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The human commensal fungus Candida albicans can cause not
only superficial infections, but also life-threatening disease in
immunocompromised individuals. C. albicans can grow in
several morphological forms. The ability to switch between
different phenotypic forms has been thought to contribute to
its virulence. The yeast-filamentous growth transition and
white-opaque switching represent two typical morphological
switching systems, which have been intensively studied in
C. albicans. The interplay between environmental factors and
genes determines the morphology of C. albicans. This review
focuses on the regulation of phenotypic changes in this
pathogenic organism by external environmental cues and
internal genes.

Introduction

The yeast Candida albicans is a harmless commensal in the oral
cavity, digestive tract and genital region of healthy people, while it
also causes superficial infections and life-threatening systemic
disease.1 With the increase of immunocompromised individuals
due to HIV infection, organ transplantation and application of
chemotherapy and indwelling devices, invasive candidiasis has
become a serious public health problem in the recent several
decades.2 The switching from commensal to pathogenic phase has
been widely thought to be associated with the phenotypic
plasticity of C. albicans. It can grow in several morphological
forms including unicellular yeast-form, elongated hyphae and
pseudohyphae.3 In this review, hyphae and pseudohyphae are
referred to as filamentous forms or cells. A plethora of external
and internal factors regulate the switching between different
phenotypes (Figs. 1 and 2A and Table 1).3,4 The external factors
include environmental cues, that the pathogen often confronts
with during its life cycle and host infection, such as serum, high
temperature (37°C), low levels of oxygen, high levels of CO2,
poor nutrition conditions and so on.4,5 The internal genetic
and epigenetic changes play a key role in the regulation of
morphogenesis.3-5 In recent years, great strides have been made in
uncovering the underlying mechanisms of the morphologic
regulation and the coordination and interplay between environ-
mental factors and genes. Several signal transduction pathways

and key transcription factors have been intensively investigated.3-5

Another phenotypic switching system, referred to as white-opaque
transition, has attracted increasing research interest in the past
decade. The underlying molecular mechanisms have begun to be
uncovered. This system was first identified in a clinical strain,
WO-1, isolated from a transplant patient with a fatal blood stream
infection.6 Although the white-opaque transition system gives
distinguishable cellular and colony appearance, both the white
and opaque forms are budding cells.7 The two types of cells also
differ in virulence, sensitivity to immune cells, expression of a
wide variety of genes and mating competence. In this review, I
will focus on the molecular mechanisms involved in the regulation
of yeast-filamentous growth switching as well as white-opaque
transition in C. albicans.

Regulation of Yeast-Filamentous Growth Transition

High-frequency phenotypic switching has been observed in
C. albicans and other species in the Candida clade.1 In 1985,
Soll and colleagues reported that C. albicans can switch between at
least seven colony phenotypes.8 The cellular morphologies in this
switching system include the unicellular budding yeast and
filamentous hyphal and pseudohyphal forms. Yeast-form cells are
round and similar to diploid Saccharomyces cerevisiae cells. Hyphae
consist of long tubes with no constrictions, while pseudohyphae
consist of chains of elongated cells with constrictions between
adjacent cells.9 The ability to switch between yeast and filament-
ous forms is thought to be tightly linked with virulence. Fila-
mentous cells are more invasive and better at tissue penetration,
while yeast cells are easy to be delivered and disseminated in the
bloodstream.10 In infected tissues, both yeast-form and filament-
ous cells are found.1 It seems that the ability of switching back and
forth between the two forms is important for pathogenesis.

Environmental cues regulate yeast-filamentous transition. It
is critical for all organisms to adapt to the changes in their
environments. C. albicans can infect almost all human organs.1 It
encounters various microenvironmental factors that are unique to
the different niches within the host. A range of factors reflecting
the host microenvironments have been found to regulate the
yeast-filamentous switching. For example, serum is one of the
most powerful inducers of filamentous growth in C. albicans. Xu
et al. have discovered that bacterial peptidoglycans in the host
serum are the major component triggering C. albicans filamentous
growth.11 Since the human host cannot synthesize peptidoglycan
molecules, it has been indicated that these molecules come from
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the commensal bacteria in the gastrointestinal tract (GI tract).11

Another two host associated molecules regulating C. albicans
yeast-filamentous transition are N-acetylglucosamine (GlcNAc)
and CO2.12-16 GlcNAc is a component of the mucus of GI tract
and bacterial cell wall, while CO2 is a product of cellular
respiration.17,18 The level of CO2 in blood is about 5%, which is
much higher than that in ambient atmosphere (0.036%).19 The
cAMP/PKA pathway is involved in GlcNAc and CO2 induced
filamentous growth.12,13 C. albicans also undergoes morphological
changes in response to the host temperature (37°C), neutral pH,
nutrient limitation and low O2 levels.3-5,20-22 In vitro experiments
demonstrate that the quorum sensing molecule, farnesol and
physical interaction (e.g., growth in embedded matrix) regulate
morphogenesis in C. albicans.21,23 Interestingly, C. albicans can
undergo filamentous growth under embedded conditions at
relatively low temperature (25°C).21 During the past two decades,
great progress has been made in understanding the underlying
mechanisms regulating external factors induced morphogenesis in
this fungal pathogen (Fig. 1). The following sections will focus on

the major pathways and genes involved in regulation of
morphogenesis in response to different environmental factors.
Their roles in virulence will also be discussed.

Ras proteins. Ras is a member of a highly conserved family of
small GTPases in eukaryotes ranging from yeast to humans.24 Ras
is activated when bound with GTP, while it is in an inactivated
form when bound with GDP.24 There are two Ras proteins in
C. albicans, Ras1 and Ras2.25,26 C. albicans Ras1 is a homolog of
S. cerevisiae Ras2, which regulates the downstream MAPK and
cAMP/PKA pathways.27 C. albicans Ras2 belongs to a group of
atypical Ras proteins and shares poor identity with C. albicans
Ras1, S. cerevisiae Ras1 and Ras2.26 Ras1 is required for
filamentous growth and virulence in C. albicans. Deletion of
RAS1 impairs serum induced hyphal growth, while ectopic
expression of a dominant active form RAS1V13 has a promoting
effect on hyphal development.25 Supplementing the growth media
with cAMP or overexpression of components of the MAPK
cascade rescued the filamentous growth defect of the ras1D/D
mutant, suggesting that C. albicans Ras1, like S. cerevisiae Ras2, is

Figure 1. Regulation of filamentous growth in C. albicans by multiple environmental cues and signal transduction pathways. The external inducers may
function on the cell surface receptors or enter into the cell and directly bind the filamentous growth regulators. The transcription factors Flo8, Efg1 and
Cph1 play a central role in the regulation of phenotypic transitions. Multiple signaling pathways converge on the three regulators. The cAMP/PKA
pathway and its downstream regulators Flo8 and Efg1 can also play a negative role in filamentous development under embedded growth conditions.
The general transcriptional repressor Tup1 is recruited by DNA-binding proteins Nrg1 and Rfg1 and targets on the promoters of hypha-specific genes.
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upstream of the cAMP and MAPK pathways.27 In a systemic
infection model, the ras1D/D mutant shows notably reduced
virulence.25 Ras2 has just been recently characterized in
C. albicans. Deletion of RAS2 gene alone in a wild type strain
has no notable effect, while disruption of it in a ras1D/D
background mutant results in exacerbated hyphal growth defect.
Although recombinant C. albicans Ras2 shows similar GTPase
activity as does Ras1, Ras2 has an antagonizing effect on Ras1 at
many aspects including regulation of cAMP level, stationary-phase
entry and stress response.26 The opposite roles of the two Ras

proteins may fine-tune the downstream pathways in respond to
different environmental changes.

Cst20-Cst11-Hst7-Cek1/2 mediated MAPK cascade. The
roles of the MAPK pathway in morphogenesis and mating have
been extensively studied in C. albicans.28-32 The Rho-type GTPase
Cdc42 and its exchange factor Cdc24 are required for normal
budding, virulence and filamentous growth.33-36 Cdc42, together
with Cdc24, interacts with Ras1 to activate the MAPKKKK
Cst20, which then triggers a subsequent phosphorylation of
the MAPKKK (Ste11)-MAPKK (Hst7)-MAPK (Cek1/Cek2)

Figure 2. Regulation of white-opaque transition in C. albicans. (A) Environmental factors regulate white-to-opaque and opaque-to-white transitions.
(B) The cAMP/PKA pathway and Wor1 involved gene circuitry. The cAMP/PKA pathway regulates both CO2 and GlcNAc induced opaque cell formation.
There is also an unidentified pathway mediated CO2 and GlcNAc sensing. The two pathways converge on themaster regulator Wor1. The transcription factors
Wor1, Wor2, Efg1 and Czf1 form a positive feedback loop controlling white-opaque switching. The inhibition of expression of WOR1 by the MTLa1/a2
heterozygous complex is also shown. The dashed line with an arrowhead represents the unidentified pathway involved in CO2 and GlcNAc sensing.

www.landesbioscience.com Virulence 253



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

cascade.33-36 The cascade finally activates the downstream
transcription factor Cph1,37 a C. albicans homolog of S. cerevisiae
Ste12.38 Cph1 is required for hyphal growth on solid agar,
but not in liquid media.37 Cst20, a C. albicans homolog of
S. cerevisiae Ste20 and a kinase of p65PAK family, is essential
for hyphal development and virulence.28,29 Although the function
of C. albicans Ste11 in mating and filamentous growth has not
been investigated, the kinase plays a critical role in pheromone
induced biofilm formation.39 Deletion of HST7, encoding a
C. albicans homolog of S. serevisiae Ste7, results in defects in
hyphal development. Overexpression of HST7 in the cst20D/D
mutant can partially rescue its hyphal growth defect, suggesting
Hst7 is downstream of Cst20.28,29 The kinases Cek1 and
Cek2 are homologous to S. cerevisiae Kss1 and Fus3, respec-
tively.30 The mutants of hst7D/D and cph1D/D, and the cek1D/D
cek2D/D double mutant are completely defective in mating,
while deletion of CST20, CEK1, and CEK2 genes only leads to
partial defect.30,31

cAMP/PKA signaling. The cAMP/PKA pathway is highly
conserved in eukaryotes. In C. albicans, the cAMP/PKA pathway
plays a critical role in morphogenesis.40 CYR1 (also named as
CDC35), encoding the only adenylyl cyclase in C. albicans, is
required for hyphal development and virulence, although it is not
essential for the basal level of growth.41 Deletion of CYR1 has a
global impact on gene expression and results in many alterations
in response to stresses and environmental cues.42 Cyr1 regulates
serum and peptidoglycans induced filamentous growth in
C. albicans.11,41 Recently, Huang et al. have reported that Cyr1
plays a major role in GlcNAc induced white to opaque switching,
but is not essential for CO2 induction.43,44 The upstream activator
of Cyr1 is the small GTPase Ras1, which transduces the
extracellular signals to Cyr1 and stimulates cAMP production.40

cAMP binds to the protein kinase A (PKA) regulatory subunits
and causes their dissociation, which then activates catalytic
subunits to phosphorylate downstream transcription factors.
There are two catalytic subunits of PKA, namely Tpk1 and
Tpk2, in C. albicans.45,46 The two isoforms play distinct and

redundant roles in C. albicans. Inactivation of TPK1 gene causes
defects in hyphal develpment on solid inducing media, but not in
liquid media. In contrast, deletion of TPK2 only partially impairs
hyphal growth on solid media, but has a remarkable effect in
liquid media. Neither TPK1 nor TPK2 is essential for cell growth,
whereas the tpk1D/D tpk2D/D double mutant is inviable.45,46 The
catalytic subunits Tpk1 and Tpk2 are regulated by the PKA
regulatory subunit Bcy1.46,47 In the absence of cAMP, two Bcy1
subunits bind to two catalytic subunits and inhibit PKA activity
by forming an inactive heterotetrameric complex with Tpk1 or
Tpk2. Null mutant of BCY1 is inviable, while it can be deleted in
a tpk2/tpk2 mutant background strain.47 In the presence of cAMP,
binding of cAMP to Bcy1 leads to its dissociation from the
complex and releases the catalytic subunits as active forms.47

There are two genes, PDE1 and PDE2, encoding the low and
high affinity phosphodiesterases, respectively, that keep the
intracellular cAMP levels in check in C. albicans.48-50 Pde2 is
activated in response to intracellular acidification and down-
regulation of cAMP signaling induced by glucose addition. Pde2
plays a major role in regulation of the intracellular levels of cAMP.
Deletion of PDE2 gene results in elevated cAMP levels and
constitutive activation of the cAMP pathway. Pde2 is required for
normal hyphal development, but not for pseudohyphal growth.
Deletion of PDE2 actually causes hyperfilamentous growth and
reduced virulence.48-51

Efg1 and Flo8: downstream regulators of cAMP/PKA
signaling. The cAMP/PKA pathway has been demonstrated to
be mediated by the conserved APSES class protein Efg1 in
C. albicans.52,53 The potential PKA phosphorylation site,
threonine-206 (T206) within the conserved APSES domain of
Efg1, is important for hyphal formation. Alanine substitution of
T206 leads to hyphal development defect both in liquid and solid
media, while glutamic acid substitution of T206 results in
hyperfilamentation.53 The cells of the efg1D/D mutant can only
slightly elongate in response to some stimuli.52 The double
mutant of efg1D/D cph1D/D, representing inactivation of both the
cAMP/PKA signal and the MAPK pathway, is completely locked

Table 1. Environmental cues and pathways involved in filamentous growth regulation in C. albicans

Environmental cues Pathways and regulators Reference(s)

Positive regulators Serum, GlcNAc, starvation, poor
nutrition (spider medium), glucose,

Ras1 → Cyr1, Bcy1 → cAMP → PKA (Tpk1 and Tpk2) →
Efg1, Flo8 → hyphal specific genes (Hwp1, Ece1, etc.)

25, 41, 42, 47, 50,
52, 53, 55, 77, 89

CO2 Cyr1, Nce103 13

Serum, spider medium Ras1 → Cst20 → Cst11 → Hst7 → Cek1, Cek2 →
Cph1, Tec1; Efh1; Hgc1; Ssn6; Cph2 → Tec1

25, 27–31, 37, 57, 76–78,
81, 84, 92, 133, 134

pH Rim101, Phr1, Phr2 58–60, 63

GlcNAc Ngt1 → Hxk1 → Dac1 → Nag1 135–137

Osmotic stress Cst20 → Cst11 → Hst7 → Cek1, Hog1; Ssk1 70, 71, 73, 74

Physical interaction Czf1, Mkc1 21, 23

Hypoxic conditions Czf1, Efg1, Sch9 21, 138, 139

Rapamycin Tor1 140

Negative regulators Farnesol Ras1→ Cyr1, Bcy1 → cAMP→ PKA (Tpk1 and Tpk2) → Efg1 141

Hypoxic conditions Cyr1, Efg1, Flo8 55

Tup1, Nrg1, Rfg1, Rbf1 76–78, 82, 89
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in yeast phase under all conditions investigated.52 Recently, an in
vivo genome-wide ChIP-chip and in vitro footprint analysis
indicates that Efg1 recognizes a sequence motif TATGCATA
(EGR-box). The promoters of transcriptional regulators of hyphal
growth including EFG1 itself, TCC1, CZF1, TEC1, DEF1 and
NRG1 contains EGR- and/or EGR-like boxes. Further analysis
demonstrates different binding specificities of Efg1 in yeast
growth and in hyphal induction.54

Another transcription factor downstream of cAMP/PKA
pathway is the LisH domain containing protein Flo8.55

C. albicans Flo8 was first identified to be essential for filamentous
growth by functional complementation of an S. cerevisiae flo8D
mutant, which is defective in invasive growth.56 The C. albicans
flo8D/D showed remarkably reduced virulence possibly because of
its filamentous development defect. By physically interacting with
Efg1, Flo8 controls expression of a subset of Efg1 regulated genes
such as the hyphal growth regulator HGC1, a gene encoding a
hyphal-specific G1 cyclin-related protein.55,57 Interestingly, the
null mutants of FLO8, EFG1 and CDC35 display increased
filamentation under microaerophilic conditions, suggesting that
the cAMP/PKA pathway plays both positive and negative roles in
regulation of morphogenesis.55

pH signaling. C. albicans colonizes different niches with
distinct ambient pH. For example, the normal pH of the vaginal
tract is 4.5, while the pH of human blood is about 7.0. The
ability of C. albicans to respond to pH changes is critical for
successful colonization and infections. In C. albicans, the
transcription factor Rim101 (initially named as Prr2) is the key
regulator of the pH response pathway.58-60 C. albicans Rim101 is
homologous to pacC, encoding a zinc-finger transcription
factor that regulates pH-dependent gene expression in the model
fungus Aspergillus nidulans.61,62 Although deletion of RIM101 in
C. albicans has no obvious effect on the cell growth at acidic or
alkaline pH, the mutant shows filamentous growth defects in a
number of media.59,60 Expression of RIM101 is pH-dependent
and also controlled by Rim8 (also named as Prr1), a homolog of
A. nidulans palF that regulates pacC.60 The rim101D/D mutant
lost the ability of controlling the expression of alkaline and acid
induced genes at alkaline pH. In vivo experiments suggest that the
Rim101 pathway is required for pathogenesis. The rim101D/D
and rim8D/D mutants show significantly reduced virulence in a
systemic infection model.58

Another two pH-regulated genes are PHR1 and PHR2,
encoding two cell surface glycosidases required for proper cross-
linking of β-1,3- and β-1,6-glucans.63,64 PHR1 is expressed at pH
5.5 or higher, while PHR2 is expressed at an ambient pH below
5.5. PHR1 is upregulated in hyphal cells.65 Deletion of PHR1 in
C. albicans leads to growth and filamentous development
defects at neutral to alkaline pHs. Conversely, deletion of PHR2
compromises filamentous growth at acidic pH.63,66 Consistently,
the virulence phenotypes of the phr1D/D and phr2D/D mutants
parallel the pH dependence of their in vitro phenotypes. As
mentioned above, the systemic pH is neutral, while the vaginal
pH is acidic. The phr1D/D mutant is defective in a mouse model
of systemic infection but not in a rat vaginal infection, while the
virulence phenotype of the phr2D/D mutant is the inverse.66 The

transcription of PHR1 and PHR2 is also regulated by the
components of endosomal sorting complexes (ESCRT).67

Contact sensing. C. albicans contact-dependent responses,
including invasive growth into the host tissues and development
of biofilms on surfaces, are medically important. Mkc1 is a
contact-activated MAPK with a role in the cell wall integrity
pathway. C. albicans mkc1D/D mutant is defective in invasive
hyphal growth and biofilm development, suggesting that the cell
integrity pathway plays a role in contact sensing.23 The zinc finger
transcription factor Czf1 is also required for contact induced
response. Deletion of CZF1 in C. albicans leads to filamentous
growth defect of embedded cells. Deletion of CPH1 in a czf1D/D
mutant enhances this defect.21 The Rho-type G protein Rac1 is
highly similar to Cdc42 in protein sequence. But they have
distinct roles in filamentous growth in response to different
environmental conditions. In contrast to Cdc42, Rac1 is essential
for filamentation induced under embedded conditions, but not
required for hyphal induction by serum, GlcNAc and spider
medium.68,69 The similar responses to different stimuli in czf1D/D
and rac1D/D mutants suggest Czf1 may function downstream
of Rac1.

Osmotic sensing. The Hog1 MAPK pathway regulates not
only osmotic stress but also oxidative stress induced responses in
C. albicans.70,71 This conserved signaling cascade includes three
major components: the MAPKKK Ssk2, MAPKK Pbs2 and
MAPK Hog1.72 Ssk2 phosphorylates and thereby activates Pbs2,73

which then subsequently phosphorylates the MAPK Hog1.
C. albicans Hog1 was first identified by functional complementa-
tion of the osmosenstitve phenotype in an S. cerevisiae hog1D
mutant and proven to be involved in response to osmotic stress.70

Microarray analysis shows that C. albicans Hog1 plays a global
role in regulation of gene transcription in response to a variety of
stresses.74 Deletion of HOG1 in C. albicans results in abnormal
filamentous growth as well as decreased virulence.75 C. albicans
Pbs2, a homolog to the S. cerevisiae MAPKK Pbs2, is required for
stress regulation of Hog1p localization and activity. Similar to the
hog1D/D mutant, the pbs2D/D mutant is sensitive to both osmotic
and oxidative stresses.73 Besides the MAPKKK Ssk2, C. albicans
genome sequencing reveals the existence of the upstream
components of the Hog1 cascade including Ssk1, Ypd1, Chk1
and Nik1, which are homologous to their counterparts in
S. cerevisiae (CGD database, www.candidagenome.org).

Negative regulators of filamentous growth. Both filamentous
and yeast cells of C. albicans have been found to be associated with
tissue infections. It is more likely that one form may be better
adapted than the other to survive in different host niches.1

Therefore, the ability of interconversion between yeast and
filamentous forms is critical for pathogenesis. As aforementioned,
whereas quite a lot of effort has been put into understanding the
mechanisms of yeast to filamentous conversion, only a few
negative regulators have been intensively studied.

The general transcriptional repressor Tup1 controls fila-
mentous formation in C. albicans under all conditions investi-
gated.76 It represses expression of numerous genes required for
initiation and maintenance of filamentous growth. Tup1 is
epistatic to the transcriptional activator Cph1 since the phenotype
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of the tup1D/D cph1D/D double mutant is indistinguishable from
that of the tup1D/D mutant.76 The zinc finger transcription factor
Nrg1 is a DNA-binding protein associated with Tup1.77,78

Deletion of NRG1 also leads to constitutive filamentous growth
under all growth conditions tested. Consistently, overexpression
of NRG1 repressed the yeast to filamentous transition.77,78 Nrg1 is
thought to act by recruiting Tup1 to the promoters of target
genes. Microarray data indicates that a subset of Nrg1-regulated
genes is controlled by Tup1.79,80 Another transcriptional repressor
in C. albicans is Ssn6, which acts together with Tup1. The Tup1-
Ssn6 corepressor is conserved from yeast to human. In
S. cerevisiae, Ssn6 forms a co-repressor complex with Tup1 and
regulates a variety of genes involved in different biological
processes.80 Hwang et al. found that Ssn6 controls morphological
conversion as well as virulence in C. albicans.81 The mutant of
SSN6 displays increased filamentous growth ability in response to
high temperature. Interestingly, overexpression of SSN6 leads to
enhanced filamentous growth and reduced virulence. These
results suggest that Ssn6 may function as a repressor as well
as an activator for hyphal development.81 C. albicans ssn6D/D
and tup1D/D mutants demonstrate distinct morphological and
invasive growth phenotypes. Transcriptional profiling indicates
that hypha-specific genes, which are targeted by Tup1 and Nrg1,
are not derepressed in the ssn6D/D mutant, while expression of
some white-opaque switching related genes (e.g., WH11) was
increased.80 Therefore, Ssn6 acts independent of Tup1 at least in
some biological processes.

C. albicans Rfg1 is a homolog of S. cerevisiae Rox1, a key
repressor of hypoxic genes. Rfg1 controls filamentous develop-
ment and virulence in C. albicans, but does not appear to be
required for the regulation of hypoxic genes.82,83 Like Nrg1, Rfg1
is a sequence-specific DNA binding protein. In S. cerevisiae, Rox1
represses expression of hypoxic genes via recruitment of the Ssn6-
Tup1 complex. Rfg1 may play a similar role in C. albicans. DNA
microarray analysis demonstrated that 61 genes are induced
significantly in response to exposure to serum and high tempera-
ture.84 Half of these genes are repressed by the transcription
factors, Rfg1, Nrg1, and Tup1. Deletion of RFG1 gene in
C. albicans leads to constitutively filamentous growth, while
overexpression of RFG1 does not inhibit hyphal formation
either in vitro or in vivo.84

Cell wall proteins. The cell wall of C. albicans contains about
60% of β-glucan and about 40% of mannoproteins and
chitin.85,86 It provides the cell with a scaffold and protection.
The upstream signal transduction pathways and transcription
factors finally target on the cell wall components including cell
wall proteins. Cell wall proteins play critical roles in maintaining
the integrity of the cell wall and sensing the external environ-
mental cues and, therefore, are important for adaptation to the
host and pathogenesis.

Hwp1 and Ywp1. Hwp1 (hyphal wall protein 1), a manno-
protein with a C-terminal GPI anchor, is exclusively expressed on
the hyphal cell surface.87,88 HWP1 is regulated by a variety of
transcription factors including Tup1, Nrg1, Efg1 and Bcr1.89,90

The protein Hwp1 is a substrate for the mammalian trans-
glutaminase (TGase) and regulates covalent attachments between

germ tubes and host epithelial cells.87 Ywp1 (yeast wall protein 1)
of C. albicans is a GPI protein containing an N-terminal secretion
signal and a central region rich in serine and threonine.91 The
protein Ywp1 has been found to be linked covalently to the wall
matrix and to accumulate in liquid culture during stationary
phase. Ywp1 is regulated by environmental pH, transcriptional
activator Efg1 and Efh1.92 While Ywp1 is not essential for normal
growth, hyphal development and virulence, deletion of YWP1
results in increased biofilm formation and adhesiveness.91

ALS family proteins. The ALS (agglutinin-like sequence) gene
family of C. albicans encodes cell wall-bound adhesins that are
critical for biolfilm development and tissue adherence during the
process of infection.93 ALS family proteins are large glycoproteins
with a three-domain structure, including a conserved 5' domain, a
central region of 108 bp unit of a repeated motif and a variable 3'
domain with a serine-threonine-rich sequence. There are eight
ALS genes (ALS1 to ALS7 and ALS9) in C. albicans.93-95 ALS8
has been proven to be the same gene as ALS3. These ALS genes
are located on three different chromosomes: Chr. 6 (ALS1,
ALS2, ALS4 and ALS5), Chr. 3 (ALS6 and ALS7) and Chr. R
(ALS3). ALS1 was first identified in C. albicans as a cell surface
protein induced in response to high temperature and CO2.96 The
expression of ALS1 is upregulated at neutral pH and is
downregulated in ssk1/ssk1 mutants. Overexpression of ALS1
leads to extensive flocculation and aggregation. ALS1 functions
downstream of cAMP/PKA pathway and is targeted by the
transcription factor Efg1. Consistent with its role in adhesion,
expression of ALS1 is induced in biofilm populations and over-
expression of ALS1 in a bcr1/bcr1 mutant rescues its biofilm
development defect.90 Expression of ALS genes is also differ-
entially regulated by culture conditions, morphological form and
stage of growth.97,98 The molecular features and roles of ALS
proteins in adherence indicate their importance in virulence.
Genome sequencing data show that ALS proteins also exist
in other pathogenic Candida species including C. dubliniensis and
C. tropicalis.99

Regulation of White-Opaque Switching

The second high-frequency phenotypic switching system in
C. albicans, namely white-opaque transition, has been extensively
investigated during the past decade.100 White and opaque
phenotypes are heritable and bistable and show different cellular
and colony appearances, gene expression profiles, mating ability
and virulence.6,7,101,102 Cells of each phase can maintain for many
generations. White cells are relatively round and form smooth
hemispherical colonies on solid media, while opaque cells are large
and elongated and form flat and gray or “opaque” colonies.7 The
two distinct types of cells express a set of phenotype-specific
genes. For example, WH11 and the long transcription form of
EFG1 are specifically expressed in white cells, whereas OP4 and
SAP4 are enriched in opaque cells.103-105 Remarkably, white cells
express a fermentative profile of metabolism related genes, while
opaque cells adopt an oxidative one.101 White and opaque cells
also differ in virulence.106 White cells are more virulent than
opaque cells in a mouse systemic infection model and can rapidly
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colonize the host kidneys. In contrast, opaque cells have poor
ability to colonize the host internal organs, but are better at
cutaneous infection possibly due to the opaque-specific expression
of secreted aspartyl proteinase (SAP) genes.

Mating type like locus (MTL). Hull et al. discovered that
C. albicans contained a mating type like locus in its genome.107

TheMTLa1 and MTLa2, homologous to the S. cerevisiae MATa1
and a2, have been identified on chromosome 5 in C. albicans.
The MTL locus controls not only C. albicans mating but also
white-opaque switching.102 The Mtla1/a2 heterozygous complex
inhibits white-opaque switching via controlling the expression
of the master regulator gene WOR1 (white-opaque regulator 1)
(Fig. 2).108-110 This finding explained why only a minor group of
clinical strains could undergo white-opaque switching. This small
group of strains has been proven to be homozygous at MTL
locus.111 In 2002, Miller et al. found that only opaque cells
undergo efficient mating.102 Therefore, in order to mate,
C. albicans cells first have to undergo homozygosis at the MTL
and then switch from white to opaque phenotype.

The white-opaque switching regulatory gene circuitry.
Although the MTL homozygous strains of C. albicans are
switching-competent, switching from white to opaque phase is
rare and stochastic. This fact suggests that the MTL locus is not
the master regulator of this process. In 2006, three labs identified
Wor1 as a master regulator of the complex switching system.108-110

WOR1 is exclusively expressed in opaque cells and regulates its
own expression by a positive feedback loop. Deletion of WOR1
locks the C. albicans cells in white phase, while overexpression of
WOR1 leads to mass conversion of white to opaque form.108-110 In
a subsequent study, Zordan et al. identified an interlocking
transcriptional circuit controlling white-opaque switching.112

Wor1 occupies the central position of the gene circuit, which
includes three other transcription factors, Efg1, Czf1 and Wor2
(Fig. 2). Wor1 binds to the promoter regions of Efg1, Czf1 and
Wor2 and controls their expression. Efg1 is a negative regulator
of white to opaque switching. Deletion of EFG1 almost
completely locks C. albicans cells in opaque phase, while
overexpression of EFG1 results in opaque to white switch-
ing.92,105,112 Overexpression of CZF1 promotes opaque cell
formation possibly because it inhibits EFG1 expression. Wor2 is
required for opaque formation and maintenance of opaque
phenotype. The wor2D/D mutant completely lost the white to
opaque switching ability.112 However, ectopic expression of
WOR1 in the wor2/wor2 mutant induces opaque cell formation,
suggesting that Wor1 is downstream of Wor2. Microarray and
RNA-seq data indicate that more than 1,000 genes or non-coding
RNAs are differentially expressed in white and opaque cells,
suggesting the regulation of this transition process could be much
more complex.101,113,114 Several studies suggest that epigenetic
modifications of the chromatin regulate white-opaque switching
in C. albicans. Treatment of C. albicans cells with the histone
deacetylase inhibitor trichostatin-A (TSA) promotes opaque cell
formation. Consistently, deletion of HDA1, which encodes a
deacetylase sensitive to TSA, leads to increased switching
frequency from white to opaque.115,116 Recently, Hnisz et al.
have identified eight genes encoding histone-modifying enzymes

as regulators of phenotypic switching.117 This study indicates that
the conserved Set3/Hos2 histone deacetylase complex plays a key
role in white-opaque regulation and links chromatin modification
to the Wor1-Wor2-Efg1-Czf1 mediated transcriptional circuit.

Environmental cues regulate white-opaque switching. A
plethora of environmental cues have been found to regulate
white-opaque switching in C. albicans (Fig. 2A). Human or
mammalian mucus is the natural niche for C. albicans, where the
temperature is 37°C. In vitro experiments showed that opaque
cells are extremely unstable and underwent mass conversion to
white phase at this high temperature.6 Exposure of cells to low
temperature also led to opaque to white switching, but had no
obvious effect on white to opaque transition.6 Given opaque is the
only mating competent form and is unstable at host temperature,
how can C. albicans mate in the major niche of the mammalian
host? Recently, Huang et al. found that two host environmental
molecules, CO2 and GlcNAc, not only promoted white to opaque
switching, but also could stabilize the opaque phenotype at
37°C.43,44 The cAMP signal, which has been proven to be
essential for CO2 induced filamentous growth in C. albicans, plays
a minor role in CO2 promoted white to opaque transition.43 The
major pathway controlling this process remains unclear. The
carbonic anhydrase Nce103 is required for the low CO2 level
(1%) induced opaque cell formation, but not for the high CO2

level (5%) induction.43 The high levels of CO2 in the host (4.5–
30.0%) may play a critical role in C. albicans phenotypic
switching and sexual reproduction.17 GlcNAc, a component of
bacterial cell wall and GI tract mucus, is another inducer of white
to opaque switching.44 In contrast to CO2, GlcNAc promotes
opaque phenotype primarily via the Ras1-cAMP/PKA pathway.
The mutants of RAS1 and CYR1 genes showed remarkably
reduced response to GlcNAc. Activating the pathway by ectopic
expression of RAS1V13, a constitutively activated form of Ras1,25

resulted in hypersensitivity to GlcNAc stimulation. Consistently,
deletion of the high affinity phosphodiesterase gene PDE2 had the
similar effect. The activated cAMP signal finally targets on the
master regulator Wor1, which contains a conserved PKA
phosphorylation site (Fig. 2B).44,108 Interestingly, GlcNAc and
CO2 have synergistic effect on induction of opaque phenotype,
suggesting that these two molecules function via distinct major
pathways.44 Other factors, including oxidative stress, UV light
and adenine, have also been found to regulate white-opaque
switching, although the underlying mechanisms remain to be
investigated.117-119

Relationship between white-opaque switching and biofilm
formation. Like S. cerevisiae MATa and a cells, C. albicans
MTLa/a and a/a cells secrete a or a pheromones, respectively,
and carry corresponding a-factor or a-factor receptors.120-123

Although only opaque cells undergo efficient mating, a-phero-
mone induces expression of some mating-related genes, including
STE2, CEK1, CEK2 and SST2, in both opaque and white cells.124

The activation of the mating regulatory pathway in white cells
leads to increased cohesiveness, adhesiveness and induces biofilm
development. Daniels et al. demonstrate that a minority of
opaque cells signal the majority of the white cell population to
form biofilms, which provide an environment facilitating opaque
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cell mating.124 The white cell response to pheromone has been
shown to be a general feature of MTL-homozygous C. albicans
strains via a pheromone-based paracrine system.125,126

Interestingly, pheromones from related Candida species can
induce C. albicans white cell response, indicating the plasticity of
this signal.127 Recently, the Soll group has found that the Ste11-
Hst7-Cek1/2-Tec1 mediated MAPK pathway primarily controls
the pheromone induced biofilm development in MTL homo-
zygous strains, while the Ras-cAMP/PKA pathway governs the
conventional biofilm formed by MTLa/a strains.39 Tec1 plays a
central role in biofilm development of white cells, while Cph1
controls the mating response of opaque cells.128 We have recently
reported that the GATA type zinc finger transcription factor Gat2
plays an important role in biofilm formation, filamentation and
virulence in C. albicans. We also demonstrate that Gat2 may
function downstream of Tec1.129

Common and distinct mechanisms of white-opaque switching
and filamentous growth regulation. Opaque cells share some
common features with hyphae, including a big vacuole and cell
surface antigens.7 It has been suggested that opaque phenotype
represents a newly evolved biological process since it is unique to
C. albicans and its closely related species Candida dubliniensis.130

A lot of filamentous growth regulators, such as Efg1, Efh1,
Czf1, Hda1 and Tup1, also control white to opaque switch-
ing.21,52,105,112,116,117,131 Remarkably, the conserved Ras-cAMP/
PKA pathway regulates CO2 and GlcNAc induced filamentous
growth as well as opaque formation in C. albicans.4,13,43,44 Other
environmental cues including stresses, hypoxic conditions and
UV, which play a critical role in filamentous growth induction,
have also been found to regulate white-opaque switch-
ing.100,118,119,132 In some aspects, opaque cells are characterized
by several unique features.7 First, opaque cells bud like white yeast
cells although the dynamics of actin localization follow the hypha
pattern later in the budding growth.7 Second, the surface of
opaque cells exhibits unique pimples, which are not observed in
white cells and hyphae.7 Third, white-opaque switching is
specifically regulated by some phase related genes,101,113,114

including the master regulator Wor1 and the zinc finger
transcription factor Wor2.112 Wor1 and Wor2 are not required
for filamentous growth.108,112 Fourthly, opaque cells switch to
white quickly at high temperature (37°C) in vitro, while the high

temperature facilitates filamentous growth.6 Finally, the white to
opaque transition is a mating prerequisite in C. albicans.102 Only a
minor part of natural strains, which are homozygous at the MTL
locus, can undergo white to opaque switching.111 Therefore,
common and distinct mechanisms are involved in the regulation
of the two phenotypic transition systems.

Conclusion

High-frequency phenotypic transition is a defining feature of the
pathogen fungus C. albicans. The ability of switching between
different morphological forms in response to environmental cues
is widely thought to be associated with virulence. In this review,
the underlying mechanisms controlling yeast-filamentous growth
transition and white-opaque switching, which represent two
typical phenotypic switching systems in C. albicans, have been
reviewed. The complex interplay between internal genetic
elements and external environments determines the morpho-
logical fate of this organism. The genes or pathways involved in
phenotypic transition are often required for virulence, indicating
the important link between morphogenesis and pathogenesis in
C. albicans. Interestingly, a variety of environmental inducers and
genes, which regulate filamentous growth, also control white-
opaque switching, suggesting that the two switching systems are
evolutionarily-related. The phenotypic plasticity of C. albicans
enables the organism to rapidly adapt to the changing host
environments, while the biological significance of switching from
white to opaque state to mate remains unclear. Given the
importance of morphological changes in C. albicans, more
detailed and more extensive investigations will be needed for
deeper insights into understanding its pathogenicity.
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