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Abstract

Background: Comparative genomics can leverage the vast amount of available genomic sequences to reconstruct
and analyze transcriptional regulatory networks in Bacteria, but the efficacy of this approach hinges on the ability to
transfer regulatory network information from reference species to the genomes under analysis. Several methods
have been proposed to transfer regulatory information between bacterial species, but the paucity and distributed
nature of experimental information on bacterial transcriptional networks have prevented their systematic evaluation.

Results: We report the compilation of a large catalog of transcription factor-binding sites across Bacteria and its use
to systematically benchmark proposed transfer methods across pairs of bacterial species. We evaluate motif- and
accuracy-based metrics to assess the results of regulatory network transfer and we identify the precision-recall
area-under-the-curve as the best metric for this purpose due to the large class-imbalanced nature of the problem.
Methods assuming conservation of the transcription factor-binding motif (motif-based) are shown to substantially
outperform those assuming conservation of regulon composition (network-based), even though their efficiency can
decrease sharply with increasing phylogenetic distance. Variations of the basic motif-based transfer method do not
yield significant improvements in transfer accuracy. Our results indicate that detection of a large enough number of
regulated orthologs is critical for network-based transfer methods, but that relaxing orthology requirements does
not improve results. Using the transcriptional regulators LexA and Fur as case examples, we also show how
DNA-binding domain sequence similarity can yield confounding results as an indicator of transfer efficiency for
motif-based methods.

Conclusions: Counter to standard practice, our evaluation of metrics to assess the efficiency of methods for
regulatory network information transfer reveals that the area under precision-recall (PR) curves is a more precise
and informative metric than that of receiver-operating-characteristic (ROC) curves, confirming similar findings in
other class-imbalanced settings. Our systematic assessment of transfer methods reveals that simple approaches to
both motif- and network-based transfer of regulatory information provide equal or better results than more
elaborate methods. We also show that there are not effective predictors of transfer efficacy, substantiating the
long-standing practice of manual curation in comparative genomics analyses.
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Background
The availability of complete genome sequences for re-
lated organisms can be effectively leveraged to study
transcriptional regulatory networks (TRN) [1]. In the
past decade, comparative genomics approaches have
been routinely employed to study bacterial transcrip-
tional regulatory networks, or regulons, controlled by a
single transcription factor (TF). These studies have en-
abled the identification of core network elements and
niche-specific adaptations, providing insights into the
evolution of these systems [2–7]. A conventional TRN
comparative genomics analysis typically involves three
well defined steps [1, 8, 9]. The first step consists in the
transfer of available information on the regulatory net-
work (i.e. known TF-binding sites and/or regulated
genes) to the species under analysis, in order to infer the
TF-binding motif in these target species. The second
step involves a genome-wide search for putative TF-
binding sites in the target genomes using the inferred
TF-binding motifs. In the third step, search results from
multiple genomes are integrated across orthologs, based
on the assumption that only orthologs of regulated genes
will systematically display TF-binding sites in their pro-
moter regions.
The power of comparative genomics arises from the ag-

gregation of predictions in multiple genomes under the
assumption of functional selection, which dramatically re-
duces the number of false positives [8]. However, the ef-
fectiveness of this approach depends crucially on the
success of the initial transfer step. Information from a ref-
erence TRN can be transferred though the assumption of
a conserved TF-binding motif, a conserved regulon, or a
combination of the two [1, 6]. As a consequence, several
methods have been proposed to transfer regulatory infor-
mation across species. The simplest approach, here called
“direct transfer”, is to use the reference TF-binding motif
to search for sites in the target genome. The target motif
is hence implicitly defined as a subset of the highest scor-
ing sites in that genome [2–4, 7]. In “direct discovery”, the
direct transfer scheme is further elaborated by applying a
motif discovery or optimization algorithm on a set of high-
scoring sites from the target genome [9, 10]. The alternative
to TF-binding motif-based transfer is to assume conserva-
tion of gene content in the TRN. Regulon or “network
transfer” is typically implemented through the detection of
orthologs for genes in known regulated operons. The pro-
moter regions of the corresponding operons in target ge-
nomes are then analyzed with a motif discovery tool to
elicit the TF-binding motif [11–14]. If network information
is not available, a minimal network consisting only of the
TF-coding gene can be postulated under the assumption of
self-regulation, and the TF-binding motif can be inferred
with motif discovery tools applied to promoter region of
the TF-coding gene [15–17]. Lastly, motif- and network-

based transfer approaches can be combined in “mixed
transfer” to minimize false positives, at the expense of low-
ered sensitivity [6, 9, 18].
The limited availability of experimental data on TF-

binding sites has hindered attempts at systematically
assessing and comparing methods for transfer of tran-
scriptional regulatory networks. Early studies on TRN
transfer indicated that the efficiency of methods based on
TF-binding motif transfer faced a sharp drop-off with in-
creasing sequence divergence among the TF orthologs
[18]. Later studies exposed the limitations of network-
based transfer methods, due to shortcomings in orthology
detection methods and the flexible nature of bacterial
TRNs [19–21]. It has been suggested that mixed transfer
methods provide better results [6], but the scarcity and
distributed nature of TF-binding site data have to date
prevented systematic benchmarking of these methods. In
this work, presented at the 2015 International Symposium
on Bioinformatics Research and Applications [22], we re-
port the mining and integration of experimental TF-
binding site data from multiple databases into a unified
catalog. Leveraging this resource, we performed a system-
atic evaluation of TRN transfer methods across pairs of
species and using multiple metrics. In agreement with pre-
vious reports, our results reveal that motif-based transfer
methods perform best, but decay sharply at high TF se-
quence divergence. In contrast, the efficiency of network-
based transfer methods is poor and weakly dependent of
phylogenetic distance, while mixed methods do not sig-
nificantly improve the results of motif-based transfer
methods. Our analysis also highlights the inadequacy of
receiver-operating-characteristic (ROC) curves in heavily
unbalanced settings and indicates that the precision-recall
(PR) area-under-the-curve (AUC) is the most informative
statistic for assessment of transfer results. We evaluate pre-
dictive measures for transfer accuracy and discuss their ap-
plicability in the context of comparative genomics analyses.

Results and discussion
Data compilation and evaluation of metrics for the
assessment of transfer methods
To perform a systematic analysis of methods for the
transfer of transcriptional regulatory networks in
Bacteria, we compiled data from five major databases
reporting experimentally-validated TF-binding sites
across the Bacteria domain. After consolidating repli-
cates, we obtained a catalog of 7,603 TF-binding sites
for 344 TFs in 166 species (Additional file 1). To analyze
TRN transfer, we focused on TF/species pairs that con-
tained at least 10 binding sites for the same TF in both
species. The resulting dataset contains 179 TF-specific
species pairs for 15 different TFs across 35 bacterial spe-
cies and is dominated by instances of the global tran-
scriptional regulators LexA and Fur (Additional file 2).
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The establishment of an adequate metric is a necessary
and crucial element in a benchmark study. When trans-
ferring TRNs from a reference species to a target species
for comparative genomics, the result of the transfer
process is an inferred TF-binding motif in the target
species. Given the inferred and known TF-binding mo-
tifs in the target genome, one can evaluate the accuracy
of the transfer process by directly comparing the motifs
or by assessing the efficiency of the inferred motif at re-
trieving the known TF-binding sites in a genome search.
Here we focused on the Euclidean distance and the
Kullback–Leibler (KL) divergence as well-established
motif comparison functions based on the position-
specific frequency matrix (PSFM) defined by the motif
[23], and on two standard metrics for classification ac-
curacy based on the area-under-the curve (AUC) derived
from a TF-binding site search process: the receiver-
operating-characteristic (ROC) AUC and the precision-
recall (PR) AUC [24, 25]. To assess the efficacy of each
method at discriminating the efficacy of TRN transfer,

we simulated transfers by defining inferred motifs as
noisy pseudo-replicates or permutations of the known
collection of binding sites in the target genomes
(Additional file 3). We then assessed the quality of these
simulated transfers against the known target motif using
the four metrics outlined above (Fig. 1).
As it can be seen in Fig. 1, both the Euclidean distance

and KL-divergence perform only moderately well at dis-
criminating the results of simulated noisy transfers (con-
taining 50 % and 75 % random sites) from completely
random or permuted motifs. This result is partly due to
the fact that the expectation for random motifs is not to
yield maximum distance, narrowing the useful range of
motif comparison metrics. The two other contributing
factors are the high-dimensionality of TF-binding motifs,
which is known to decrease the relative contrast of L-
norms [26], and the presence of low information bearing
positions in most TF-binding motifs. Low information
positions are intrinsically close in PSFM space, artifi-
cially increasing the similarity between motifs for both

Fig. 1 Comparison of methods for the evaluation of TRN transfer. The plots show the histogram of Euclidean distance, KL divergence, ROC-AUC
and PR-AUC values for simulated bidirectional transfers between 179 TF-specific species pairs using different degrees of noise (10, 25, 50 and
75 % of random sites sampled when creating pseudo-replicates), as well as their random and permuted controls. The y-axis shows the number of
transfers within each binning value on the x-axis. ROC-AUC and PR-AUC values are normalized to the respective AUC of the known target TF-binding
motif to compensate for the decreased search efficiency of low information content motifs
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metrics [27]. As a result, in both cases, random and per-
muted motifs display a considerable spread, leading to
significant overlap with the results obtained for simu-
lated noisy transfers. In practice, transfer methods
frequently generate motifs comparable to the noisy
transfers simulated here, and their overlap with random
controls therefore complicates the interpretation of
transfer results.
Accuracy metrics based on a genome-wide search for

known TF-binding sites should in principle provide a
more informative metric of the effectiveness of the
transfer process, since they evaluate the ability of the in-
ferred motif to locate true binding sites in the target
genome. In contrast with motif comparison methods,
the expectation for accuracy metrics is hence that incor-
rect or random transfers should yield very low AUC
values. However, this does not happen for the ROC-
AUC, a widely adopted metric in bioinformatics [28].
This result is due to the large class imbalance in the TF-
binding search problem, where a handful of known true
sites must be distinguished from the genome back-
ground. Even though ROC curves scale properly with
class imbalance [29], they are ill-suited to discriminate
between classifiers in a heavily imbalanced context, be-
cause the negative class dominates the computation of
the ROC-AUC [30]. The net result of this effect is a
compression of AUC scores for noisy motifs into a very
narrow range (0.9–1.0), making discrimination between
near-optimal and noisy transfers almost impossible. This
compression affects also the results obtained for random
and permuted motifs, which spread all the way up to
0.95 AUC scores, further complicating the interpretation
of transfer results. By focusing on the ratio between true
and false positives (precision) and otherwise ignoring the
negative class, the PR-AUC generates scores are not
compressed by class imbalance [28, 30]. As it can be
seen in Fig. 1, the PR-AUC effectively exploits its range
to discriminate between noisy transfers and systematic-
ally assigns very low values to random and permuted
motifs. Hence, the PR-AUC provides the most effective
metric for the benchmarking of TRN transfer methods
and was used in all subsequent analyses reported here.

Comparison of transfer methods
Motif-based and network-based transfer methods rely on
different assumptions about the evolutionary dynamics of
transcriptional regulatory networks. The former assume
that the TF-binding motif is conserved to some extent,
while the latter assume that the gene components of the
regulon are conserved. As a result, it is presumed that
motif-based methods will perform poorly at large phylogen-
etic distances due to expected divergence in the TF-binding
motif, whereas network-based methods are expected to be
more resilient to phylogenetic distance if the biological

function of the regulatory network is preserved. Interest-
ingly, there is evidence supporting and invalidating both as-
sumptions and their corollaries. The SOS response
transcriptional regulator LexA, for instance, has been
shown to target widely diverging motifs in relatively close
species [31], whereas some transcriptional regulators, like
the heat-shock response repressor HrcA or the arginine re-
pressor ArgR, are known to preserve their binding motif
across Bacteria to different extents [3, 32]. On the other
hand, regulon composition has been documented to vary
significantly even among closely related species [4–6, 21].
Furthermore, CRP/FNR-type regulators have been shown
to control completely different networks using closely re-
lated motifs across Bacteria [33, 34].
Here we tested the robustness of TRN transfer methods

by evaluating the PR-AUC of inferred TF-binding motifs
in 179 TF-specific species pairs, using three motif-based
and three network-based methods, as well as a combin-
ation of motif- and network-based methods (Additional
file 4). The motif-based transfer methods include direct
transfer and direct discovery methods. In direct transfer,
the reference collection of TF-binding sites is used directly
to determine the inferred collection by searching pro-
moter regions in the target genome. In direct discovery,
the results of a relaxed search and their surrounding re-
gions are used as input for a motif discovery algorithm,
with the goal of generating a motif better adapted to the
target genome. The network-based transfer methods eval-
uated differ in how they map genes regulated in the refer-
ence genome to the target genome. This mapping can be
based on the detection of direct orthology for genes in
regulated operons, their functional assignment using Clus-
ters of Orthologous Groups (COGs) or orthology detec-
tion using their interacting network partners. The mixed
approach combines a relaxed TF-binding motif search
with the restriction that identified sites must be associated
with genes mapped with any of the three network-based
transfer approaches.
In agreement with previous research, the results

shown in Fig. 2 reveal that the effectiveness of motif-
based transfer methods declines rapidly with decreasing
sequence similarity between the TF protein sequences
[18]. In contrast, the results of network-based transfer
methods show only moderate correlation with protein
sequence similarity, but these methods perform poorly
when compared to motif-based transfer methods.
Among the three mapping modes analyzed for network-
based transfer, the direct ortholog mode provides the
best results, but is still only able to generate successful
transfers in 15 % of the cases. The poor efficiency of
network-based transfer methods supports previous re-
search highlighting the evolutionary flexibility of bacter-
ial transcriptional regulatory networks, which decreases
their expected overlap in gene composition [5, 19–21].
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The low efficiency of network-based transfers could
therefore stem from an inability of these transfer
methods to identify conserved regulated genes (low re-
call) or from the inclusion of too many orthologs with-
out conserved regulation in the transfer process (low
precision). The interplay between these factors should
explain the significant differences observed between net-
work transfer modes, since these variants are intended
to progressively relax the concept of orthology in order
to enhance recall. To analyze their relative contributions,
we computed the Spearman correlation coefficient be-
tween the search PR-AUC reported in Fig. 2 and the
precision/recall of the network transfer process for the
different transfer modes. We find that recall (ρr = 0.115),
rather than precision (ρp = 0.106), is the dominant factor
for the more restrictive ortholog mode. This indicates
that detecting enough orthologs with conserved regula-
tion is critical for proper motif inference. However, the
situation is reversed for the more relaxed COG (ρr =
0.089; ρp =0.191) and interaction (ρr = -0.108; ρp =0.140)
modes. These results suggest that the increase in
mapped orthologs that are not regulated in the target
genome (loss of precision) overcomes any substantial

enhancement in recall achieved by relaxed mapping
modes (Additional file 5).
In contrast with network-based transfer methods, the

different implementations of motif-based transfer yield
very similar results (Fig. 2). Using the reference motif to
search promoter regions and define the putative target
motif (direct transfer) provides results comparable to
those obtained with other motif-based transfer methods
and robust with respect to the specific threshold used to
define the motif (Additional file 6). The use of MEME in
direct discovery transfers to rediscover the TF-binding
motif, which has been postulated to refine and better
adapt the inferred motif to the target genome [10], does
not provide significant improvements over direct trans-
fer. In fact, when performing motif discovery on the pro-
moter region surrounding the identified sites, MEME
may identify other genomic elements (e.g. Pribnow
boxes) as the best motifs, decreasing the accuracy of the
method. Performing motif inference on the identified
sites surrounded by random promoter regions prevents
this effect, but does not yield a systematic improvement
in PR-AUC values over direct transfer. Finally, the mixed
mode approach, which has been associated with

Fig. 2 Comparison of TRN transfer methods. The plots show the PR-AUC of bidirectional transfers between 179 TF-specific species pairs using
motif-based (direct transfer, direct discovery with true intergenic and direct discovery with random intergenic) and transfer-based methods (ortholog,
COG and interaction modes), as well as a mixed model integrating direct transfer and the union of all network-based transfer methods. The results
obtained with a permutation of the target motif are shown for comparison. The x-axis denotes protein similarity as the BLOSUM62 score of the
ungapped pair-wise alignment between reference and target TF protein sequences. PR-AUC values are normalized to the respective AUC of the
known target TF-binding motif to compensate for the decreased search efficiency of low information content motifs. Spearman correlation coefficients
(ρ) of PR-AUC with protein similarity are shown for each case
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enhanced specificity [6, 9], did not yield a systematic im-
provement over direct transfer either.

Predictive indicators of transfer accuracy
Our comparative analysis of transfer methods (Fig. 2) indi-
cates that, even at relatively close phylogenetic distances,
both motif- and network-based transfer methods may pro-
vide inaccurate results. Hence, manual curation of transfer
results, which has been the de facto standard for compara-
tive genomics of TRN in Bacteria [2, 4, 8, 35], appears to
be a necessary requisite to ensure the reliability of any
subsequent comparative genomics analyses. Leveraging
the TF-binding site catalog compiled here, we attempted
to identify predictive indicators of transfer accuracy for
motif- and network-based transfer methods. Several stud-
ies have exploited sequence similarity in the DNA-binding
domain of the TF as a criterion for clustering putative
regulatory regions in motif discovery [15, 17, 33, 36]. The
rationale for this approach is that similar DNA-binding

domains will target conserved TF-binding motifs. Hence,
it is plausible to assume that DNA-binding domain se-
quence similarity could be an efficient predictor of trans-
fer accuracy for motif-based transfer methods.
To test whether DNA-binding domain sequence simi-

larity is a good predictor of transfer accuracy, we exam-
ined transfer accuracy for two transcription factors
(LexA and Fur) on which we had abundant TF-binding
site data and for which the DNA-binding domain has
been experimentally determined [37, 38]. The results
shown in Fig. 3 reveal that DNA-binding domain se-
quence similarity is not a universal predictor of transfer
accuracy. For LexA, DNA-binding domain sequence
similarity shows a clear correlation (Spearman ρ = 0.81)
with motif-based transfer accuracy, but this correlation
is completely absent for Fur (ρ = 0.01). Our results there-
fore suggest that for transcription factors (like Fur) tar-
geting a conserved binding motif, the efficiency of motif-
based methods will not significantly decrease with

Fig. 3 Assessment of protein sequence similarity as a predictor of TRN transfer method accuracy. The plots show the PR-AUC of bidirectional
transfers between 143 (66 LexA, 77 Fur) TF-specific species pairs using motif-based (direct transfer) and transfer-based methods (ortholog mode) as
a function of TF protein sequence similarity. The results obtained with a permutation of the target motif are shown for comparison. The x-axis
denotes protein similarity as the BLOSUM62 score of the ungapped pair-wise alignment between reference and target TF protein sequences.
PR-AUC values are normalized to the respective AUC of the known target TF-binding motif to compensate for the decreased search efficiency of
low information content motifs. Spearman correlation coefficients (ρ) of PR-AUC with protein similarity are shown for each case
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sequence divergence in the DNA-binding domain. In
contrast, and in agreement with previous findings [18],
the accuracy of motif-transfer methods is expected to de-
crease sharply for LexA and other transcription factors
that have significantly altered their binding specificity
through evolution. In this context, DNA-binding domain
sequence similarity provides a more accurate indicator of
transfer efficiency than phylogeny (Additional file 7).
The results shown in Fig. 3 also indicate that DNA-

binding domain sequence similarity correlates weakly with
accuracy for network-based transfer methods. DNA-
binding domain sequence similarity is a proxy for phylo-
genetic distance (Additional file 7), and the observed loss
of accuracy of network-based transfer methods is hence
congruent with decreased overlap in the components of
regulatory networks for increasing phylogenetic distances
[5, 6, 21]. It is possible, however, to conceive of other mea-
sures that might function as predictive indices of transfer
accuracy for network-based transfer methods. These
methods rely on motif discovery algorithms, like MEME,
to infer the functional motif for the transcription factor in
the target species, providing some theoretical bounds on
expected properties of the inferred motifs. For instance,
the information content (IC) of a TF-binding motif is
known to correlate with the number of operons regulated
by the TF [39]. Hence, if the size of the regulatory network
is assumed to remain relatively constant, we expect the IC

of the inferred TF-binding motif to be similar to that ob-
served in the reference species. In a similar vein, the dis-
tribution of information in a TF-binding motif is related
to the structure of the TF and its mode of binding (e.g.
homodimers typically target palindromic motifs) [17, 32,
40]. It follows that measures of information distribution in
inferred TF-binding motifs, such as the Gini coefficient
[41], should not differ much between reference and in-
ferred motifs under the assumption of conserved protein
structure. We analyzed the predictive power of these indi-
ces on PR-AUC using the complete TF-binding site cata-
log (Fig. 4). While neither index can reliably identify
successful transfers, both indices reveal clear cutoff values
beyond which accurate transfers should not be expected.
For both IC and Gini coefficient, a relative index of 0.5
with respect to the known reference motif is a strong indi-
cator of unsuccessful transfer (96 % and 94 % unsuccessful
transfers for IC and Gini relative values below 0.5, com-
pared to 83 % for both IC and Gini values above 0.5), and
the evidence suggests that this may also be true for IC and
Gini values above 2.

Conclusions
Transferring known information about transcriptional
regulatory networks from reference to target species is a
critical step in comparative genomics analyses. In this
work, we compiled a catalog of known TF-binding sites

Fig. 4 Assessment of IC (left) and Gini coefficient (right) as predictive indices of accuracy for network-based transfer methods. The plots show the
distribution of PR-AUC from bidirectional transfers between 179 TF-specific species pairs using network transfer (ortholog mode), with respect to
each index. PR-AUC values are normalized to the respective AUC of the known target TF-binding motif to compensate for the decreased search
efficiency of low information content motifs. IC and Gini coefficient values are normalized to those observed on the known reference motif. The
dotted vertical line designates 0.5 normalized motif IC/Gini. The dotted horizontal line identifies the PR-AUC value (0.056) two standard deviations
above the mean obtained from simulated transfers with permuted motifs.
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in Bacteria and performed a methodic evaluation of as-
sessment metrics in order to perform the first systematic
analysis of different transfer methods. Our results iden-
tify the precision-recall area-under-the-curve as the
most reliable metric for transfer efficiency. We also show
that motif-based transfer methods dramatically outper-
form network-based approaches, but their efficiency may
decrease sharply with increasing phylogenetic distance.
We evaluate some predictive indicators of transfer ac-
curacy and show that they are not consistent or precise
enough to enable full automation of TRN transfer. Our
results hence support the long-standing practice of man-
ual curation in comparative genomics analyses and re-
veal that the introduction of more elaborate methods
does not clearly benefit motif- or network-based transfer
approaches.

Methods
TF-binding site and genome data
Experimentally-validated TF-binding sites were compiled
from CollecTF [42], a Bacteria domain-wide TF-binding
site database, and four model-organism databases: Regu-
lonDB, CoryneRegNet, DBTBS and MtbRegList [43–46].
Data from these databases was downloaded and merged
after removal of duplicates and of data without support-
ing experimental evidence. To evaluate transfer methods
across pairs of species, only regulons with at least 10
experimentally-validated TF-binding sites for a given TF
in both species were used. Complete genome sequences
and annotations for species with available TF-binding
site data were downloaded from the NCBI RefSeq data-
base [47]. Operon predictions for all genomes and COG
annotations for protein-coding genes were obtained
from the DOOR database [48, 49].

TF-binding site search and motif discovery
For TF-binding site search, only the regions spanning
from −300 bp to +50 bp relative to the corresponding
gene translation start site were considered. Site search
was implemented using custom scripts based on stand-
ard Biopython library functions [50]. The searched re-
gions were scanned with a sliding window, evaluating
each position with a position-specific scoring matrix
(PSSM) based on a uniform background mononucleotide
model [51]. Motif discovery on selected sequences was
performed with MEME, using command line settings
-zoops -revcomp -dna, and maximum and minimum
motif widths, respectively, of 150 % and 50 % of the ref-
erence motif width [52].

Transfer methods
Two main motif-based transfer methods were imple-
mented. In direct transfer, a position-specific scoring
matrix (PSSM) is built from the reference collection of

binding sites and used to scan the promoter regions of
the genome of interest to identify putative sites [51].
Under the assumption that regulon size is conserved to
a first approximation, the target motif is defined as com-
posed of the highest scoring NT sites. NT = α ·NR · GT/
GR, where NR is the number of sites in the reference spe-
cies, GT and GR are genome lengths for target and refer-
ence species, respectively, and α is used as a scaling
factor to modulate specificity (α = 1.25). Direct discovery
uses a relaxed scaling factor α (α = 2.50) to generate a
larger collection of putative sites. These sites and their
adjoining intergenic regions are used to rediscover the
TF-binding motif with MEME in direct discovery with
true intergenic. For direct discovery with random inter-
genic, the genomic intergenic regions are substituted by
100 bp stretches randomly generated following the inter-
genic region nucleotide frequencies.
Network-based transfer was implemented using three

different criteria to map regulated genes in the reference
genome to target genomes. In ortholog mode, orthologs
of all genes belonging to regulated operons were de-
tected as best reciprocal BLAST hits between species
pairs using a minimum e-value threshold of 10−10 [53].
In COG mode, all genes in the target genome mapping
to the same COG as genes in regulated operons of the
reference genome were considered functional orthologs.
In interaction mode, direct interacting partners for regu-
lated genes in the reference genome were identified
using the STRING database [54]. The orthologs of these
genes on target genomes were detected through recipro-
cal BLAST and used to define putative regulatory net-
works. In all three cases, the promoters of all target
operons containing mapped genes were then used for
motif discovery with MEME.
Mixed transfer uses a relaxed (α = 2.50) TF-binding

site search with the reference TF-binding motif to define
a set of putative sites in the target genome. This collec-
tion of putative sites is filtered by retaining only those
sites next to operons containing genes that have been
mapped to the target genome by any of the network-
based transfer methods.

Assessment metrics
Two main types of assessment metrics were used to
gauge the efficacy of TF motif-based transfer methods:
motif comparison and performance metrics. Motif com-
parison methods involve the direct comparison of the
TF-binding motifs inferred by the transfer method and
the motif generated from the known collection of regu-
lated genes in the target genome. To compare motifs of
different lengths, the two collections of binding sites are
shifted with respect to each other to obtain the gapless
alignment that maximizes the information content (IC)
of the joint collection [39]. The aligned region of each
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collection is then used to compute its position-specific
frequency matrix (PSFM). The similarity between the two
PSFM is evaluated using either the Euclidean distance or
the Kullback–Leibler (KL) divergence of the inferred motif
from the known target motif [23]. Performance metrics
evaluate the ability of the inferred motif to retrieve the
known target sites when searching an equal number of pro-
moter regions from the target genome containing, and not
containing, known sites. To assess true positives, the max-
imum IC alignment between target and inferred collections
is used to compute the offset between predicted and known
sites. The accuracy of the search using the inferred TF-
binding motif is then evaluated as the area-under-the-curve
(AUC) of the receiver-operator-characteristic (ROC) or
precision-recall (PR) curve, computed with the scikit-learn
Python library functions [24, 25].
Control experiments for TRN transfer were generated

in two different ways. Noisy transfers were simulated by
defining the inferred motif as a mixture pseudoreplicate
of the known target collection and sequences from the
promoter region of the target genome. Given a mixture
weight ω, the pseudoreplicate is obtained by sampling,
with replacement, (1-ω) ·N sites from the known target
collection and ω ·N sequences of length L from the pro-
moter region of the target genome (where N and L are,
respectively, the number and width of sites in the known
target collection) (Additional file 3). Noisy transfers were
generated for 0.1, 0.25, 0.5 and 0.75 values of ω, simulat-
ing increasingly inefficient transfers. Permuted transfers
were obtained by randomly sampling, without replace-
ment, the columns of the known target motif. A transfer
was considered successful if its PR-AUC was larger than
two standard deviations above the mean PR-AUC value
observed for permuted transfers.
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