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High-density lipoprotein (HDL) have long been studied for their protective role against

cardiovascular diseases, however recently relationship between HDL and cancer came

into focus. Several epidemiological studies have shown an inverse correlation between

HDL-cholesterol (HDL-C) and cancer risk, and some have even implied that HDL-C can

be used as a predictive measure for survival prognosis in for specific sub-population of

certain types of cancer. HDL itself is an endogenous nanoparticle capable of removing

excess cholesterol from the periphery and returning it to the liver for excretion. One of

the main receptors for HDL, scavenger receptor type B-I (SR-BI), is highly upregulated

in endocrine cancers, notably due to the high demand for cholesterol by cancer cells.

Thus, the potential to exploit administration of cholesterol-free reconstituted or synthetic

HDL (sHDL) to deplete cholesterol in endocrine cancer cell and stunt their growth of

use chemotherapeutic drug loaded sHDL to target payload delivery to cancer cell has

become increasingly attractive. This review focuses on the role of HDL and HDL-C in

cancer and application of sHDLs as endocrine cancer therapeutics.

Keywords: High-density lipoprotein (HDL), Apolipoprotein A-I (ApoA-I), endocrine cancer, cholesterol, cancer

therapy

INTRODUCTION

Endocrine cancers are defined as those affecting the hormone secreting tissues of our body,
including cancers of the adrenal, thyroid, parathyroid, prostate, pancreatic, and reproductive
tissues. A rare subset of endocrine cancers, called neuroendocrine tumors (NETs), are neoplasms
originating in endocrine tissue that migrate to form hormone-secreting tumors in other organs of
the body, including intestine, lung, and pancreas (1). While specific molecular signatures may vary
among the different types of endocrine cancers, they all share a commonmodality which is essential
for tumor cell proliferation and overall survival: a high demand for cholesterol (2–4).

Cholesterol is a precursor molecule for steroid synthesis and bile acid production, making
it essential for hormone production by endocrine tissue (5). Cholesterol is also an important
component of cellular membranes, offering structure and rigidity to the plasma membrane as
well as clustering with sphingolipids and glycerophospholipids to form highly-stable membrane
microdomains or “lipid rafts” that host a number of proteins and lipids involved in key cell signaling
pathways (6). In cancer, rapid cellular division is needed for the growth and survival of the tumor.
Hence, a large demand for cholesterol is needed to facilitate the rapid formation of newmembranes
(3). Endocrine cancers in particular, display an even higher demand for cholesterol due to increased
hormone and steroid production by these cells (7, 8).
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A hydrophobic molecule, cholesterol has very poor aqueous
solubility and thus is transported throughout the body by
lipoproteins. Under normal conditions, HDL is a key participant
in the reverse cholesterol transport (RCT) pathway, a process
by which excess cholesterol from peripheral tissue is taken up
by HDL and transported back to the liver for secretion in
the bile or for redistribution to endocrine tissue for steroid
production. Historically, HDL-C has been the focus of lipid
metabolism modulating therapeutics for cardiovascular diseases,
as high HDL-C or “the good cholesterol” and low LDL-C
“bad cholesterol” have been well established as markers of
cardiovascular health. Specifically, nascent HDL has the ability
to reduce the burden of atherosclerosis by depleting foam-cell
macrophages of their cholesterol and reducing inflammation
and oxidation in the surrounding atheroma environment
(9, 10). In this review, we will summarize what is known
about the association between HDL-C levels and cancer and
examine the utility of reconstituted or synthetic HDL as a
potential therapeutic and drug delivery vehicle for endocrine
cancers.

HDL-C IN CANCER

HDL is an endogenous, nanosized particle composed
apolipoproteins, and lipids (11). Naturally, these particles
range in shape, size, density, and charge depending on their
lipid composition, protein cargo, and degree of maturation
(11). The main protein component of HDL, apolipoprotein
A-I (ApoA-I), is initially synthesized in the liver where it is
subsequently secreted into the circulation. Once secreted,
ApoA-I picks up a small amount of lipid to form pre-β HDL
particles. These nascent, cholesterol-poor discs can then further
interact with cholesterol-rich cells of the periphery to take up
and deliver that cholesterol back to the liver where it is taken up
via scavenger receptor type B-I (SR-BI) for secretion or further
processing. Once picked up by HDL, cholesterol is esterified by
lecithin:acyl cholesterol transferase (LCAT) to form cholesterol
ester. Cholesterol ester is then buried within HDL’s hydrophobic
lipid core, inducing the maturation and formation of larger,
spherical HDL particles. Spherical HDL particles contain not
only ApoA-I, but also ApoE, which facilitates the growing load
of CE into the hydrophobic core since ApoA-I can only facilitate
a limited amount of CE in the HDL core. ApoE is also useful in
that it is a substrate for low-density lipoprotein receptor (LDLR)
and can deliver HDL cargo to hepatic LDLR for biliary excretion
or to endocrine tissue expressing LDLR or SR-BI for use in
steroid production (12, 13).

HDL is highly heterogeneous and is present in a variety
of different forms depending on its size, shape, density, and
lipid/protein composition. This is a result of HDL remodeling,
which is a continuous process involving several endogenous
enzymes (14). Put simply, HDL can be continually and
reversibly recycled between lipid-poor apoA1, discoidal HDL,
and small/large/larger spherical HDLs. These subsets of HDL
are classified into two groups, HDL2 and HDL3, based on
their densities (11, 15). HDL2 is lipid-rich and less dense

(1.063–1.125 g/mL) than its HDL3 counterpart, which is
dense (1.125–1.21 g/mL) protein-rich in comparison (11).
Both HDL2 and HDL3 can be further divided into 2 and
3 subclasses, respectively, based on their size; HDL3 ranges
in size from roughly 7–9 nm in diameter while HDL2 ranges
from about 9–12 nm (11). To further complicate things, HDL
can also be classified according to its surface charge and
shape. Spherical, more neutral HDL particles are classified
as α-HDL, while nascent, discoidal HDL particles, known as
β-HDL, are poorly lipidated and more negative in overall
charge.

In addition to the existing variety of subpopulations in
healthy individuals, HDL particle makeup can vary significantly
among patients of different disease states (16). Particularly, recent
studies have identified changes in the diverse proteome of HDL
particles in the various disease states (17, 18). While ApoA-I
is the main protein in HDL, other proteins including ApoA-
II, ApoC, paraoxanase (PON), ApoM, and serum amyloid A
(SAA) have been identified and can be altered under disease
conditions (19–21). The lipid composition of HDL particles can
also vary with disease (22), and chronic changes in the HDL
lipidome have been attributed to the high inflammatory state of
various diseases, including the presence of lysophosphatidic acid
(LPA), a phospholipid implicated in the progression of several
endocrine cancers (23–25). Under such conditions, including
atherosclerosis and lupus, HDL isolated from patients is said to
be dysfunctional or proinflammatory, and its abilities to carry out
cholesterol efflux and exert anti-inflammatory properties are lost
(26–31). Similarly, studies have shown that HDL can promote
breast cancer metastasis, which is attributed to the alterations in
HDL’s lipid and protein compositions under inflammatory and
oxidative conditions (32, 33).

Epidemiology
A number of observational studies and retrospective study
analyses have shown that plasma HDL-C and ApoA-I levels
are significantly reduced in cancer patients, including those
with breast, ovarian, colon, prostate, and pancreatic carcinomas
(34–50). These studies are summarized in Table 1. A number
of studies also sought to investigate the predictive power of
HDL-C or ApoA-I levels in subsets of cancers and found that,
when combined with other traditional cancer biomarkers cancer
antigen 125 (CA125) and transthyretin (TTR), either ApoA-
I or HDL-C levels significantly increased the power of these
panels to predict patient prognosis (52, 54–58). In some cases,
however, there were no significant associations between HDL-
C, ApoA-I, and cancer risk (51). This is likely due to differences
in study design and evaluation as well as the methods used to
quantify HDL-C and ApoA-I. For example, direct measurements
of HDL-C are generally performed by mass precipitation and
can be confounded by the presence of ApoE and other proteins.
Other methods directly measure HDL particles via size and
charge separation using density gradient ultracentrifugation, gel
filtration, high performance liquid chromatography (HPLC), and
nuclear magnetic resonance (NMR) among others. Each of these
techniques has its drawbacks, and is generally bias toward one
or more subpopulation of HDL or risks chemical modification of
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TABLE 1 | Clinical relationships between HDL-C and endocrine cancers.

Cancer Study design Major findings References

Breast • Preoperative serum lipid profile (TC, TG, HDL-C,

LDL-C, ApoAI, ApoB) and the clinical data were

retrospectively collected for 1,044 breast cancer

patients undergoing operation

• Kaplan-Meier method and the Cox proportional

hazards regression model were used in analyzing the

OS and DFS

• Preoperative lower TG and HDL-C level were risk

factors of breast cancer patients

• Decreased HDL-C associated with lower OS rate

• Decreased TG associated with lower DFS rate

(49)

Multiple • Twenty-six studies including 24,655 individuals

identified via PubMed and EMBASE

• Meta-analysis to investigate the prognostic

significance of serum blood TC, TG, HDL-C, and

LDL-C for cancer

• Patients with higher HDL-C had a 37% reduced risk of

death compared with lower HDL-C

• DFS patients with higher HDL-C level had the risk of

disease relapse reduced by 35% compared with

patients with lower levels.

(50)

Breast • Examined the possible association of low HDL-C with

incidence of breast cancer using data from the

Atherosclerosis Risk in Communities Study (ARIC)

cohort

• Among 7,575 female members of the ARIC cohort,

359 cases of incident breast cancer were ascertained

during the follow-up from 1987 through 2000

• No association of low baseline HDL-cholesterol (<50

mg/dL) with incident breast cancer in the total sample

and a modest association among women who were

pre- menopausal at baseline. No association was

observed among women who were post-menopausal

at baseline

• Low HDL-cholesterol among pre-menopausal women

may be a marker of increased breast cancer risk

(51)

Multiple • Assess the relationships of TC, TG, HDL-C, ApoA,

ApoB-100, Lp(a) with risk of common cancer forms,

and total cancer mortality in comparison to incidence

and mortality of CVD

• Case-cohort sample out of the prospective

EPIC–Heidelberg study, including a random subcohort

(n = 2,739), and cases of cancer (n = 1,632), cancer

mortality (n = 761), CVD (n = 1,070), and CVD

mortality (n = 381).

• High TC, HDL-C, ApoA, and Lp(a) levels were

associated with a reduction in total cancer mortality

• High levels of apoB-100 and TG were inversely

associated, and high HDL-C levels were positively

associated with breast cancer risk

• Higher levels of Lp(a) were associated with an increase

in prostate cancer risk

(48)

Multiple • Serum TC, LDL-C, HDL-C, and TG were analyzed in

530 patients with newly diagnosed cancer (97 with

hematological malignancies, 92 with tumor of the lung,

108 of the upper diges- tive system, 103 of colon, 32

of breast, and 98 of the genitourinary system) and in

415 non-cancer subjects

• TC, LDL-C, HDL-C, SA, and BMI were significantly

lower in cancer than in non-cancer subjects; similar

trend for metastatic vs. non-metastatic cancer patients

• Lowest values of TC, LDL-C, and HDL-C recorded in

patients with hematological malignancies

• Highest values of TC, LDL-C, and HDL-C in patients

with breast tumor

(36)

Renal cell

carcinoma

• Preoperative serum lipid-profile (TC, TG, HDL-C,

LDL-C, ApoA- I, and ApoB) were retrospectively

performed in 786 patients with RCC

• Patients with low ApoA-I (<1.04) had significantly

lower OS than the high ApoA-I

• In the 755 patients with nonmetastasis, the low ApoA-I

group was also associated with shortened DFS time

compared to the high ApoA-I group

(47)

Pancreatic • Identify and validate new biomarkers in PCa patient

serum samples

• 96 serum samples from patients undergoing PCa

surgery was compared with sera from 96 healthy

volunteers as controls.

• Apolipoprotein A-II, transthyretin, and apolipoprotein

A-I were identified as markers

• These identified proteins were decreased at least

2-fold in PCa serum compared with the control group.

(52)

Multiple • A retrospective cohort study of 14,169 men and

23,176 women with type 2 diabetes to investigate the

relationship between HDL cholesterol (HDL-C) and

cancer risk among type 2 diabetic patients

• During a mean follow-up period of 6.4 years, 3,711

type 2 diabetic patients had a cancer diagnosis

• A significant inverse association between HDL-C and

the risk of cancer was found among men and women

• Suggests an inverse association of HDL-C with cancer

risk among men and women with type 2 diabetes,

whereas the effect of HDL-C was partially mediated by

reverse causation

• Each 15 mg/dL increase in baseline HDL-C was

associated with an 8–10% decreased risk of cancer in

men and a 1–7% decreased risk of cancer in women

with type 2 diabetes

(44)

Breast • Review and meta-analysis of prospective studies

investigating associations between TC, HDL-C, and

LDL-C levels and the risk of breast cancer

• Evidence of a modest inverse association between TC

and more specifically HDL-C and the risk of breast

cancer

• No association observed between LDL-C and the risk

of breast cancer

(45)

(Continued)
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TABLE 1 | Continued

Cancer Study design Major findings References

Multiple • Evaluated the prospective association of total, breast,

colorectal, and lung cancers and cancer mortality with

lipid biomarkers in 15,602 female health professionals

in the Women’s Health Study (aged ≥45 y, free of

cardiovascular disease and cancer, and without

hormone replacement therapy or lipid-lowering

medications at baseline)

• Included 2,163 incident cancer cases (864 breast, 198

colorectal, and 190 lung cancers) and 647 cancer

deaths

• Total cancer risk significantly lower for the highest

quartile of ApoA-1

• Significant associations included colorectal and lung

cancer risk with HDL cholesterol

• LDL cholesterol was not significantly associated with

risk of total cancer or any site-specific cancers

(46)

Multiple • Prospective examination of the association between

TC and cancer incidence among 1,189,719 Korean

adults enrolled in the National Health Insurance

Corporation

• Over follow-up, 53,944 men and 24,475 women were

diagnosed with a primary cancer

• High TC (≥240 mg/dL) was positively associated with

prostate cancer and colon cancer in men and breast

cancer in women

• Higher TC was associated with a lower incidence of

liver cancer, stomach cancer, and, in men, lung cancer

• TC was inversely associated with all-cancer incidence

in both men and women

• TC was associated with the risk of several different

cancers, although these relationships differed

markedly by cancer site

(42)

Multiple • Examined the relationship between serum HDL-C and

risk of overall and site-specific cancers among 29,093

Finnish male smokers in the Alpha-Tocopherol

Beta-Carotene (ATBC) study cohort

• 7,545 incident cancers were identified during up to 18

years of follow-up

• Higher serum TC inversely associated with cancer risk

• Greater HDL-C levels associated with decreased risk

of cancer of the lung, prostate, liver, and

hematopoietic system

• Largely explained by reverse causation

(40)

Multiple • Systematic analysis of 24 lipid intervention randomized

controlled trials (76,265 intervention patients and

69,478 control patients)

• Examined association between baseline and

on-treatment HDL-C levels and cancer risk

• Significant inverse association between HDL-C and

cancer risk

• For every 10 mg/dL increase in HDL-C, 28–36% lower

risk of developing cancer

(41)

Ovarian,

breast,

prostate,

colon

• A five-center case-control study, involving a

retrospective sample of 645 serum specimen

• Serum proteomic expressions were analyzed on 153

patients with invasive epithelial OC, 42 with other OC,

166 with benign pelvic masses, and 142 healthy

women

• Utilized a ProteinChip Biomarker System and

SELDI-TOF-MS

• Three biomarkers identified as biomarkers for OC:

ApoA-1 (↓in cancer); TT (↓); and a cleavage fragment

of ITIH4 (↑)

(53)

Ovarian • Serum analysis from 31 healthy individuals and 43

from patients with ovarian tumors

• Use of micro-LC-MS/MS followed by Western/ELISA

to identify five serum protein biomarkers previously

reported using SELDI-TOF-MS (54)

• TT (↓), beta-hemoglobin (↑), ApoA-1 (↓), and

transferrin (↓)in early-stage OC

• When combined with CA125, biomarkers should

significantly improve the detection of early stage

ovarian cancer

(55)

Ovarian • Evaluated markers identified by Zhang et al. (53) in an

independent study population

• Sera from 42 women with OC, 65 with benign tumors,

and 76 with digestive diseases

• Measured levels of various posttranslationally forms of

TTR, apolipoprotein A1, and CA125 using

SELDI-TOF-MS

• Examined power of markers to discriminate sera from

women with ovarian cancer from sera from women

with other diseases

• Confirmed findings by Zhang et al. (53)

• ApoA-I and TT levels were lower in disease states

compared to controls

• Markers used alone improved detection of controls

with CA125 levels ≥35 units/mL but lost sensitivity for

late-stage cases.

(56)

Ovarian • Evaluated multiplexed bead-based immunoassay of

OC-associated biomarkers (TTR and ApoA-1,

together with CA125) using serum of 61 healthy

individuals, 84 patients with benign ovarian disease,

and 118 patients with OC

• Panel of ApoA-I, TT, and CTAPIII combined with

CA125 increased sensitivity for detection of early

stage OC

• Combination of three markers offered maximum

separation between non-cancer and stage I/II or all

stages of disease

(57)

(Continued)
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TABLE 1 | Continued

Cancer Study design Major findings References

Ovarian • Development of multiplexed bead-based

immunoassay for detection of known serum

biomarkers of cancer (118 OC, 84 benign ovarian

disease, 61 healthy controls)

• Combination of transthyretin, and ApoA-I with CA125

improved sensitivity and specificity of OC diagnosis

(58)

Ovarian,

breast

• Measured ApoA-I and GPX3 mRNA levels via

qRT-PCR in 121 effusions (101 OC, 20 BC) and 85

solid OC specimens (43 primary carcinomas, 42

metastases)

• APOA1 and GPX3 transcript levels were higher in

ovarian carcinoma compared with breast carcinoma

effusions

• APOA1 and GPX3 mRNA levels can effectively

differentiate ovarian from breast cancer

(59)

Breast • Fasting serum samples analyzed for lipid fatty acid and

lipoprotein levels

• Malignant breast tissue analyzed for hormone receptor

binding

• 100 women with breast masses (50 malignant, 50

benign)

• Serum lipid and apolipoprotein components of LDL

were increased in fibrocystic disease and early stage

cancer but decreased in women with early recurrence

• Ratio of serum ApoA-1/ApoB levels at time of biopsy

was the best predictor of cancer recurrence

(34)

Breast • Nested case-control study to examine association

between HDL-C and breast cancer risk

• Serum lipid profiles from 200 age-matched (100

diagnosed before age 50 and 100 at age 50 or older)

case-control BC patients

• No difference in HDL-C between BC and control

samples

• Pre-menopausal cases had significantly lower HDL-C

levels than controls

• In pre-menopausal cases, each 1 mg/dL increase in

HDL-C is associated with a 4% reduction in risk of BC

(35)

Breast • Estimated the relative risk of breast cancer associated

with HDL-C levels using serum samples of 38 823

Norwegian women aged 17–54 years at time of entry

• 708 BC cases identified over median follow up time of

17.2 years

• Low HDL-C, as part of the metabolic syndrome, is

associated with increased postmenopausal BC risk

(37)

Breast • Examined relationship between breast cancer and lipid

profiles in Taiwanese women

• Lipid profiles in fasting serum of 150 BC patients

before treatment and 71 healthy controls

• BC patients had significantly lower HDL-C and apoA-

I, lower apoA-I/apoB ratios, and higher VLDL-C levels

than controls

• Lower ApoA-1 and HDL-C levels associated with

higher incidence of BC

(38)

Breast • Nested case-control study from trial containing 4,690

women with extensive mammographic density

• Examined whether serial measures of serum lipids and

lipoproteins were associated with risk of BC

• Measured lipids in an average of 4.2 blood samples for

279 invasive breast cancer case subjects and 558

matched control subjects

• HDL-C and apoA-I were positively associated with BC

risk only when HRT was not used

(60)

Endometrial • Case-control study nested within the European

Prospective Investigation into Cancer and Nutrition

(EPIC)

• Examined the relation between prediagnostic plasma

lipids, lipoproteins, and glucose, metabolic syndrome,

and EC risk in 284 women with EC and 546 matched

controls

• HDL-C levels were inversely correlated with the risk of

developing EC

• Metabolic abnormalities and obesity may act

synergistically to increase risk of developing EC

(39)

Prostate • Examined the association between serum lipids and

prostate cancer risk

• A cohort (n = 69,735) of all men aged 35 years or

older were selected from the Apolipoprotein MOrtality

RISk (AMORIS),

• Levels of TG, TC, glucose, LDL-C, HDL-C, ApoB, and

ApoA-I were measured at baseline, was database

• 2,008 men developed prostate cancer

• ApoA-I and HDL levels were inversely associated with

prostate cancer risk

• Low HDL and ApoA-I as well as increased lipid ratios

are related to increased risk of prostate cancer

• No association between ApoB, LDL, and non-HDL

with prostate cancer risk

(43)

ApoA-I, apolipoprotein A-I; ApoA-II, apolipoprotein A-II; ApoB, apolipoprotein B; BC, breast cancer; CA125, cancer antigen 125; CTAPIII, connective tissue activating protein III;

CTC, circulating tumor cells; DFS, disease-free survival; DMFS, distant-metastasis-free survival; EC, endometrial cancer; HDL-C, High-density lipoprotein cholesterol; IMRT, intensity-

modulated radiation therapy; ITIH4, inter-trypsin inhibitor heavy chain H4; LDL-C, low-density lipoprotein cholesterol; OC, ovarian cancer; OS, overall survival; PCa, pancreatic cancer;

SELDI-TOF-MS, surface-enhanced laser desorption/ionization time-of-flight mass spectrometry; TC, total cholesterol; TF, transferrin; TG, triglycerides; TT, truncated transthyretin; TTR,

transthyretin; VLDL-C, very low-density lipoprotein cholesterol.
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the particles during sample preparation (61). In addition other
confounding factors such as lifestyle factors, co-morbidities, and
physiological factors (i.e., pre- vs. post-menopausal women), all
contributed to heterogeneity of the results since most of the
analyses were done retrospectively using the existing body of
publicly available clinical trial data. On the other hand, there
are studies describing positive correlations between HDL-C and
cancer risk, namely in breast cancers (60). However, given the
high heterogeneity in HDL proteome, lipidome, and subclass
distribution between patients in different disease settings, it is
reasonable that such variability exists between studies. While
the verdict is still out on the utility of HDL-C and ApoA-I as
predictive biomarkers in cancers, there is clearly a role for HDL
in this complex disease which will be discussed in more detail to
follow.

Mechanism
Whether decreased levels of HDL-C are a causal or consequential
factor to cancer progression is yet to be elucidated, however we
are logically drawn to the latter. It is known that cancer cells,
in particular prostate, adrenal, and breast cancer cells, highly
express the SR-BI on their plasma membrane (62–64). Because
of their high-demand for cholesterol, cancer cell upregulation
of SR-BI is likely a survival mechanism to increase HDL-
C recruitment and, thus, increase cholesterol uptake needed
for proliferation and hormone production while consequently
decreasing circulating HDL-C. That being said, this argument
could also be used to explain why, in some reports, HDL-C
is associated with an increased risk of cancer, as it continues
to provide additional cholesterol to and fuel the growth of the
tumor. Regardless, we can take away several key points from
these findings: (i) SR-BI is overexpressed in cancer cells, (ii)
HDL-C levels are significantly affected by the presence and
development of cancer, and (iii) the high affinity between SR-
BI and HDL facilitates the transport of cholesterol to/from
HDL and the cancer cell. In addition, HDL is known to
have potent antioxidant activity and both endogenous and
reconstituted HDL particles were shown to inhibit oxidative-
stress induced proliferation of pancreatic cells in vitro (65).
And although the details of the epidemiology can be disputed,
there are clear opportunities for therapeutic intervention by
utilizing the HDL/SR-BI axis, of which will be discussed
below.

SYNTHETIC HDL PRODUCTS

As previously mentioned, the main focus of HDL research
over the past several decades has been surrounding its role
in cardiovascular disease. Because of its role in facilitating
RCT, several “HDL mimetics” have been developed and tested
clinically in humans for their ability to reduce the burden
of atherosclerosis and number of events following an acute
coronary event (66–69). These HDL-mimicking particles, termed
reconstituted HDL (rHDL) or synthetic HDL (sHDL), are
cholesterol-free HDL particles prepared from plasma purified
or recombinantly expressed ApoA-I or short synthetic ApoA-
I mimetic peptides complexed with phospholipids. Since they

lack cholesterol, these “empty” particles are highly effective in
effluxing cholesterol from lipid-laiden cells both in vitro and in
vivo (9, 70, 71). In addition to their augmented efflux capacity,
these particles offer a natural ability to target SR-BI-expressing
cells. When combined, the ability of rHDL/sHDL to deplete
cellular cholesterol, target SR-BI expressing cells, along with
the biocompatibility of the individual components and proven
clinical safety make the application of sHDL for cancer therapy
increasingly attractive.

Clinically Tested sHDL Products
The concept of utilizing sHDL and ApoA-I mimetic peptides
as a cholesterol depletion therapy has been around for decades,
but focused primarily in the context of cardiovascular diseases.
In fact, several sHDL therapies have been developed and
tested in various stages of human clinical trials (66, 69, 72).
The purpose of such sHDL infusion therapies was to efflux
cholesterol and reduce plaque size and vulnerability following
an initial coronary event, in order to decrease the occurance
of secondary events. Early sHDL clinical trials utilized lipid-
free ApoA-I protein or mimetic peptides, such as ApoA-I
milano, D-4F, and L-4F, however it was shown that the naked
proteins and peptides themselves had a very short plasma half-
life, and their pharmacological effect suffered as a consequence
(73, 74). Formulation of peptide or full-length ApoA-I protein
with phospholipid, forming sHDL, was shown to markedly
improve plasma half-life and thus its overall therapeutic effect
(75). Moreover, studies have shown that the phospholipid
component of sHDL therapies is a driving determinant
of the overall pharmacokinetic and pharmacodynamic effect
(71).

Measurable improvements in the pharmacokinetic
and pharmacodynamic effects of sHDL therapies has
led to their progression from bench to bedside in both
early and late stage clinical trials. Such sHDL products
include peptide-based sHDLs, including ETC-642 (22A
peptide/dipalmitoylphosphatidylcholine/sphingomyelin),
and ApoA-I protein based sHDLs, including ETC-216
(recombinant ApoA-I/palmitoyloleoylphosphatidylcholine)
and CER-001 (recombinant ApoA-
I/sphingomyelin/dipalmitoylphosphatidylglycerol), among
others. These products were all shown to be safe at high doses
of up to 100 mg/kg in humans and possess potent cholesterol
efflux abilities (76, 77). More recently CSL-112, reconstituted
ApoA-I/soybean phosphatidylcholine, has advanced to a 17,000
patient Phase III clinical trial after showing promising ability
to reduce atheroma burden and decrease secondary coronary
events in earlier trials (78–80). Given their proven clinical safety
and ability to facilitate cholesterol removal, sHDL products could
be easily translated for use as cholesterol depleting therapies in
cancer.

sHDL FOR CANCER THERAPY

Cholesterol Depletion
Given the dependence of endocrine cancers on cholesterol,
cholesterol-targeting therapies have gained increasing attention.
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TABLE 2 | Experimental studies utilizing HDL for endocrine cancer therapy.

Cancer Treatment Model Major findings References

Ovarian • L-4F peptide or sc-4F ctrl

- 10 mg/kg/day S.Q. for 5 wks,

starting either the day of ID8 cell

injection or 2 wks post-ID8 injection

• L-5F peptide

- 10 mg/kg/day S.Q. for 5 wks (for

S.Q. tumors) or 9 wks (for I.P.

tumors)

• Compared to buffer treated control

mice

• D-4F peptide

- 300µg/mL (129.8µM) in drinking

water, starting immediately

post-ID8 injection

- Compared to normal drinking water

• Female C57BL6/J mice,

9 wk old

• ID8 cells given:

- S.Q. (5 wk flank tumor

model)

- I.P. (9 wk tumor model)

• L-4F:

- Smaller flank tumor volumes when

given both immediately following or

2 wks post-ID8 injection (5 wk S.Q.

tumor model)

• L-5F:

- Flank tumor size decreased (5 wk

S.Q. tumor model)

- Number of tumor nodules

decreased (9 wk I.P tumor model)

• D-4F:

- Smaller flank tumor volume (5 wk

S.Q. tumor model)

- Fewer number of tumor nodules (9

wk I.P. tumor model)

(86)

Ovarian • L-5F peptide

- 10 mg/kg/day S.Q. for 5 wks,

starting immediately after ID8 cell

injections

• Female C57BL/6 mice

• ID8 cells injected S.Q.

• Decreased the number of perfused

vessels within tumors

• Decreased size of total vessels

within tumor

• Decreased VEGF levels in both

serum and tumor tissue

(87)

Ovarian • L-4F peptide

- 10 mg/kg/day S.Q. for 3 wks,

starting 2 weeks post-ID8 injection

- Compared to sc-4F peptide treated

mice

• Female C57BL/6 mice, 9

wk old

• ID8 cells injected S.Q.

• Decreased expression and activity

of HIF-1α in tumors

• Reduced the number of vessels

and overall angiogenesis within

tumors

(88)

Breast • L-4F peptide

• 10 mg/kg S.Q. daily from weaning

to 45 days, and 3x per wk until 19

wks of age

• Mammary PyMT

transgenic mice

• Significantly increased tumor

latency and inhibited tumor

development

• Decreased plasma levels of oxLDL

(89)

Pancreatic • L-4F peptide

- 10 mg/kg/day I.P. for 1 week,

starting immediately post-H7

injection

- Compared to sc-4F peptide treated

mice

• Female C57BL/6 mice,

6–8 w/o

• H7 cells injected directly

into pancreas

• Reduced tumor size and weight

• Reduced number of inflammatory

tumor infiltrating cells, including

Th17 and Th1 lymphocytes

• Decreased mRNA expression of

inflammatory cytokines in tumors

• Decreased % of M2 macrophage

polarization in tumors

(90)

D-4F, D-amino acid version of L-4F; I.P., intraperitoneal; L-4F, DWFKAFYDKVAEKFKEAF; L-5F, DWLKAFYDKVFEKFKEFF; oxLDL, oxidized low-density lipoprotein; PyMT, mammary

tumor virus-polyoma middle T-antigen; sc-4F, scrambled-4F peptide; S.Q., subcutaneous; Th1, T-helper cell 1; Th17, T-helper cell 17; VEGF, vascular endothelial growth factor; wk,

week.

One approach is to directly deplete cholesterol from cells
using cholesterol scavenging therapies. In addition to cholesterol
being essential for the formation of new membranes during
cell division, it is also vital for the formation of lipid-
rafts in the plasma membrane. These lipid rafts are rich in
cholesterol and sphingolipids and house many proteins and
transporters involved in key signaling pathways, including the
Akt signaling pathway implicated in the migration, proliferation,
and survival of cancer cells (81). By depleting cholesterol
from cells, lipid rafts are disrupted and the proteins they
house internalized, drastically reducing the cell’s ability to
carry out its functions and often triggering cell death (4). In
cancer cell lines, treatment with cyclodextrins induced marked
cell death, and that cells with a higher abundance of lipid
rafts were more susceptible to such treatments (82–84). More
recently, Taylor et al. showed that HAC15 adrenal carcinoma
cells treated with ETC-642, a clinically tested sHDL, displayed

marked reduction in cellular cholesterol levels in addition
to inhibition of aldosterone, cortisol, and androstenedione
production (85). Thus, the application of cholesterol-depleting
therapies, namely sHDL, for endocrine cancer deserves further
investigation.

sHDL Peptides
Several recent studies have investigated the use of HDL-mimetics,
including sHDL, ApoA-I protein, and ApoA-I mimetic peptides,
for cancer treatment, outlined in Table 2. In addition, treatment
of cells with both sHDL and chemotherapeutic drugs was able
to reduce the overall effective dose (91). Other studies utilizing
ApoA-I protein or mimetic peptides L-4F, L-5F, and D-4F have
shown that treatment of tumor-bearing mice with either protein
or peptide can reduce both tumor volume and angiogenesis in
tumor tissues when compared to control mice (87–90, 92–94).
For example, in a mouse model of ovarian cancer, Gao et. al.
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show that L-4F peptide, when administered subcutaneously at 10
mg/kg/day for 3 weeks, could reduce overall angiogenesis and
vessel number within the tumor tissue, which was connected
to a decrease in expression levels of hypoxia inducible factor-
1α (HIF-1α) (88). In a similar study, they also show that L-
5F peptide could exert similar anti-angiogensis effects and led
to decreased levels of serum vascular endothelial growth factor
(VEGF) (87). In a separate study utilizing a similar ovarian cancer
mouse model, Su et. al. demonstrated that both L-4F and L-5F
peptides could decrease the overall volume of tumors in both
flank and intraperitoneal tumors when given 10 mg/kg/day over
the course of 5 or 9 weeks, respectively (86). They postulate that
the antitumorogenic effect could be related to peptides’ abilities
to reduce circulating levels of LPA, and they were found to have
significantly greater binding affinity for LPA when compared to
full length ApoA-I protein. In a study by Peng et. al. L-4F peptide
given at 10 mg/kg/day for 1 week was able to not only reduce size
and weight of H7 pancreatic tumors inmice, but also significantly
reduce several markers of inflammation within the tissue as well
(90).

While the above studies also included extensive screening of
ApoA-I and mimetic peptides for viability and anti-proliferative
activity in a broad range of cancer cell lines in vitro, there
are also reports describing the ability of HDL to induce
proliferation, migration, and survival in cancer cell cultures
(32, 33, 95, 96). Consistent with previously mentioned clinical
findings showing a positive association between HDL-C and
cancer risk, these studies support the notion that HDL-C may
promote the progression of cancer by supplying the tumor
cells with their increasing demand for cholesterol. However,
a distinction should be made between the epidemiology of
HDL and cancer and the utility of HDL in cancer treatment:
namely, that the use of HDL in cancer therapy referred to in
this review involves the administration of “empty” cholesterol-
free particles. These particles are the nascent, discoidal HDL
particles with high cholesterol efflux activity as proven both
in basic and clinical research. Of course, studies utilizing
plasma purified HDLs should be considered differently. Plasma
HDLs contain a variety of different components, including
signaling lipids responsible for many of HDL’s pro-angiogenic
and Akt-activating properties (22, 97), and namely cholesterol
capable of being delivered to cells (98, 99). While such studies
are integral to understanding the role of endogenous HDL
in cancer pathogenesis, they should not be confused with
therapeutic implications utilizing sHDL or mimetic peptides
with a defined molecular makeup and superior cholesterol efflux
capacity.

Targeted Drug Delivery
Given the very poor solubility of many chemotherapeutic
drugs, the hydrophobic lipid core of HDL presents an
attractive environment and alternative strategy for delivery and
formulation of this class of drugs. Not only is it possible to
lower the overall dose of drug given by improving its solubility,
but the SR-BI targeting ability of these sHDL nanoparticles
affords the additional benefit of site-specific, cytosolic drug
delivery to SR-BI over-expressing tumor cells while subsequently
reducing systemic toxicity (72, 94, 100). Others have, with varying
success, shown anti-tumorigenic by introducing HDL surface
modifications to augment the targeting capacity and to extend
particle half-life (101). The use of HDL-mimetics for targeted
drug delivery has been extensively reviewed elsewhere (72, 102)
and is beyond the scope of this review, however, its importance
and growing relevance warrant mentioning.

SUMMARY AND PERSPECTIVE

Decades of epidemiological evidence suggests that , notably -C,
plays a role in the incidence and progression of cancer. Whether
or not this role is causal or consequential, or whether the risk
association is positive or negative under specific conditions is
still left for debate. Despite, we know from years of clinical and
basic cardiovascular research that is an intimate player in the
RCT process and has specific and potent cholesterol efflux ability
both in vitro and in vivo. We also know that cholesterol is a
vital resource for cancer cells, which require a constant supply
to maintain and facilitate their rapid proliferation and overall
survival. Endocrine cancers, in particular, are at an increased
demand for cholesterol given their additional need for steroid
production making them even more susceptible to cholesterol
depletion interventions and targeting by due to upregulation of
SR-BI.
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