxia (47). This significant difference indicates
different mechanisms of two IDH status to hypoxia, which may
contribute to different extent of tumor cell growth.

In the comparison of enriched pathways between C1 and C3
subtypes, a number of oncogenic pathways were significantly
upregulated in C1 subtype, such as EMT, TNF-α, hypoxia,
angiogenesis, and glycolysis. It was reasonable that hypoxia
pathway was more activated in C1 subtype, which proved that
the 8 hypoxia-related lncRNAs contributed an essential part
in regulating hypoxia-related genes. Hypoxia activates HIF-
1 whose overexpression is strongly associated with facilitated
tumor cell migration, metastasis, and angiogenesis (48). EMT is
one of basic mechanisms for tumor cell migration, and HIF-1
pathway is considered as the most important one for hypoxia-
induced EMT (49). In the HIF-1 signaling, immune modulators,
such as interleukin-1 (IL-1) and TNF-α, serve as stimulators to
promote HIF-1 expression (50). Furthermore, HIF-1 is involved
in regulating many genes responsible for glucose metabolism,
which promotes glycolysis through driving phase transition of
key glycolytic enzymes (51). These cascade responses induced
by hypoxia result in the invasive tumor cells and progressive
phenotypes corresponding to C1 subtype.

Tumor microenvironment is known as the important aspect
for understanding anti-tumor response and sensitivity to
immunotherapy. In solid tumors, the existence of hypoxia
is also followed by the TME modulation. Highly enriched
immune-related pathways in C1 subtype such as interferon

gamma response, inflammatory response, IL6-JAK-STAT3, and
IL2-STAT5 suggested a close relation between hypoxia and
these pathways. Actually, C1 subtype also manifested significant
upregulation of a number of immune checkpoints, especially
CD27, CD274 (PD-L1), CTLA4, IDO1, and PDCD1 (PD-1)
whose overexpression was associated with immunosuppressive
response. PD-L1 was demonstrated to be upregulated under HIF-
1 promotion that activated by hypoxia (52). Heiland et al. found
that activated JAK/STAT signaling and CD274 expression were
both shown in tumor-associated astrocytes (40). The inhibition of
JAK/STAT pathway restored activated microenvironment from
the immunosuppressive microenvironment and reduced tumor
cell proliferation in tumor-associated astrocytes. Therefore, we
guessed that HIF-1 upregulated PD-L1 expression through
activating JAK-STAT signaling. In this process, hypoxia-
related lncRNAs may serve as important roles in modulating
gene expression.

Among the eight lncRNAs, some of them have been reported
to be involved in cancer migration and progression in many
cancer types. For example, ADAMTS9-AS2 is considered as
a tumor suppressor in inhibiting the migration of glioma
cells, with the regulation by DNMT1 (53). ADAMTS9-AS2
upregulation also suppresses cancer cell progression in lung
cancer (54), liver cancer (55), and gastric cancer (56). LINC00968
serves as oncogenic or tumor-suppressive roles in different
cancer types. In breast cancer, LINC00968 can attenuate cancer
cell proliferation, migration, and angiogenesis (57). However,
LINC00968 promotes the progression of epithelial ovarian cancer
regulating by ERK and AKT pathways (58). The lung cancer-
related transcript 1 (LUCAT1) has been numerously reported in
contributing cancer cell proliferation, migration, and invasion in
breast cancer, liver cancer, ovarian cancer, and so on, which is
recognized as a potential prognostic biomarker (59). MIR210HG
is also identified as a prognostic lncRNA in glioma (60),
hepatocellular carcinoma (61), and colorectal adenocarcinoma
(62). FAM66C is not much reported compared to the above
lncRNAs, but it is illustrated to promote cell proliferation by
suppressing proteasome pathway in prostate cancer, promote
cancer progression in cholangiocarcinoma and pancreatic cancer
(63–65). MYCNOS also functions as an oncogenic role in
promoting GBM cell proliferation and hepatocellular carcinoma
invasion (66, 67).

As our molecular subtypes based on the eight hypoxia-
related lncRNAs exhibited consistent results with previous
research, we tried to further parse the role of hypoxia-
related lncRNAs in GBM development. As a consequence, we
identified that 33 TFs were significantly upregulated in C1
subtype comparing with C3 subtype. Not surprisingly, JAK-
STAT signaling and HIF-1 signaling pathways were significantly
enriched in these upregulated TFs, indicating the key role
of hypoxia-related lncRNAs in TME modulation possibly by
regulating the expression of 33 TFs. Notably, we identified 10
TFs that were strongly correlated with lncRNA-FAM66C (one
of the eight hypoxia-related lncRNAs). Among these TFs, RELA
was demonstrated to upregulate HIF-1α expression and EMT
in GBM (68). FOS was identified as a hypoxia-induced gene
in a malignant glioma cell line (69). CEBPB (70), ETS-1 (71),
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SP1 (72), USF2 (73), and SMAD3 (74) were all reported to
be associated with hypoxia response in GBM or other solid
tumors. Particularly, STAT3 was also identified to be highly
associated with lncRNA-FAM66C. The results strongly supported
that lncRNA-FAM66C was a pivotal regulator contributing to
the network in hypoxia-related pathways. So far, no research
has reported the function of FAM66C in GBM development.
To further demonstrate its role in hypoxia and tumorigenesis,
strengthened experiments are needed in future.

In addition, we screened three key lncRNAs with prognostic
value for predicting GBM OS in clinical. These three lncRNAs
(ADAMTS9-AS2, LINC00968, and LUCAT1) were also shown
to be key regulators of hypoxia-related genes that were
involved in TNF signaling, IL-17 signaling, and NF-kappa B
signaling pathways.

In conclusion, this study parsed the role of hypoxia-
related lncRNAs in hypoxia, TME and tumorigenesis based
on comprehensive analysis of three molecular subtypes for
GBM. Importantly, we explored the possible mechanisms of
hypoxia-related lncRNAs in modulating oncogenic pathways
and immune-related pathways. Within the eight hypoxia-related
lncRNAs, FAM66C was identified as a critical regulator in
hypoxia-related pathways. Finally, we constructed a prognostic
model according to three key lncRNAs that could act as predictive
biomarkers for GBM patients. However, the non-negligible

limitation of our study was that only pure bioinformatics analysis
was performed. In the future study, wet experiments in more
clinical samples were needed to be figured out for demonstrating
our results.
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